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The importance of the kynurenine pathway in normal immune system function has

led to an appreciation of its possible contribution to autoimmune disorders such

as rheumatoid arthritis. Indoleamine-2,3-dioxygenase (IDO) activity exerts a protective

function, limiting the severity of experimental arthritis, whereas deletion or inhibition

exacerbates the symptoms. Other chronic disorder with an inflammatory component,

such as atherosclerosis, are also suppressed by IDO activity. It is suggested that this

overall anti-inflammatory activity is mediated by a change in the relative production

or activity of Th17 and regulatory T cell populations. Kynurenines may play an

anti-inflammatory role also in CNS disorders such as Huntington’s disease, Alzheimer’s

disease and multiple sclerosis, in which signs of inflammation and neurodegeneration

are involved. The possibility is discussed that in Huntington’s disease kynurenines

interact with other anti-inflammatory molecules such as Human Lymphocyte Antigen-G

which may be relevant in other disorders. Kynurenine involvement may account for

the protection afforded to animals with cerebral malaria and trypanosomiasis when

they are treated with an inhibitor of kynurenine-3-monoxygenase (KMO). There is some

evidence that changes in IL-10 may contribute to this protection and the relationship

between kynurenines and IL-10 in arthritis and other inflammatory conditions should be

explored. In addition, metabolites of kynurenine downstream of KMO, such as anthranilic

acid and 3-hydroxy-anthranilic acid can influence inflammation, and the ratio of these

compounds is a valuable biomarker of inflammatory status although the underlying

molecular mechanisms of the changes require clarification. Hence it is essential that

more effort be expended to identify their sites of action as potential targets for drug

development. Finally, we discuss increasing awareness of the epigenetic regulation of

IDO, for example by DNA methylation, a phenomenon which may explain differences

between individuals in their susceptibility to arthritis and other inflammatory disorders.
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INTRODUCTION

Widespread interest in the kynurenine pathway (Figure 1) and its roles in the nervous and
immune systems developed in parallel from the discoveries of indoleamine-2,3-dioxygenase
(IDO) activation by interferon-γ (1) and the subsequent discovery of a major functional role in
placental immunity (2, 3) and the observation that catabolites of the IDO product, kynurenine,
had modulatory effects on neuronal function (4–6) (Figure 2). It is now recognized that similar
mechanisms may be involved at the molecular level of neuronal and non-neuronal processes
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and that activity along the kynurenine pathway is fundamental
to the development of some central and peripheral disorders.
Examples of these will be presented in this review, with the initial
emphasis on disorders of primarily peripheral origin, including
arthritis and atherosclerosis. A later section will emphasize the
important links between peripheral and central inflammation
by noting the roles of kynurenines and immune function
in Alzheimer’s disease, multiple sclerosis and Huntington’s
disease, where a relationship has been described between IDO
and Human Lymphocyte Antigen-G. Those interactions may
contribute to the roles of immune system activity in physiology
and disease pathogenesis, with potentially common targets of
therapeutic intervention for central and peripheral disorders.

KYNURENINES AND PERIPHERAL
INFLAMMATORY DISORDERS

Rheumatoid Arthritis
The interface between tissue and immune system cells is
seen clearly in peripheral inflammatory disorders such as
rheumatoid arthritis (RA). In this condition, local tissue trauma
and degeneration are accompanied by leukocyte infiltration
and pannus formation which diminishes the volume of the
joint space. This cellular infiltration and cytokine production
eventually results in tissue damage and a positive feedback cycle
in which the joint damage exacerbates the inflammatory response
which in turn produces further bone and joint erosion.

Much work on the kynurenine metabolites in this condition
has centered on the first enzymes of the pathway (IDO and
tryptophan-2,3-dioxygenase, TDO), the isoforms of which have
been discussed in depth (7). Where the identity of an isoform
is known, it will be indicated in this review. The indeterminate
form “IDO” implies that no distinction was made in the original
literature. In general TDO, found mainly in the liver, exhibits
greater selectivity for tryptophan whereas IDO, which occurs
or can be induced in several tissues, acts on a wider range of
indole-based substrates. As the enzyme most highly activated
by interferon-γ (IFN-γ), IDO has often been the primary target
used to explore disease mechanisms. In the case of RA, we
have demonstrated that the inhibition of IDO (by 1-methyl-
DL-tryptophan) or deletion of IDO1 increased the severity of
arthritic symptoms in the collagen-induced model of arthritis
(CIA) (8). The symptoms were, however, reduced significantly
by the administration of kynurenine indicating that it was
probably the loss of kynurenine or its downstream catabolites
which were responsible for enhancing the arthritic symptoms
and histopathology. Importantly, the effects of IDO inhibition
included an increase in the numbers of IFN-γ- and interleukin-
17- (IL-17)- producing T lymphocytes, particularly in the joints
(8), suggesting a normally restraining influence of IDO. This is
entirely consistent with the concept that RA is characterized by
pathogenic T cells, including Th1 and Th17 cells.

In order to assess whether these observations might be
relevant to RA in human patients, we considered mechanisms
by which IDO or its activation processes might be affected in
human subjects. One important mechanism for the regulation

of IDO1 results from interaction between the B7 complex on
dendritic cells (DCs) with Cytotoxic T-lymphocyte Antigen-4
(CTLA-4) expressed in the membranes of regulatory T cells.
This ligation induces and activates IDO1 in the DCs and is
maintained by Transforming Growth Factor-β (TGF-β) and
inflammatory mediators via non-canonical actions of Nuclear
Factor-κB (NFκB). This route is one of the major processes by
which immune tolerance is maintained in a stable, long-term
manner (9) and is an important link between arthritic damage
and the kynurenine pathway. Subsequently we were able to
demonstrate that in patients with RA there was a defect of IDO1
induction in the immune system involving the B7 / CTLA-4
interaction. The mechanism of this defect proved to be aberrant
DNA methylation at the CTLA-4 promoter, leading to a loss
of Treg cells and increased symptoms in the patients (10). The
genetically impaired IDO1 activation thus reproduced the effect
of arthritis exacerbation in IDO1–/–mice. The full cycle of events
which explains the development, progression and remission of
RA remains to be defined, but it is clear that IDO in DCs plays
a significant role in that cycle. Since the simple procedure of
administering kynurenine can reduce the degree of tissue damage
and disability (8), this might represent a potential avenue for
novel treatments.

It is perhaps unfortunate that IDO is such a clear and easily
reproducible feature of inflammation since many studies have
focussed almost exclusively on this enzyme and have interpreted
the findings in terms of the full kynurenine pathway. The ratio
of kynurenine to tryptophan concentrations in the blood or
tissues has become a widely accepted marker of immune system
activation, without a full appreciation of changes in the levels
and relative amounts of metabolites downstream of kynurenine-
3-mono-oxygenase (KMO). It is now clear that the effects of IDO
activation are mediated not only via the reduced availability of
tryptophan, but also by those downstream metabolites. These
compounds have direct effects on the immune system that
regulate the initiation, progression and termination of immune
responses to infection or tissue damage.

Examples of these effects include the ability of kynurenine
or kynurenic acid to activate the Aryl Hydrocarbon Receptor
(AHR) which in turn induces an increased expression of IDO
and TDO, providing a positive feedback circuit (11–14). The
progressively increasing levels of kynurenine have two critical
actions: induction of the transcription factor Forkhead Box-
P3 (FoxP3) (15–17) and suppression of the transcription factor
Retinoic Acid Receptor-related Orphan Receptor-γt (RORγt)
(18, 19). FoxP3 promotes the differentiation of CD4+ T cells
to CD4+CD25+FoxP3+ regulatory T helper cells (Tregs) which
are able to inhibit other CD4+ cells and the cytotoxic effector
T cells such as CD8+ T cells and Natural Killer (NK) cells. The
inhibition of RORγt expression prevents the differentiation of
CD4+ T cells into generally pro-inflammatory Th17 cells. Since
the work described above had indicated a role for Th17 and
Treg cells in CIA, involvement of the AHR and its feed-forward
generation of IDO/TDOmight be relevant.

Activation of AHRs by their classic agonist hydrocarbon
molecules such as benzo[a]pyrene and 2, 3, 7, 8-
tetrachlorodibenzo-p-dioxin (TCDD) could potentially account
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FIGURE 1 | Summary of the major compounds and enzymes of the kynurenine pathway. ACMSD is α-amino-β-carboxymuconate semialdehyde decarboxylase. In

cells lacking this enzyme the molecule in parentheses (ACMS) rearranges spontaneously (non-enzymatically) to quinolinic acid. When present, ACMSD converts

ACMS to picolinic acid. Key metabolites include (A) Tryptophan, (B) Kynurenine, (C) Kynurenic acid, (D) Anthranilic acid, (E) 3-hydroxy-kynurenine, (F)

3-hydroxy-anthranilic acid, (G) 5-hydroxy-anthranilic acid, (H) ACMS, (I) xanthurenic acid, (J) picolinic acid, and (K) quinolinic acid.
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FIGURE 2 | Cell-specific IDO pathways in inflammation. (A) In the immune system, APCs upregulate expression of the complete IDO pathway when activated.

Tolerogenic APCs promote the differentiation of Tregs and inhibit Th17 differentiation. Tregs inhibit APC activation via CTLA-4, which also inhibits differentiation of

pre-osteoclasts (pOCL) to osteoclasts (OCL); soluble CTLA4-Ig (ipilimumab) also inhibits OCL differentiation. Conversely, Th17 promote osteoclastogenesis. (B) In the

CNS, microglia express low levels of kynurenine aminotransferase, pushing the IDO pathway to the production of excitatory and potentially neurotoxic quinolinic acid

(dashed arrow). Astrocytes express low levels of KMO which leads to the accumulation of the NMDA receptor blocker and neuroprotective kynurenic acid (full arrows).

See Figure 1 for legend to IDO pathway metabolites.

for the exacerbation of RA in cigarette smokers (20–22). Indeed,
activation of AHRs by the constituents of cigarette smoke can
potentiate the induction of NFkB by Tumor Necrosis Factor-α
(TNF-α), leading not only to increased inflammatory activity
but also reducing the efficacy of anti-TNF-α medications and
possibly explaining both the apparent resistance of some patients
to these drugs but also the high rate of non-compliance or
discontinuation (23). The mechanism of AHR in these cases
is likely to involve changes in the number and activity of
Th17 cells (21) consistent with the evidence noted above. The
exacerbation of symptoms in models of arthritis such as CIA
and antigen-induced arthritis (AIA) is prevented by deletion of
either AHRs or of IL-17 receptors (21) supporting the view that
AHR activation can drive Th17 differentiation.

Helping to understand the mechanisms underlying RA,
osteoarthritis (OA) and osteoporosis (OP) is the finding that the
effects of AHR activation are potentiated by Human Leucocyte
Antigen-DRB1, a significant risk factor for the development of
arthritis (24). The synergism is sufficient to increase osteoclast
generation and thus bone damage but, even more relevant
systemically, the combination increases Th17 cell differentiation
with high IL-17 levels noted in arthritic joints and draining
lymph nodes.

Conversely the activation of AHRs by compounds with known
anti-arthritic potential, such as sinomenine and norisoboldine,
promote the differentiation of Treg cells (25, 26). Since the AHR
is known to respond differentially to various compounds and to
produce effects that depend qualitatively on the agonist, it will be
of interest to determine whether these effects reflect a known or
novel target site on the AHR complex which might be amenable
to new drug development. An unrelated compound, tetrandrine,
combines both these actions and normalizes the Th17: Treg ratio
by a mechanism which involved the AHR (27). However, it is

unclear whether the compound acts on two distinct target sites on
the AHR, or whether the result of acting at a single site drives two
different responses in Th17/Treg precursor cells. It is possible, for
example, that tetrandrine has different sites of action in the two
populations or that it induces different responses when acting
on AHRs in cells destined to become Th17 and Treg precursors.
These uncertainties would be important matters to clarify as they
could lead to more selective molecules with a single mechanism
of action which might be devoid of unwanted effects on other
cell populations.

In addition to these promoters of AHR activity, several routes
are now known by which AHR activity can be down-regulated.
The microRNA molecule miR-223 for example suppresses AHR
activity by interfering with the AHR Nuclear Translocator
(ARNT) (28). Of particular interest was the observation that this
interaction occurred in macrophages, but was less prominent
in patients with RA than those with osteoarthritis, supporting
proposals that these cells play an important role in the etiology
of RA. However, these results are difficult to reconcile with the
report that AHR deletion from thymocytes reduced arthritic
parameters in mice with CIA, whereas deletion selectively from
macrophages had no effect (13).

Since AHR expression is seen inmost cell types, it is important
to consider that immune system cells may be the dominant
population involved in the regulation of arthritic inflammation.
Nevertheless, it has been reported that the fibroblast-like
synovial cells, which exhibit a high rate of proliferation and
migration within the joints of patients with RA, also express
AHRs. Activation of the receptors comprehensively inhibits the
synovial cells, reducing proliferation, migration and invasion of
surrounding tissue (29). A role for IDO in these phenomena has
not been studied in depth but would be predicted as a significant
feature of AHR activation elsewhere.
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Although there is continuing controversy about the relative
importance of tryptophan depletion and kynurenine metabolite
activity in immune system regulation (30, 31), it is likely that both
mechanisms are relevant to some extent. While kynurenine and
its metabolites are the primary biologically active compounds in
the kynurenine pathway, the changes of their concentrations in
blood or CSF are often small, as is the reduction in tryptophan
concentration resulting from its oxidation (to kynurenine) by
IDO or TDO. Much of the behavioral work in experimental
animals, or clinical work in humans, includes the measurement
of the kynurenine: tryptophan (K/T) ratio, which provides a
larger and statistically more useful parameter. The effects of
tryptophan depletion are likely to be mediated by activation of
the Generalized Controller Non-derepressible-2 Kinase (GCN2)
(16, 32, 33), a sensor of cellular amino acid levels. A reduction in
the concentration of tryptophan, for example, results in increased
numbers of free tryptophanyl-tRNA molecules which induce
GCN2 activation. Cells expressing IDO, such as plasmacytoid
DCs, therefore, can induce T cell anergy by reduced proliferation
and induced apoptosis (32, 34). Although GCN2 is usually
considered to be necessary for linking tryptophan deficiency to
the inhibition of cell cycling, it is possible that this relationship
operates differently in CD4+ and CD8+ T cells (35). The effect
of tryptophan depletion is potentiated by tryptophan catabolites
in the kynurenine pathway (16).

Osteoporosis
Osteoporosis is another musculo-skeletal disorder in which
inflammation is thought to play a significant role although
the involvement of kynurenines remains poorly understood.
When quantifying the levels of kynurenines in patients newly
diagnosed with osteoporosis (and therefore receiving no relevant
medication at the time), it was found that the serum content
of 3-hydroxy-anthranilic acid (3HAA) was substantially lower
(around 10-fold) than that in a parallel cohort of normal
control subjects. Moreover, there was a comparably increased
concentration of anthranilic acid (AA), generating an overall
difference in concentration between these compounds of
approximately 100:1. After treatment with the standard drugs
- bisphosphonates or Selective Estrogen Receptor Modulators
(SERMs) for 2 years, these values had returned to the levels
determined in control subjects, accompanied by a significant
improvement in measurements of bone density (36).

Both the mechanism and the pathological significance of
this remain unclear. There have been suggestions of enzymic
conversion of AA to 3HAA (37) which, potentially, might be
inhibited during the course of inflammation resulting in a higher
AA: 3HAA ratio. It is not known, however, whether these
changes in the kynurenine pathway are primary or secondary
contributory factors in the development of osteoporosis. 3HAA
exerts inhibitory control of Th1 cells, changing the important
ratio between inflammatory, IFN-γ-secreting Th1 cells and anti-
inflammatory IL-10 secreting Th2 cells with a resulting anti-
inflammatory polarization of immune system function (38). A
loss of 3HAA should therefore result in a pro-inflammatory
environment and could account for the emergence of a disorder

such as osteoporosis in which the immune system is likely to be
involved (39–41).

But what could generate the loss of 3HAA? Could it simply
be a defective enzyme converting anthranilate to AA to 3HAA?
Or might there be a reduced oxidation by KMO of kynurenine
to 3-hydroxy-kynurenine (3HK), with kynureninase catabolising
the excess kynurenine to AA? Why then is there no comparable
increase in the conversion of kynurenine to kynurenic acid
via kynurenine aminotransferase (KAT)? Do therapeutic agents
affect the kynurenine pathway directly, in which case those effects
might drive the AA:3HAA ratio and determine the initiation
and time course of inflammation, or are all the kynurenine
pathway changes a result of altered levels of a crucial factor
such as a regulatory cytokine, chemokine or growth factor?
Certainly 3HAA is less stable than AA in aqueous media,
as discussed previously (42), largely because it is a reactive
compound which auto-oxidizes to a form which dimerises
spontaneously to cinnabarinic acid (43, 44). However, this
molecular difference does not readily account for the differences
in concentrations observed between two populations of patients,
since the chemical and redox environment should not differ
greatly between the groups.

The importance of these questions lies not simply in an
understanding of osteoporosis, but also in accounting for similar
changes in a wide range of disorders in which an underlying
inflammation appears to be involved. Thus, similar, though not
as dramatic, changes in AA: 3HAA ratio have been reported in
a range of disorders [see (30, 31, 42)] where they can change
progressively with the development of disease symptoms (45).

In attempting to explain some of these phenomena, several
groups have turned to vitamins and the possible relevance of
a deficiency in their availability. One plausible view is that
disturbances to the kynurenine pathway may result from a
deficiency of pyridoxal phosphate, one form of vitamin B6
which is a crucial co-factor for several kynurenine pathway
enzymes such as kynureninase and kynurenine aminotransferase.
Although not previously considered, riboflavin (vitamin B2) is
also required, along with pyridoxal phosphate, for the activation
of KMO (46, 47). Infections and inflammation are associated
with increased turnover of this cofactor (48), lowering cytosolic
concentrations, a relationship consistent with the ability of
riboflavin to inhibit the production of inflammatory cytokines
(49), to potentiate the effects of anti-inflammatory drugs (49, 50)
and to enhance host resistance (51, 52). Conversely, reduced
riboflavin availability is associated with greater inflammatory
activity in arthritis (53). Thus, the lowering of riboflavin content
associated with the onset of inflammation, in turn producing
suppressed KMO activity and the preferential metabolism of
kynurenine to AA, could account for the high AA: 3HAA ratio
observed in osteoporosis (36). As noted above, a similar elevation
in this ratio has been reported in patients with arthritis (54) and
other chronic disorders involving tissue inflammation (42).

As in RA, the AHRs seem to play a significant role in the
regulation of bone turnover and fragility. Activation of AHRs
enhances osteoblast production with corresponding increases in
bone formation and strength (55). Similarly, Michalowska et al.
(56) reported that kynurenine promotes osteoblast formation,
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possibly resulting from its inhibition of myeloid mesenchymal
stem cell proliferation and the consequent loss of osteoblast
precursors. On the other hand, there is evidence that the renal
deficiency which results from kidney damage or loss increases
the expression of AHRs in osteocytes and elevates plasma
levels of a range of metabolites including kynurenine and 3-
hydroxykynurenine (3HK) (57). These changes are associated
with increased numbers of osteoclasts, with kynurenine levels
inversely related to several parameters of bone formation.
Overall it was suggested that the AHR-mediated production of
kynurenines mediated the osteoclast generation. In addition,
while AHR generation of kynurenines promotes bone formation,
the activation by AHR of the Cytochrome P450 enzymes
promotes osteoclast activity so reducing osteogenesis, whereas
AHR deletion was reported to increase bone development and
density (58). It is clearly important not only to establish the
reasons for the differing conclusions on kynurenine activity but
also whether the various effects of AHR activation are mediated
by kynurenine metabolites, cytochrome enzymes or other routes,
and how those different routes interact with each other and with
overall tissue function.

Also introducing an element of confusion is evidence that the
presence of inflammation may alter the actions of AHRs. Thus,
increased expression of AHRswas demonstrated inmesenchymal
stem cells from mice with CIA (59) and this was associated
with reduced production of osteoblasts. Treating the animals
with AHR agonists further reduced bone formation, potentially
representing a contributory mechanism in osteoporosis (55).
Clearly it is essential to know whether the behavior of cells and
receptors differs significantly between a normal physiological
state and that of the pathological, diseased state since it would
impact on the approach needed for therapeutic developments.

These various factors may also be complicated by dietary
considerations. Increasing attention is being devoted to dietary
regulation of metabolism, with directly acting AHR agonists
such as 3,3′-diindolylmethane being of special interest. This and
related compounds occur in several Brassica species of vegetables
and have been found to inhibit osteoclast numbers and activity,
resulting in enhanced bone formation (60). Again, it will be
valuable to establish whether the kynurenine pathway is involved
in this, and how it interacts with, and possibly modifies, the other
consequences of AHR activation.

The importance of kynurenines on bone formation is
dependent not only on AHR expression but also on activity
in the CTLA-4 and B7-mediated interactions between T cells
and DCs. CTLA-4 inhibits T cell activation by blocking the
interaction between the T cell receptor co-activator CD28 and the
B7 (CD80/CD86) complex. This results in increased generation
of Wnt-10b which promotes bone formation (61).

The activation of IDO in DCs is also regulated by the
B7 complex, with activation by CTLA-4 expressed on Tregs
producing a tolerogenic profile in the DCs. The loss of bone tissue
which follows the menopause or ovariectomy has been associated
with increased activity in DCs, but preventing CTLA-4 activity
preserves bone tissue (62), suggesting a potential use of the stable,
synthetic construct CTLA-4Ig in reducing osteoporosis. As with
several other instances of IDO and kynurenine involvement in

pathology, it remains uncertain whether the modulation of DC
activity is via local changes in tryptophan concentration or the
generation of pro-apoptotic compounds such as 3HK and 3HAA.

In addition, CTLA-4 acts directly on the CD80/86 proteins
on monocytes to inhibit their differentiation to osteoclasts,
resulting in reduced bone destruction (63–66). Clearly, with
such a range of sites of action for CTLA-4 and CTLA-4Ig,
some of which influence bone formation and destruction, it
is uncertain how important the regulation of kynurenine and
its catabolites is to the overall control of bone formation in
health or disease. In particular, it is not known whether changes
in the concentration of any components of the kynurenine
pathway are able to modulate any of the interactions between
CD28, CD80, CD86, and CTLA-4. In view of the growing use
of CTLA-4Ig in RA, and of the CTLA-4 blocking antibody
ipilimumab in melanomas, however, these questions might be
worthy of investigation. It is tempting to speculate on the
range of studies that, while not specifically examining the
actions of kynurenine and its metabolites, nonetheless have
generated results which might contribute to understanding
the full extent of tryptophan metabolite involvement. Thus,
while the anabolic steroid dehydroepiandrosterone increased
osteoblastogenesis and bone formation, it also increased the
numbers of FoxP3+ Treg cells, an effect that might be generated
via kynurenine pathway activation (67).

Finally it is interesting to note that bone formation may
be affected indirectly by changes in vitamin D metabolism.
Benzo[a]pyrene, for example promotes the catabolism of
the vitamin and would thus hinder calcium absorption and
bone formation (68). This would certainly be an important
consideration for individuals concerned about osteoporosis
following many years of cigarette use. It would be of great
interest to determine whether these effects are the result
of benzo[a]pyrene activation of AHRs and the subsequent
activation of IDO or TDO.

Atherosclerosis
The overall anti-inflammatory effect of kynurenine in arthritis
is reflected in similar properties in several other peripheral
disorders. Atherosclerosis is characterized by vascular
endothelial deposits known as plaques in which accumulated
leukocytes are tightly enmeshed with a calcified complex of
fatty materials, blood cells and platelets. These plaques reduce
the effective diameter of the vascular lumen, restricting blood
flow and affecting blood pressure and tissue viability as a result
(69). Atherosclerosis is a major risk factor for disability and
mortality and a full understanding of the underlying causative
factors remains uncertain. Although the regulation of cholesterol
metabolism by apoenzyme-E (ApoE) is believed to play a
prominent role in the disorder, rodents specifically lacking ApoE
exhibit little vascular abnormality. When ApoE deficiency is
combined with the deletion or inhibition of IDO1, however,
there is a marked exacerbation of the pathology, as noted
above in arthritis, with the deposition of atherosclerotic plaques
comparable to the natural disorder in humans (69, 70). The
importance of IDO activation has been demonstrated by reports
that the promotion of Treg differentiation by IDO-expression
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tolerogenic DCs produces a reduction in atherosclerotic plaque
deposition (71, 72).

Consistent with the studies on trypanosomiasis described
below (section Psychiatric Disorders), in which kynurenine levels
were positively correlated with IL-10, down-regulation of IDO1
in the atherosclerosis model resulted in a diminished expression
of IL-10 in most lymphoid tissues including peripheral blood,
spleen and lymph node B cells (69). However, there is not a
simple cause-and-effect relationship between these compounds
since IL-10 expression was not induced or elevated by kynurenine
administration in vivo. On the other hand, kynurenine did
increase IL-10 production by B cells in vitro (69).

Not only are these results interesting in terms of
understanding the importance of IDO activity in maintaining
immune tolerance and thus restraining the extent of disease,
but they support the possible explanation of some apparently
conflicting results noted above. If the kynurenine induction or
promotion of IL-10 expression is specifically exerted on B cells,
the overall relationship between the two compounds will depend
on the relative involvement of T cells, B cells and probably other
leukocyte populations, as stated earlier.

CENTRAL NEURO-INFLAMMATION

Understanding the role of kynurenines in the Central Nervous
System (CNS) has involved work in two areas of tissue function
which are more problematic in this region than elsewhere. The
first is the question of pathway localization at the cellular level.
Detailed histological studies on the presence and distribution
of the various enzymes along the kynurenine pathway revealed
a differential localization in cell types. For example, KMO was
absent from astrocytes (73, 74), so that these cells are only
able to generate the glutamate antagonist and neuroprotective
kynurenic acid. In contrast, microglia express all components of
the pathway, so that their activation by inflammatory mediators
could result in increased levels of quinolinic acid. This is
consistent with the phenotypic resemblance of microglial cells to
that of resident phagocytes in other organs, as macrophages also
convert tryptophan to all components of the kynurenine pathway
including quinolinic acid (74–76). The ability to generate
quinolinic acid and other damaging kynurenines such as 3HK,
explains why the inflammatory activation of microglia could
cause local cellular damage or death. As IDO1 was constitutively
active in most glial cells (74, 77), it had not been clear why the
generation of quinolinic acid would not produce a significant
ongoing loss of cells. That could now be understood as the
result of kynurenine and kynurenic acid production by astrocytes
which—in the absence of KMO and downstream enzymes—
could accumulate these compounds to a level at which they
could antagonize glutamate and quinolinic acid to prevent
neural over-excitation and excitotoxicity (73, 77). Kynurenine
crosses cell membranes readily and kynurenic acid, despite its
poor membrane permeability, also enters the extracellular space
(78, 79). Whether this is simply the result of slow diffusion, a
facilitated transfer by pinocytosis or the excretion of kynurenate
in exosomes, remains unclear.

There remains significant debate on this hypothesis, as
quinolinic acid synthesis by activated microglia may exceed
kynurenate production, resulting in local cell damage. In
such an inflammatory situation, IDO will also be activated
in astrocytes and the increased production of kynurenine—in
view of its higher membrane permeability—could well diffuse
into the activated microglia much more rapidly than would
kynurenic acid. The result could be a potentiation of microglial
kynurenine metabolism with even greater levels of quinolinic
acid being produced.

Interestingly, the expression of KAT can also vary between
cell types in the CNS. Microglia express lower levels of the
more active KAT2 relative to KAT1 (73) so that the conversion
of kynurenine to quinolinic acid in these cells will be further
enhanced relative to cells expressing more of this enzyme. Subtle
differences such as these between cell types may be critical
in regulating the relative production of different kynurenine
metabolites depending on the balance of neural and glial
cell activity under any given functional circumstances such as
different cytokine profiles.

Huntington’s Disease
The term “central neuro-inflammation” encompasses several
disorders in which the initiating defect involves neurons or
glial cells but which results in abnormal functioning of the
nervous system as a whole. One such disorder is Huntington’s
disease which can now be understood in terms of newly
recognized interactions between kynurenines and aspects of
immune function and which may contribute to their roles in
physiology and disease pathogenesis.

In the CNS many of the pathological effects of kynurenine
pathway activity may result from a balance between the
concentrations of quinolinic acid, an agonist at glutamate
receptors sensitive to N-methyl-D-aspartate (NMDA) (4, 6, 80)
and kynurenic acid, an antagonist at glutamate receptors but with
greatest efficacy blocking NMDA receptors (5, 81, 82). An excess
of the former may result in excessive depolarization, calcium
influx and neurotoxicity (83), leading to the speculation that
an over-production or suppressed removal of quinolinate might
be a factor in neurodegenerative disorders such as Huntington’s
disease with a possibly similar role in Alzheimer’s disease and
other central disorders (84, 85).

In addition, over-activation of NMDA receptors is
accompanied by increased microglial proliferation and activation
together with cytokine production. This indicates that an
inflammatory environment has been induced in which the
levels of potentially pathogenic cytokines are likely to cause,
or contribute to the induction of neuronal damage or death
(86, 87). Consistent with this idea, the levels of quinolinic acid in
the CNS are increased by at least two orders of magnitude during
and following viral infection (88, 89), or following exposure
of experimental animals to Toll-Like Receptor agonists such
as bacterial lipopolysaccharides (LPS) or viral-RNA-mimetic
poly(I:C). These phenomena recall the induction and activation
of the kynurenine pathway by IFN-γ (1) and the importance of
these phenomena in host responses to infection, the protection of
allogeneic embryos or the maintenance of tissue grafts resulting
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from the depletion of tryptophan and generation of kynurenine
catabolites (2, 3, 90–92).

It is now clear that there are also major changes in the
immune system associated with some central disorders, of which
Huntington’s disease represents a good example. Huntington’s
disease is a genetic, inherited disorder in which the early
degeneration of striatal regions produces progressive motor
disorders and later cortical involvement leading to cognitive
dysfunction. It is one of few conditions in which involvement
of the kynurenine pathway has been implicated on the basis of
studies on prokaryotes, in vitro and in vivo mammalian models
and human patients (93–95) and for which the kynurenine
pathway has been considered as a therapeutic target (96–98).
Increasingly, evidence indicates parallel disturbances in the
immune system (94, 99–102). Central microglia are activated
and peripheral monocytes of patients with Huntington’s disease
are hyper-sensitive to immunogenic stimuli (103). A variety of
changes in cytokine expression have been reported in the disorder
(100, 104) and it is claimed that immunosuppressant treatment
can produce significant amelioration of Huntington’s disease
symptoms and progression (105).

Particularly intriguing is the finding that soluble Human
Leucocyte Antigen-G (sHLA-G) levels in the serum of patients
show a clear trend of correlation with symptom severity, and a
statistically significant effect in the most severely affected patients
(100). HLA-G has been associated primarily with materno-fetal
tolerance (106) but elevated HLA-G expression has been noted in
several CNS disorders in which its effects are largely immune-
suppressant (107, 108). The full importance of this was not
appreciated at the time of the original study, but the molecule
is of great interest since it is a secreted protein with the ability to
inhibit T cell and cytotoxic cell activity (109).

sHLA-G also promotes the differentiation of Treg cells (110),
the effect of which is to enhance the progression and metastasis
of tumors. IDO expression is greater in tumors than normal
tissue so that these two molecules—IDO and sHLA-G—might
act synergistically as tumor promoters. Such synergism might
explain the poor performance of selective IDO1 inhibitors in
clinical oncogenic trials (111–113). Since IDO1 and sHLA-G are
not restricted to the cell membrane or cytoplasm, but can be
released into the extracellularmedium, their immunosuppressant
activity will be exerted around a wider cellular environment than
would otherwise be the case with corresponding implications for
generalized inflammation and tumor surveillance.

Importantly, it has been proposed that under some
circumstances, especially in the presence of high concentrations
of IFN-γ, the major immunosuppressive activity of activated
DCs may be mediated to a greater extent by the expression and
release of sHLA-G than by IDO (114). The inhibition of cytotoxic
CD8+ T cells is largely prevented by antibody blockade of sHLA-
G rather than by IDO inhibition. The relationship between
high levels of IFN-γ and HLA-G is quite specific since antigen
induction is around 20-fold greater than other HLA antigens
and neither IL-6 nor IL-10 mediate the effects of interferons
on HLA-G expression. It has been suggested that the relative
potencies of IDO and HLA-G-mediated immunosuppression
might contribute to the dual nature of interferon activity, this

being a major Th1 cytokine inducing inflammatory mediators
in the early phase of immune responses to stimuli, but exerting
an auto-limiting suppression of inflammation in the later
phases (115). High concentrations of IFN-γ induce HLA-G
expression in DCs which are then responsible for cytotoxic
T-lymphocyte inhibition. HLA-G also acts on macrophages (116)
to promote their differentiation into the M2 phenotype which is
characterized by increased CD163 and reduced CD86 expression.
Placental and decidual M2 cells are involved in fetal protection
against maternal T cell attack in utero (117–119) with increased
activity of IDO1, a known contributor to fetal protection.
Overall, therefore, the parallel changes in Huntington’s disease
severity and sHLA-G expression and their correlation with the
genetic mutation (100) may reflect a significant relevance of
immune function in the progression of the disorder.

Questions also remain about these relationships, especially
that between immune system function in the peripheral and
CNS, given that markers of inflammation have been widely
reported in the blood and peripheral organs and tissues of
patients with Huntington’s disease. A version of the mutated
huntingtin protein—which is believed to the primary cause
of neurodegeneration in Huntington’s disease—also induces
disturbances to immune function (99) and there are marked
similarities in the altered profile of gene expression in the blood
cells and neurons of Huntington’s disease patients (104). Do these
changes arise simultaneously from an undefined factor, or does
one act as a trigger for changes in the other? What would happen
in patients treated with an anti-inflammatory agent which was
confined to the blood and peripheral tissues? Would such a
drug break the degeneration-inflammation cycle sufficiently to
reduce the symptoms of Huntington’s disease or, possibly, halt
its progression? Highly relevant to these considerations are
reports that the treatment of patients with Huntington’s disease
using an immune-modulating drug such as glatiramer acetate
showed significant beneficial effects (105), emphasizing the need
to understand the neuro-immune interactions at the heart of
the disorder.

Alzheimer’s Disease and Multiple Sclerosis
In addition to its activation of NMDA receptors, quinolinic
can induce the expression of immunologically active molecules
in astrocytes including IL-8, Chemokine Ligand-5 (CCL5) and
Macrophage Inflammatory Protein-1 (MIP-1) as well as several
chemokine receptors such as CXCR4, CXCR6, CCR3, and
CCR5 which promote leukocyte attraction across the blood-
brain barrier (120, 121). Several of these proteins are increased
in the brains of patients with Alzheimer’s disease, so the
similarity of this activity to the action of β-amyloid fragments
has prompted the suggestion that the kynurenine pathway may
be involved in the etiology of this disorder, an idea consistent
with the demonstration that amyloid-β induces IDO expression
(122, 123). It is possible that quinolinic acid could initiate a
positive feedback cycle of cell activation, further quinolinic acid
generation, mediator induction and further activation, from
which it may be difficult for cells to escape. Stimulation of NMDA
receptors by quinolinic acid stimulates glial proliferation, further
enhancing these events (120, 124).
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The increased kynurenine pathway activity in Alzheimer’s
disease (74, 77, 125, 126) has been linked with β-amyloid
production and tau hyperphosphorylation which can be induced
by quinolinic acid (74, 77, 122, 124, 127, 128). There is also good
evidence that the kynurenines plays a role in the formation of
neurofibrillary tangles and senile plaques (126). IDO1 inhibition
suppresses plaque development, neuronal death and cognitive
dysfunction (60).

Neurons express ACMSD (Figure 1) and can therefore divert
the conversion of 3HAA from quinolinic acid to picolinic which
also regulates inflammatory mediator release (129–131). It also
prevents some of the deleterious actions of quinolinic acid
including its toxicity on cholinergic and dopaminergic neurons
(132–134). It has been suggested that this component of the
kynurenine pathway is important in the production of suicidal
ideation and behavior (135).

Some of these considerations are especially important
in multiple sclerosis (MS) where the underlying problem
is inflammatory and the products of kynurenine pathway
activation, primarily quinolinic acid, are toxic not only to
neurons but also to oligodendrocytes, thus contributing to the
loss of central myelination. Kynurenine pathway activity is
abnormal in patients with MS, suggesting cell activation (136–
139). In patients with MS or in the animal model of this disorder
(experimental autoimmune encephalomyelitis, EAE), IDO1 and
KMO are increased (85, 137, 140) possibly as a result of the
high levels of TNF-α and IFN-γ. IDO inhibition exacerbates EAE
severity in mice (141, 142). MS appears to be a disorder in which
the beneficial effects of kynurenine pathway activation (induction
of T cell tolerance) is in competition with the generation of
potentially damaging levels of quinolinic acid (76, 143).

The question of membrane permeability by kynurenine is
also important in the relationship between kynurenine pathway
activity in the peripheral circulation or tissues and the CNS.
The stimulation of immune system cells activates several
enzymes in the kynurenine pathway which are relevant to
the control of leukocyte populations and the balance between
pro- and anti-inflammatory cells and their products. At least
two of these—quinolinic acid and kynurenic acid, as noted
above—can regulate neuronal excitability and plasticity. It
could be life-threatening if the delicate CNS control of bodily
functions—somatic and autonomic—were to be influenced
significantly by the variety of infective, traumatic, allergic or
inflammatory changes that involve the peripheral immune
system. The brain is protected from these, however, by the
blood-brain barrier, across which kynurenine and 3HK can
cross quite readily, but quinolinic acid and kynurenic acid
cross very slowly. Indeed, the clinical consequences of intense
or chronically elevated levels of peripheral immune system
activation appears to be a major factor in several psychiatric
disorders such as depression (144) and schizophrenia (145–147)
resulting from the altered balance between kynurenic acid and
glutamate receptor agonists, including quinolinic acid. Some
of these issues have been discussed in detail elsewhere (148).
It has been shown that the cerebrovascular cells intimately
involved in blood-brain barrier function express elements of
the kynurenine pathway. On activation, the vascular endothelial

cells and pericytes produce kynurenine which is released from
basolateral sites providing a short path to diffuse across into
the brain parenchyma. They also synthesize kynurenic acid
which, with picolinic acid, are protective by their abilities to
block glutamate receptors and to suppress the secretion of
inflammatory mediators, respectively. It has been pointed out
that these properties of the blood-brain barrier may be critical
factors in HIV-Associated Neurocognitive Disorder (HAND)
since the kynurenine produced from barrier cells by systemic
inflammatory mediators can enter the CNS rapidly in large
amounts, being then converted by microglia to quinolinic acid at
a rate sufficient to overwhelm kynurenate production or entry.
The resulting excitotoxic loss of neurons may than contribute
significantly to the emergence of dementia (148).

Quite apart from the neuroimmunological activity of
quinolinic acid, it can increase the permeability of the blood-
brain barrier (149–152), an effect intriguingly opposed by
kynurenic acid (153). Not only would this allow inflammatory
mediators easier access to the CNS cells but it would also facilitate
passage of leukocytes directly into the brain parenchyma.

Psychiatric Disorders
The kynurenine pathway may be involved in several psychiatric
disorders, several of which have been reviewed in detail (144–
146, 154–157). Perhaps the strongest evidence is for a role
in schizophrenia (145, 146). One issue which has aroused
controversy in this area is a claim that the role of kynurenic
acid in schizophrenia could involve the block of nicotinic
receptors in addition to NMDA receptors. While the levels
of kynurenic acid are increased in the CNS and probably
contribute to the symptoms of schizophrenia (146) and other
CNS disorders involving defective cognition, that claim has not
been substantiated and cannot be replicated [see (158)]. Any
apparent effect of kynurenic acid on nicotinic receptors appears
to be secondary to the effects of nicotinic receptors on the release
of glutamate and other neuroactive compounds (158).

There is also very good evidence that activation of the
kynurenine pathway is a major factor in the production of
depression and related illnesses. Certainly the K/T ratio correlates
well with the induction and severity of depressive symptoms
following the administration of IDO inducers such as interferon-
β or exposure to stress (144, 154–157). The levels of kynurenines
are also closely associated with severe depression and the
development of suicidal thoughts and behavior (135).

There has been less interest in the role of kynurenines
in anxiety disorders, probably because of the difficulties of
interpretation in studies of a psychological process which is hard
to translate from experimental animals to humans. Nevertheless,
there is increasing evidence that the kynurenine pathway is
involved in anxiety behaviors, especially related to primary events
in the immune system, such as inflammation (159).

Malaria and Trypanosomiasis
Infective, rather than genetic examples of neuroinflammation are
the parasitic infestations of cerebral malaria and trypanosomiasis.
Approximately 20% of people who contract malaria will proceed
to develop cerebral malaria, a condition which causes serious
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somatic and psychiatric changes in patients and, in most cases,
results in death. Infection of C57BL/6J mice with the strain
Plasmodium berghei ANKA generates an animal model in which
the cerebrovascular histology and functional involvement closely
reproduce these phenomena in humans (160). When treated
with P. berghei ANKA almost all the tested mice died within
7 days, but animals treated simultaneously with Ro61-8048 (an
inhibitor of KMO) survived up to the end of the study at 21
days (160). KMO inhibition increased the endogenous levels
of kynurenine and kynurenic acid as reported in other studies
(161–164) and seen in KMO-deficient animals (165, 166). The
blockade of neuronal glutamate receptors by kynurenate was
probably the main factor accounting for the protective inhibition
of neurotoxicity and animal survival. Although this initial study
did not take account of changes in the immune system, the
results were sufficiently clear that a similar study was performed
subsequently in trypanosomiasis. Here, an animal model was
used to assess the infiltration of brain parenchyma and vascular
or ventricular endothelia by reactive leukocytes (167). The results
indicated that KMO inhibition was able to reduce significantly
the extent of leukocyte infiltration into the brain as well as the
histological assessment of neuronal death.

To follow up these results in human patients, levels
of kynurenine and its catabolites were measured in the
cerebrospinal fluid of patients suffering from trypanosomiasis
and the samples were also examined for levels of IL-6 and
IL-10. There was a close and highly significant correlation
between levels of kynurenine and IL-6, supporting the view
that an inflammatory response had been initiated within the
CNS. However, there was also a strongly positive correlation
between kynurenine and IL-10, a largely immunosuppressive
cytokine secreted primarily by anti-inflammatory leukocytes
which suppress DC activation and IDO expression. It is not
obvious why there should be an increase in IL-10 production
associated with tryptophan metabolism, but several other groups
have also reported positive relationships between the kynurenine
pathway and IL-10 (168–171). In a cohort of healthy young
individuals a clear positive association was seen between IL-10
levels and those of kynurenine, the kynurenine: tryptophan ratio,
3HK and 3HAA levels (172). A reduction of TNF-α and IL-
17 expression by mesenchymal stem cells has been associated
with increased IL-10 and kynurenine levels (170), although
LPS produces parallel increases in TNF-α, IL-10, and IDO
activity (173).

In other cases kynurenine and IL-10 behave differently.
Subjects responding to BCG vaccinations and patients with
inflammatory bowel disease have increased kynurenine and IFN-
γ levels but reduced IL-10 as expected of an immune response
(174, 175). IDO1 activity has been shown to increase IL-10
production in B cells, whereas in vitro kynurenine did not do
so, implying that another IDO1 product might be involved. A
correlation was reported between pro-inflammatory TNF-α and
kynurenine levels, whereas the neuroprotective kynurenic acid
was correlated with IL-10 levels (176). Indeed kynurenic acid
has been reported to increase IL-10 production (177) so whether
kynurenine production is positively or negatively related to IL-10
may depend on the balance of B cell, T cell and monocyte activity

in addition to being dependent on activity in different parts of the
kynurenine pathway (Figures 1, 2).

Administration of the statin group of drugs reduces IL-
6 production but increases IL-10 and kynurenine (178). This
expected oppositemovement of IL-10 and IL-6 has been observed
in IDO1-deficient DCs in which there is the anticipated loss of
AHR activity and reduced levels of IL-10, but increased IL-6 and
TNF-α production (179); conversely both IL-6 and IL-10 were
increased after surgery (180). Kynurenine itself suppresses IL-6
release but kynurenic acid has been reported to increase it. Since
both compounds increase IL-10 production, the ratio between
kynurenine and kynurenic acid may be a particularly important
factor in determining the inflammatory cytokine balance (181).

Nevertheless, despite their opposite immune system bias, IL-
6 and IL-10 have been shown to change in parallel in patients
with depression, in which inflammatory drive (IFN-γ, TNF-α,
CRP) is reduced. In this same condition IDO activation increases
kynurenine concentrations, producing a negative correlation
with the cytokines (182). Parallel increases in IL-6 and IL-10
were observed in patients with obsessive-compulsive disorder
(183) and chronic hepatitis where the correlation between levels
of these proteins was particularly high (P = 0.005) (184).
Those changes were not accompanied by any change in IFN-
γ levels, perhaps indicating a critical role of IDO metabolites
and the IL-6:IL-10 balance in the regulation of IFN-γ. It may be
relevant that expression of the IL-10 receptor is also affected by
tryptophan catabolites, since it is increased by IFN-γ stimulation
and activation of AHRs by kynurenine regulates activity of the
promoter region of the IL-10 receptor α-subunit to increase
receptor expression (185).

Increasing evidence indicates that IDO activation and IL-
10 production can be induced by the same stimuli, leading to
the view that the anti-inflammatory and tolerogenic actions of
both proteins may be at least complementary and potentially
synergistic (186, 187). Functionally, IDO and IL-10 show
important interactions with some degree of mutual redundancy.
Thus, amniotic fluid stem cells which are closely related to
mesenchymal stem cells and possess the same profile ofmolecular
markers, powerfully suppress the proliferation of peripheral
blood mononuclear cells induced by phorbol-12-myristate-13-
acetate (PMA). This inhibition is mediated by the combination of
IDO and IL-10 production by the amniotic cells, with both being
required for maximal suppression of proliferation (188).

The relationship between IDO and IL-10 may be particularly
relevant in the presence of microbial invasion since some bacteria
can induce DCs to facilitate IL-10 production by subpopulations
of T cells such as the FoxP3-negative Tr1-like cells. This is
achieved by the microbial induction of appropriate T cell
polarizing molecules including IDO1 (189). Consistent with
the overall anti-inflammatory balance which this generates, the
production of IDO1 and IL-10 is accompanied by a reduction in
the secretion of pro-inflammatory TNF-α and IL-12 components.
The simultaneous presence of IDO1 and IL-10 can also influence
non-infective inflammation such as that associated with tumor
development. For many tumors, it is recognized that compounds
with characteristics of Damage-Associated Molecular Patterns in
the local microenvironment promote tolerogenic dendritic and
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mesenchymal stem cells which in turn induce the stable co-
expression of IDO and IL-10 to further suppress lymphocyte
aggression (190). Among the compounds able to initiate this
activity are uric acid and the S100A4 protein, both of which have
been linked to a variety of inflammatory states in peripheral and
central tissues.

ENVIRONMENTAL FACTORS AND THE
KYNURENINE PATHWAY: DEVELOPMENT
AND EPIGENETICS

It is a common experience that the existence and severity of
arthritic symptoms can vary substantially throughout life, at
different times of day, with changes in affective status (mood,
stress, anxiety etc.) or with changes in dietary habits. It is
important to recognize, therefore, that many such factors do
impact directly on the kynurenine pathway and could modulate
inflammatory symptoms, peripheral, or central. Exposure to
stressful conditions activates the hypothalamo-pituitary-adrenal
axis leading to the secretion of corticosteroids which are potent
inducers of TDO and will therefore increase kynurenine pathway
activity. Cruciferous vegetables in particular contain alkaloids
such as brassinins which inhibit IDO1 (191) and a variety
of indole-derived compounds such as indole-3-carbinol and
di-indolyl-methane which are agonists at AHRs (192, 193),
thus regulating the IDO/TDO-kynurenine-AHR feedback cycle
described above and giving the compounds significant anti-
inflammatory properties (194, 195). The influence of such
factors may be of paramount importance in determining the
occurrence and severity of arthritis and related disorders, since
we have demonstrated a role of the kynurenine pathway in tissue
development of the embryo, and the methylation state of IDO1
appears to determine the magnitude of induced arthritis.

Embryonic Development
The normal, physiological roles of the kynurenine pathway
have received less attention than their potential pathological
relevance but recent reports have indicated the probability of
important functions in early development of the embryo. The
treatment of pregnant rats in late gestation with an inhibitor
of KMO (Figure 1), results in an accumulation of kynurenine
as well as promoting its transamination to kynurenic acid.
These changes resulted in significant molecular, structural,
immunocytochemical and functional (electrophysiological)
changes in neonates produced by the treated dams and
changes in all these parameters persisted into adulthood (161–
164). Similar results were obtained by the administration of
kynurenine itself to pregnant animals (196–199), and in animals
lacking KMO by genetic manipulation (165, 166).

These results indicate that the kynurenine pathway is playing
a significant role in early development and the initial hypothesis
to explain these effects was based on the known importance of
glutamate and its receptors in the early formation of the brain. In
particular, the NMDA-sensitive subtype of receptors are involved
in neurogenesis, progenitor cell migration, axon and dendrite
growth and guidance as well as spine and synapse formation.

The activity of these NMDA receptors—and therefore brain
development—would be dependent on the ratio of the NMDA
receptor agonist quinolinic acid and the antagonist kynurenic
acid. The occurrence and long-termmaintenance of altered brain
structure and function might contribute to the development of
neurological and psychiatric disorders in adult life. The most
established examples of such “neurodevelopmental” disorders are
schizophrenia (145–147, 197, 199, 200) and major depression
(154, 155) including suicide vulnerability (135).

If these changes in CNS development are mirrored in the
actions of kynurenines on the immune system, they could
contribute significantly to immune system responses and to
the susceptibility of offspring to a range of immunological
problems including autoimmune diseases such as RA. Thus,
in the brain development studies there may have been
changes in immune function mediated by the altered levels of
kynurenines, such as abnormal cytokine or chemokine levels in
the pregnant dam or embryonic brain, changes to microglial
activation, or modifications to peripheral leukocyte function
and their infiltration into the pre- or postnatal brain. Any
effects of prenatal interference with the kynurenine pathway
on immune function would represent a highly important area
of investigation, especially in the light of evidence that some
leukocyte populations express NMDA receptors and other targets
of kynurenine and its catabolites such as AHRs and the G-protein
coupled receptor GPR35 (82).

While there is a growing literature on the effects of prenatal
inflammatory stimuli on CNS development and function in
the adult offspring (161–164, 201–204), few studies have yet
addressed the immunological consequences of such maternal
factors. In one such study, however, it is clear that prenatal
activation of the maternal immune system using bacterial LPS
or the viral mimetic poly(inosinic:cytidylic) acid (poly[I:C],
PIC) can affect the concentrations of several cytokines in
the offspring in parallel with changes in expression of IDO
(205). The most interesting result of this study was that a
repeat immunological challenge in adulthood produced less
change in the test animals than controls, indicating a long-
lasting and possibly permanent depression of immune system
function which could have significant implications for the
development of autoimmune disease. However, a previous
study reached the opposite conclusion, that prenatal immune
activation induced increased adaptive immune responses in the
offspring (206) raising the possibility that subtle differences in
experimental animals or procedures may have a major influence
on the outcome.

While these factors do not fall under the classification of
“epigenetic” they will clearly interact with epigenetic processes
described below in determining the final, overall activity and
effectiveness of the kynurenine pathway in neurological and
immunological function in postnatal life.

Epigenetics of IDO
If the kynurenine pathway is as widely and fundamentally
important as the above discussions imply, any modifications to
the various components of the pathway would carry substantial
implications for a variety of disorders. Relevant changes could
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include genetic mutations or epigenetic changes. The latter
do not involve changes directly to the genetic machinery or
nucleotide sequence, but consist of minor changes to the gene
or related segments of the chromosome such as promoter
sequences, which alter the functionality of that gene. This may
change the extent to which a section of gene is transcribed, or
the properties of the transcribed protein. Epigenetic changes are
often the result of environmental factors (diet, stress, disease)
which affect the activity of key enzymes such as acetyl- or methyl-
donors, altering their activity on the genome. Epigenetic changes
are often reversible but, if they affect the germ-line cells, they may
be inherited.

Several of the disorders discussed above may be susceptible to
epigenetic influences. The brains of patients with Huntington’s
disease exhibit evidence of alterations in methylation status
(207, 208) or acetylation status (209) and inhibition of a histone
deacetylase may prevent the development of cognitive deficits as
well as huntingtin expansion (210). Such changes may contribute
significantly to the course of the disorder and its heritability,
especially since DNA methylation has been shown to produce
extension of the mutant CAG repeat sequence (211).

RA may involve defects in acetylation (212), reflected in the
beneficial activity of a histone deacetylase inhibitor in CIA (213).
It is also likely that there are changes in DNA methylation
(214–217) as has been noted in regulatory T cells (218) and
synovial fibroblasts (219). The methylation pattern has been
claimed to reflect therapeutic efficacy of the TNF-α inhibitor
etanercept (220) and so may be relevant to explaining the non-
responsiveness to this drug of some patients.

The aberrant methylation of Treg cells, affecting the
FOXP3 and CTLA4 genes, reduces their immunosuppressant
activity. We have found that the DNA-demethylating
compound decitabine reduces this suppression and restores
immunosuppression associated with increased expression
of Treg markers. In the CIA model of arthritis decitabine
increased the suppression function of Treg cells along with
a decrease in pro-inflammatory Th1 and Th17 cells and
their infiltration into arthritic paws. Of major relevance to
the kynurenine pathway, these effects of demethylation were
associated with increased expression of IDO1 which is normally
an important aspect of the immunosuppressant behavior of
Treg cells mediated by the CTLA-4 ligation of B7 proteins,
and further differentiation of Treg cells by the promotion of
FoxP3 expression.

When CIA was induced in IDO1-deficient mice on a
C57/BL6N.Q (H-2q) background), decitabine administration
reduced both the early symptoms and pathology of the
disorder but also reduced the expression of transcription factors
characterizing pro-inflammatory cells (IFNγ+ and Tbet+ in
Th1; IL17+ and RoRγt+ in Th17 cells). In contrast, symptoms
were exacerbated in the later stages of disease in parallel
with a loss of FoxP3+ Tregs and an increased number of
Tbet+ Th1 and RoRγt+ Th17 cells. This time course would
be consistent with the concept that IDO1 activity is a critical
feature of the interactions needed to maintain long-term Treg-
mediated immune tolerance. Decitabine also increased the
number of IDO1-positive monocytes while a combination of

ADC/decitabine and IFN-γ allowed myeloid DCs to increase
their IDO1 expression.

Overall, because of its critical, central role in immune function
and tolerogenesis, the methylation of IDO1 appears to be an
important factor in determining its activity. If these factors affect
germline DNA, as noted above, they may significantly affect the
immunological competence of offspring and their susceptibility
to a range of disorders.

CLINICAL POTENTIAL

This review has introduced a few of the many disorders
afflicting peripheral tissues or the CNS in which inflammation is
implicated, but that is enough to recognize the therapeutic
potential of influencing the kynurenine pathway by
pharmacological interference. Many academic and commercial
laboratories have demonstrated the promise of analogs or
derivatives of kynurenine and its catabolites to act as receptor
agonists, antagonists or enzyme inhibitors (138, 221, 222).

In the CNS work has been concentrated on inhibitors of
KMO to reduce quinolinic acid synthesis and thereby reduce
neural activity and excitotoxicity in neurodegenerative disorders
as well as in the suppression of peripheral inflammation,
especially in the pancreas (223–226). A different approach is
in the development of KAT inhibitors intended to reduce
kynurenic acid formation in psychiatric disorders such as
schizophrenia (227–230). Of course these two approaches, being
essentially contrary in their objectives, raise concerns that
schizoid symptoms might be induced in response to KMO
inhibition, or that KAT inhibition could divert more kynurenine
via KMO to quinolinic acid.

In a similar vein, there has been a major effort to develop
inhibitors of IDO1 to prevent the immune-suppressant activity
of this enzyme and thus to drive tumor cell death or to
facilitate the effects of anti-tumor drugs (231–235). In principle,
this approach might lead to the initiation or exacerbation
of clinical inflammatory and autoimmune disorders described
above. While this would remain a problem which would need
careful monitoring, clinical trials with IDO1 inhibitors have
recently been found to be less effective anti-cancer agents than
anticipated (111–113), raising doubts about the continuation of
this strategy.

Despite these concerns, major advances are being made
in kynurenine-related treatments for Huntington’s disease and
schizophrenia, and the range of conditions potentially amenable
to kynurenine-related therapy continues to escalate. The factors
which can recruit kynurenine pathway involvement such as
infection, inflammation, dietary changes, various forms of stress
and others make it highly likely that the kynurenine pathway will
prove to be a valuable source of new therapeutic agents in the
near future.

SUMMARY AND CONCLUSIONS

Some of the inter-relationships between IDO or its kynurenine-
derived catabolites and aspects of the immune system have been
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discussed, focusing on several examples of disorders affecting
peripheral tissues or the CNS. In many cases there are important
questions to be resolved, such as which components of the
kynurenine pathway are responsible for different elements of
immune regulation. It seems likely that a fuller appreciation
of these issues will not only help to understand the molecular
basis of some disorders, but will further the development of
increasingly sophisticated and targeted therapies (236). This
will be especially important if methods can be identified
to modify or prevent epigenetic changes which alter the
expression or functional capacity of relevant enzymes, receptors
or transduction systems. Finally, more detailed investigation of
the immunological consequences of stress, infection and immune
system activation during pregnancy—all of which involve
activity in the kynurenine pathway—may be highly relevant to

understanding postnatal susceptibility to autoimmune disorders
and cancer, much as recent work has shown lasting effects on

the nervous system. With growing interest in the importance
of neuroimmune interactions for disease development and
resolution, a combined knowledge of both these areas might yield
synergistic advances in medicine and therapeutics.
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