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Gfi1b regulates the level of Wnt/β-catenin signaling
in hematopoietic stem cells and megakaryocytes
Peiman Shooshtarizadeh1, Anne Helness1, Charles Vadnais1, Nelleke Brouwer1, Hugues Beauchemin1,

Riyan Chen1, Halil Bagci1,2, Frank J.T. Staal 3, Jean-François Coté 1,2,4,5 & Tarik Möröy1,6,7

Gfi1b is a transcriptional repressor expressed in hematopoietic stem cells (HSCs) and

megakaryocytes (MKs). Gfi1b deficiency leads to expansion of both cell types and abrogates

the ability of MKs to respond to integrin. Here we show that Gfi1b forms complexes with

β-catenin, its co-factors Pontin52, CHD8, TLE3 and CtBP1 and regulates Wnt/β-catenin-
dependent gene expression. In reporter assays, Gfi1b can activate TCF-dependent tran-

scription and Wnt3a treatment enhances this activation. This requires interaction between

Gfi1b and LSD1 and suggests that a tripartite β-catenin/Gfi1b/LSD1 complex exists, which

regulates Wnt/β-catenin target genes. Consistently, numerous canonical Wnt/β-catenin
target genes, co-occupied by Gfi1b, β-catenin and LSD1, have their expression deregulated

in Gfi1b-deficient cells. When Gfi1b-deficient cells are treated with Wnt3a, their normal

cellularity is restored and Gfi1b-deficient MKs regained their ability to spread on integrin

substrates. This indicates that Gfi1b controls both the cellularity and functional integrity

of HSCs and MKs by regulating Wnt/β-catenin signaling pathway.
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G rowth factor independence 1b (Gfi1b) and its paralogue
Gfi1 are transcription factors that are expressed in a
complementary and partially overlapping manner in

hematopoietic stem cells (HSCs) and precursors for several
lineages1,2. Gfi1b is expressed in HSCs, myeloid/erythroid
precursors (MEPs), megakaryocytes (MKs) and to varying
levels during erythrocyte maturation2. Both Gfi1 and Gfi1b
have an N-terminal Snail/Gfi1 (SNAG) domain, which enables
transcriptional repression through the recruitment of cofac-
tors Lysine (K)-specific demethylase 1A (LSD1/KDM1A)
and CoREST/Rcor13–5. Interestingly, LSD1 seems to play an
essential structural rather than enzymatic role as part of the
Gfi1 repressive complex6. LSD1’s loss disrupts Gfi1’s asso-
ciation with and repression of target loci. Gfi1 and Gfi1b also
both interact with co-repressors, such as histone lysine
methyltransferase 2 (EHMT2/G9a) and histone deacetylases
(HDAC1/2)4,7,8. While germline deletion of Gfi1b in mice
causes lethality at around day 14.5 of embryonic development,
conditional knockout mice have been generated and show
that Gfi1b controls HSC and MK expansion9,10. While Gfi1b-
deficient HSCs remain functional and give rise to all hema-
topoietic lineages upon transplantation, MKs that lack Gfi1b
cannot produce platelets and are unable to respond with
spreading and membrane ruffling to integrin receptor stimu-
lation due to defects in cytoskeletal organization11.
Wnt/β-catenin signaling also plays a crucial role in early

hematopoiesis, notably in HSCs. Loss- and gain-of-function
studies demonstrated that tight control of Wnt signaling and
β-catenin activity is necessary for proper function and cellularity
control of hematopoietic cells including HSCs and MKs12–15.
Overactive Wnt/β-catenin signaling leads to exhaustion of HSCs,
but insufficient activation is equally detrimental16,17. β-catenin
acts as a transcriptional co-activator in complexes with tran-
scription factors, such as the T-cell factor/lymphoid enhancer
factor (TCF/LEF) family members to regulate gene expression.
The canonical Wnt signaling is under negative regulation at
various levels. For instance, GRG/TLE (Groucho/transducin-like
enhancer) proteins associate with TCF molecules in the nucleus
to switch off expression of Wnt target genes in the absence of
nuclear β-catenin18. CtBP1 and HDACs are other negative reg-
ulators of canonical Wnt signaling. Multiple non-canonical
Wnt signaling pathways also exist and although these pathways
all function in a β-catenin independent manner, crosstalk exists
between canonical and non-canonical signaling pathways in
various contexts19,20. Several studies have shown that non-
canonical Wnt signaling antagonizes the canonical Wnt pathway
through different mechanisms21,22; one example being NFAT5,
which is a transcription factor downstream of the non-canonical
Wnt/Ca2+ pathway that inhibits canonical Wnt signaling via
inhibition of β-catenin acetylation21.

Here we present evidence that Gfi1b controls HSC and MK
cellularity and MK spreading in response to integrin substrates by
regulating Wnt/β-catenin signaling. Our results show that Gfi1b
interacts with β-catenin as well as regulators of Wnt/β-catenin
signaling pathway and that loss of Gfi1b affects the expression of
Wnt target genes in both MKs and HSCs. We also reveal a tri-
partite Gfi1b/LSD1/β-catenin complex that co-occupies key Wnt/
β-catenin signaling target regions like the Axin2 promoter. We
show that Gfi1b can enhance transcription of TCF/LEF depen-
dent promoters and reporter genes in vitro and in vivo and we
present evidence that Gfi1b does this by recruiting LSD1 via its
SNAG domain to β-catenin containing complexes. In agreement
with this, we show that Gfi1b-deficient HSCs and MKs have
decreased levels of canonical Wnt signaling in vivo, which can be
reversed when Wnt/β-catenin signaling is stimulated externally
by Wnt3A treatment.

Results
Gfi1b deficiency leads to expansion of HSCs and MKs. To
generate Gfi1b-deficient (KO) mice we introduced a Rosa-CreER
transgene into Gfi1bfl/fl mice9,11. Floxed Gfi1b alleles were deleted
by tamoxifen injections (Fig. 1a) and confirmed in both MKs and
HSCs by the absence of floxed exons 2–4 expression (Supple-
mentary Fig. 1a). MKs and their progenitors were defined as lin−,
CD4high, CD9high cells, and HSCs were defined either as lin−,
Sca-1+, cKit+ (LSK), CD48−, CD150+, CD41high/CD9high or
CD41low/CD9low to eliminate potential contamination by MK
precursors (Supplementary Fig. 1b), and also because we had
shown previously that the expression of integrin molecules, such
as Itga2b (CD41) and Itgb3 (CD61), are up-regulated in Gfi1b-
deficient HSCs9. Following the ablation of Gfi1b, we observed
increased numbers of MKs and CD41low/CD9low HSCs in the
bone marrow and blood, (Fig. 1b, c) confirming previous
results11. Moreover, Gfi1b-deficient MKs and HSCs showed the
same expansion in vitro after Tamoxifen injection (Fig. 1d, e)
supporting that Gfi1b controls the cellularity of both HSCs and
MKs in bone marrow and in peripheral blood in a cell autono-
mous manner9.

We recently showed that Gfi1b loss leads to impaired MK
spreading and motility on fibronectin and other matrix
substrates11. On such substrates, Gfi1b KO MKs are smaller,
stay completely round, and do not form protrusions like WT cells
or form platelets (Fig. 1f)11. A comparison of the roundness
index (RI) of cultured cells clearly showed that Gfi1b-deficient
MKs maintained significantly low RIs, indicating that they are
unable to spread and form protrusions, confirming a poor
integrin ligands response (Fig. 1g).

GFI1B is associated with regulators of Wnt pathway. To
understand how Gfi1b deficiency leads to expansion of HSCs and
MKs and loss of MK spreading, a Flag-tagged version of GFI1B
was expressed in HEK293 cells to identify interacting proteins by
immune-precipitation and mass spectrometry. In addition to
proteins already known to bind to GFI1B, such as LSD1, HDACs,
CoRest factors and G9a4, we found β-catenin and several
other proteins with regulatory roles in the canonical Wnt path-
way as new potential GFI1B binding partners (Fig. 2a, Supple-
mentary Fig 1c, Supplementary Table 2). These included the
DNA helicase and chromatin remodeling factor CHD8, which
silences β-catenin mediated transcription23, Pontin52 (also
known as TIP49), a c-Myc interacting protein involved in chro-
matin remodeling and transcription24, APC, a tumor suppressor
and antagonist of the Wnt signaling pathway18, PP2A, a phos-
phatase that regulates Wnt signaling at several levels25, and
CtBP1 (C-terminal binding protein1), a repressor of Wnt sig-
naling that associates with LSD126 (Fig. 2a, Supplementary
Fig 1c). Gene Ontology (GO) enrichment analysis confirmed that
numerous GFI1B associated proteins were annotated under the
biological process positive regulation of Wnt signaling pathway
(Supplementary Fig 1d).

Similarly, a GFI1B-BirA* BioID approach showed that
regulators of the Wnt pathway, such as KDM2A and KDM2B,
which regulate the stability of nuclear β-catenin via demethyla-
tion27, TLE1 and TLE3 which are both β-catenin inhibitors28

and CREBBP (also known as CBP) a histone acetyltransferase
that binds to β-catenin29 (Fig. 2b, Supplementary Fig 1e) can
interact with GFI1B. In addition, we also found Spindlin1, a
chromatin reader that prompts Wnt signaling30, UBR5, an E3
ubiquitin-protein ligase that inactivates TLE31, CDC73, which is
a β-catenin interacting tumor suppressor32, CCAR2, which
enhances LEF1-β-catenin complex formation33 and BRG1, a
chromatin remodeler involved in transactivation of Wnt target
genes (Fig. 2b)34.
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We noticed a well-conserved six amino-acid motif in the N-
terminal sequence of GFI1B protein that we named WRD for
Wnt regulatory domain, since a similar motif has previously been
shown in other proteins to mediate binding of the β-catenin
inhibitors TLE1 and TLE328 (Fig. 2c). Immune-precipitation of
Flag-tagged WT GFI1B or different mutants, in which either the
SNAG, WRD or intermediate domain were disrupted, confirmed
that GFI1B interacts with β-catenin, CHD8, Pontin52, and CtBP1
and to some extent with both TLE3 and TLE1 (Fig. 2d). The
SNAG domain was required for an interaction between GFI1B
and CtBP1 and, as previously shown, LSD14, whereas the WRD
domain was necessary for GFI1B interaction with CHD8, TLE3,
Pontin52, and to some extent TLE1 (Fig. 2d). Moreover, GFI1B’s
zinc finger domain was required for its interaction with β-catenin
(Fig. 2e). Endogenous immune-precipitation with extracts from
non-transfected K562 and HEL cells demonstrated an enrichment
of complexes between GFI1B, β-catenin, and Pontin52 (Fig. 2f–h
and Supplementary Fig. 2a). These results indicate that GFI1B
interacts with β-catenin and several Wnt/β-catenin signaling
regulators.

β-catenin co-precipitated with GFI1B and LSD1 and increased
levels of LSD1 protein were collected when exogenous WT GFI1B
was present (Fig. 3a). This was not true when the GFI1B P2A
mutant was present instead, which is unable to bind LSD15

(Fig. 3a). Comparable results were obtained with anti-β-catenin

immune-precipitations in the presence of GFI1B or the GFI1B
ΔSNAG mutant that lacks the 20 N-terminal amino acids that
are required for LSD1 binding (Fig. 3b). Similarly, immune-
complexes collected with GST-E-Cadherin that binds to β-catenin
from U2OS cells engineered to express doxycycline-inducible
GFI1B only contained more LSD1 when GFI1B expression
was induced (Fig. 3c), suggesting that GFI1B recruits LSD1 to
β-catenin or β-catenin-containing protein complexes. To char-
acterize these complexes further, we performed β-catenin-BirA*
BioID in the absence or presence of WT GFI1B or two GFI1B
mutants (Fig. 3d, e). All three GFI1B forms were biotinylated
by β-catenin-BirA* further indicating an interaction or close
proximity between GFI1B and β-catenin (Fig. 3d, e) and
confirming both our mass spectrometric and co-IP experiment
findings that also suggest that GFI1B binds to β-catenin (Fig. 2a,
d, and e).

GFI1B enhances transcription of TCF/LEF dependent reporter.
We found that GFI1B enhanced transcription of a TCF promoter
reporter both at basal level and in the presence of Wnt3A, a
canonical Wnt signaling ligand, following over-expression of
Wnt3A or the active form of β-catenin or upon treatment with
LiCl, a GSK3β inhibitor that stabilizes β-catenin (Fig. 4a–e), or
CHIR99021, a specific GSK3β inhibitor (Fig. 4f, Supplementary
Fig. 2b, c) indicating that GFI1B can activate β-catenin/TCF
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dependent transcription. This GFI1B activity was reduced when its
SNAG (GFI1BP2A or GFI1BΔSNAG), WRD (GFI1BΔWRD),
intermediate or zinc-finger domains were disrupted, either in the
presence of LiCl or CHIR99021 (Fig. 4c, f). We observed the same
reduction in GFI1B activity using single (GFI1BF106A or GFI1-
BL111A) or double mutations in the WRD sequence (GFI1B-
muWRD, depicted in Fig. 2c) (Fig. 4d, e). This indicates that the
observed effect of GFI1B on β-catenin/TCF mediated transcription
depends on its ability to bind LSD1 or CtBP1 and/or other

β-catenin regulators that interact with β-catenin through these
domains. In agreement with this, GFI1B was more active in
combination with LSD1 than alone (Fig. 4g), suggesting that the
GFI1B/LSD1 complex can be an activator of β-catenin/TCF
mediated transcription in this system. The repressive GFI1B
activity on its own promoter was not affected by WRD sequence
deletion or CHIR99021 treatment (Supplementary Fig. 2b). Fur-
thermore, we observed that GFI1B was able to partially reverse the
CtBP1 and TLE1 inhibitory effect on β-catenin/TCF-dependent
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transcription (Fig. 4h). Similarly, inducible GFI1B expression
under doxycycline in U2OS cells reversed the effect of TLE1 in the
TOP/FOP reporter assay (Fig. 4i). This suggests that GFI1B can
also activate β-catenin/TCF transcription by counteracting the
effect of β-catenin inhibitors.

Neither TOP nor FOP constructs contain a known GFI1B
consensus-binding motif (AATC). This suggested that GFI1B
activates TCF/LEF-dependent transcription without binding
DNA directly. To test this, we generated TOP reporter genes
with GFI1B binding motifs (AAATCTCTGCA) before and after
the TCF/LEF binding sites and observed that GFI1B was now able
to inhibit transcription of this modified TOP reporter (Fig. 4j).
This inhibition was dependent on GFI1B DNA-binding capacity
since a N290S mutation of GFI1B’s fifth zinc-finger domain,

which abolishes DNA-binding of GFI1B, did not show any
inhibition in this modified TOP reporter assay but rather
activation similar to WT GFI1B (Fig. 4j). GFI1B N290S mutant
in the unmodified TOP assay could still associate with β-catenin
and activate TCF/LEF mediated transcription to the same extent
as WT GFI1B (Fig. 4k, l), indicating that the ability of GFI1B to
activate TCF-dependent transcription can be independent of
its ability to bind DNA and by inference also its function as a
transcriptional repressor.

Gfi1b KO deregulates expression of Wnt target genes. To test
whether this GFI1B activity can also be observed in vivo, we used
a well-established Axin2LacZ knockin reporter mouse, which
enables monitoring of TCF/LEF dependent transcription by
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score of each GO term is shown as the −log10 of corrected P values, indicated by different color intensities
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measuring β-galactosidase (LacZ) activity in mouse primary
cells (Fig. 5a, Supplementary Fig. 2d)35. Compared to controls,
β-galactosidase (LacZ) activity was reduced in HSCs and MKs
with Gfi1b deletion (Fig. 5b). Quantification of mean fluorescence
intensities (MFI) of LacZ in these cells showed the effect of Gfi1b
deficiency on the Axin2 promoter activity was measurable in all

three cell subsets and was statistically significant in MKs (Fig. 5c).
To validate this, we used a second in vivo reporter system, the
TCF/LEF:H2B-GFP transgene reporter mice, in which six copies
of a TCF/LEF responsive element are placed directly 5′ of a his-
tone H2B-GFP fusion gene36. Similar to the Axin2LacZ reporter
system, a reduction of GFP intensities was observed in HSCs and
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MKs following Gfi1b deletion, again most significantly in MKs
(Fig. 5d, e). These data indicate that Gfi1b absence leads to a
transcriptional down-regulation of β-catenin driven target genes
in vivo.

RNA-seq analysis comparing flow-sorted Gfi1b WT/KO CD41
+/CD9+ HSCs, MKs, and CD41low/CD9lowHSCs showed that
many genes, which were differentially expressed between WT
and Gfi1b-deficient cells, belong to previously published sets
of genes25 involved in Wnt/β-catenin signaling (Fig. 6a, b). A
set of genes that were described to be up-regulated following
activation of canonical Wnt signaling37 was enriched in Gfi1b
WT CD41+/CD9+ HSCs and CD41low/CD9lowHSCs and a set of
genes down-regulated upon activation of canonical Wnt signal-
ing, was enriched in Gfi1b KO MKs (Fig. 6c).

Next, we identified genes that were expressed over 1.5 fold-up
or 0.6 fold-down in MKs, HSCs and CD41−/CD9− HSCs and
were also co-occupied by Gfi1b and β-catenin or also by LSD1

(Fig. 6d, Supplementary Table 2, Supplementary Fig. 3). To
obtain this information, we interrogated published ChIP-seq
datasets from the mouse embryonic stem cell (ESC)-derived
hematopoietic precursor cell line HPC-7 for Gfi1b38, mouse ESCs
expressing a tagged-β-catenin39 and with wt ESCs for LSD140.
We found 523 genes co-occupied by Gfi1b and β-catenin and
133 genes co-occupied by all three factors at promoters (Supple-
mentary Fig. 4a, Supplementary Table 3). Among them were known
canonical Wnt genes that were down-regulated in Gfi1b-null
cells such as Ccnd1 (regulator of cell cycle progression)41, Egr1
(transcription factor)42 and Ptgs2 (enzyme in prostaglandin
biosynthesis)43 (Supplementary Figs 3 and 4b, Fig. 6d). However,
key non-canonical Wnt genes such as Ptk7 (Wnt co-receptor)22,
Nfat521, Zfp467 (regulator of the canonical Wnt inhibitor SOST)44,
and Rock2 (serine/threonine kinase downstream of PTK7)45 were
up-regulated in Gfi1b-deficient MKs (Supplementary Table 2,
Supplementary Figs. 3 and 4b).

Fig. 4 GFI1B enhances transcription of a TCF dependent promoter/reporter system. a, b TOP/FOP flash reporter assay in 293T cells. Cells were transfected
with the indicated plasmids together with TOP or FOP reporter constructs 36 h before luciferase measurement. GFI1B enhances the TOP/FOP ratio at both
basal levels and following activation with a 10% Wnt3A-conditioned media or b co-transfection with active form of β-catenin and/or Wnt3A expressing
vectors. c–e TOP/FOP flash reporter assay in 293T cells transfected with WT Gfi1b and the indicated mutated forms. Cells were treated with 25mM LiCl
(to activate canonical Wnt signaling in c and e) for 5 h before luciferase measurement. f TOP/FOP flash reporter assay in 293T cells treated with
CHIR99021, a specific GSK3β inhibitor for 5 h before luciferase measurement. g, h TOP/FOP flash reporter assay in 293T cells and GFI1B-TetON-U2OS
cells transfected with the indicated vectors. i TOP/FOP flash reporter assay in U2OS cells stably expressing a doxycycline inducible GFI1B (Tet-ON system)
transfected or not with a construct for TLE in the presence or absence of doxycycline. j, k TOP and modified TOP (flanked by GFI1B binding motifs) reporter
assay in 293T cells. l Immune precipitation with anti Flag antibodies from 293T cells overexpressing WT or the indicated mutated forms of GFI1B followed
by western blot. (*p < 0.05, **p < 0.005, ***p < 0.0001 on a Welch corrected t-test, error bars show s.d, n= 3 biologically independent samples for each
data point)
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To validate our findings further, we generated a GFI1B
knockdown using shRNA in the human erythroleukemia cell
line K562 (Fig. 6e). We confirmed reduced GFI1B levels
decreased the expression of CCND1 and BIRC5 (canonical Wnt
genes) and increased the expression of NFAT5, ROCK2 and PTK7
genes (non-canonical Wnt genes) (Fig. 6f), similar to that
observed in cells from Gfi1b-deficient mice (RNA-seq data
Fig. 6d, Supplementary Fig 3, Supplementary Table 2). Further-
more, the regulation of CCND1 or NFAT5 expression in GFI1B
knockdown K562 cells correlated with lower or higher H3K9
acetylation at their promoters, respectively (Fig. 6g). This suggests
that the expression changes induced by GFI1B correlate with the
appropriate H3K9 acetylation changes at promoters of target
genes.

Next, we performed RNA-seq analysis on two sets of Gfi1b WT
and KO MKs obtained by cultivating lin-BM cells in vitro with
TPO and SCF for 7 days (Fig. 7a). As with the previous RNA-Seq,
many genes that were differentially expressed between WT and
KO samples were part of previously published genes sets involved
in Wnt/β-catenin signaling (Fig. 7b, c)25. Especially, two
canonical Wnt gene sets were significantly down-regulated in
Gfi1b KO MK samples (Nusse Targets up and Labbe Targets up,
Fig. 7d). Interestingly, unsupervised clustering of canonical or
non-canonical Wnt target genes clearly separated Gfi1b KO and
WT MKs in both biological replicates (Fig. 7e). These findings
confirmed that Gfi1b loss in HSCs or MKs can lead to both up-
and down-regulation of Wnt target genes.

β-catenin co-occupies regions targeted by Gfi1b and LSD1. The
analysis of published ChIP-seq datasets from HPC7 cells for
Gfi1b and knock-in ES cells for β-catenin38–40,46 showed that
Gfi1b and β-catenin co-occupy several loci within 1 kb of a
promoter (Supplementary Fig. 5a and b). We next examined the
genomic features found closest to a binding site for one factor as a
function of its proximity to a binding site of the other factor using
these datasets and a CTCF ChIP-seq dataset46 as a control, which
showed no relation with features associated with Gfi1b and only a
limited relation for β-catenin. When Gfi1b peaks overlap a β-
catenin peak, they are more frequently present at transcription
start sites (TSS) and conversely, β-catenin peaks are more likely
found at a TSS when they overlap a Gfi1b peak, as compared to
peaks with more than 1 kb distance to the other factor (Supple-
mentary Fig. 5a–c). A comparable pattern was found for both
Gfi1b and β-catenin peaks relative to their distance to LSD1
binding sites (Supplementary Fig. 5b and c).

To confirm a co-occupation of GFI1B, β-catenin, and LSD1 at
specific genomic sites at endogenous expression levels in the same
cells, we performed ChIP-seq analysis with K562 cells treated or
not with Wnt3A for 4 h to obtain the highest levels of active,
nuclear β-catenin (Supplementary Fig. 6). β-catenin peaks
showed a statistically significant overlap with GFI1B and LSD1
peaks at promoters (Fig. 8a, Supplementary Fig. 7a and
Supplementary Table 4) and also that many more genes are
occupied by the tripartite complex (GFI1B/β-catenin/LSD1) than
by LSD1/β-catenin or by GFI1B/β-catenin (Fig. 8a). AXIN2 and
YAF2 are examples of gene promoters specifically targeted by β-
catenin, GFI1B, and LSD1 upon Wnt3a treatment (Fig. 8b).

Motif analysis revealed, as expected, that sites bound by GFI1B
were significantly enriched for the GFI1B binding motif as well as
GATA binding motifs genome-wide (Fig. 8c). However,
sequences at sites co-occupied by β-catenin and GFI1B were
found to be prominently enriched for the LEF1 motif as well as
GATA factor motifs, but not for GFI1B’s own binding motif
(Fig. 8c). This suggests that GFI1B has a different DNA binding
activity specifically at β-catenin sites. Notably, Wnt stimulation

did not alter the majority of GFI1B and LSD1 targeted promoters
and enhancers (Supplementary Fig. 7a, b). β-catenin bound most
frequently to promoters and enhancers where GFI1B and LSD1
are already present prior treatment (Supplementary Fig. 7a, b).

To assess whether recruitment of β-catenin is GFI1B
dependent, we carried out both GFI1B and β-catenin ChIP-
qPCRs on CHIR99021 treated K562 cells with WT (K562-C5)
and KD (K562-S23) levels of GFI1B. Levels of GFI1B enrichment
confirmed the decrease in GFI1B protein at target genes within
GFI1B KD K562 cells (Fig. 8d). Importantly, depletion of GFI1B
lead to a significant decrease in β-catenin enrichment at target
loci, such as SLC38A8 and YAF2, indicating that β-catenin
recruitment is GFI1B-dependent at these promoters (Fig. 8d).
Other loci, like AXIN2 and SP5, did not show significant changes
in β-catenin levels with GFI1B depletion, indicating that β-
catenin may also bind to specific loci independently of GFI1B in
K562 cells.

Since LSD1 is a histone demethylase, specifically for histone 3,
lysine 4, and 9 (H3K4 and H3K9), we assessed H3K4me1 and
H3K9me2 levels by ChIP-seq in K562 cells before and after
Wnt3a treatment. The majority of genes have high H3K4me1
enrichment if targeted by one or more of β-catenin, GFI1B and
LSD1 upon treatment (60–90%). Only when none of the three
factors were detected at promoters did similar proportions of
genes experience increases or decreases in H3K4me1 levels
(Supplementary Fig. 7c). Furthermore, promoters targeted by one
or more of the three factors mostly had a distinct decrease in
H3K9me2 enrichment (60–100%). This indicates that upon Wnt
stimulation chromatin priming may occur with a general increase
in H3K4me1 and decrease in H3K9me2 at promoter targets of
one or more of the three factors and not due to LSD1 alone.

Genomic distribution of β-catenin, GFI1B and LSD1 peaks.
GFI1B associates mostly at promoter regions (~48%), while LSD1
was located primarily within intergenic (~37%) or intronic
(~41%) regions (Supplementary Fig. 7d). This genomic dis-
tribution did not significantly change upon Wnt3A stimulation.
β-catenin was bound within intergenic regions mostly (~61.5%),
however, upon treatment, the most notable shift appears as a
55.7% decrease in the proportion of β-catenin peaks at promoters.
The genomic distribution for one factor as a function of its
proximity to a binding site of another factor showed that β-
catenin peaks overlapping with a GFI1B or LSD1 peak shift from
predominantly promoter (61 to 24.5%) to intergenic regions
(26.5–50%) upon Wnt3A activation (Fig. 8e). Analysis of estab-
lished enhancer regions showed there was a strong increase in the
number of enhancers co-bound by β-catenin, GFI1B, and LSD1
following Wnt activation (Fig. 8f–h and Supplementary Table 5).
Similarly to promoters, a shift was seen mostly with β-catenin
localization rather than GFI1B or LSD1 at enhancers with Wnt3a
treatment (Supplementary Fig. 7b).

Increased Wnt/βcatenin signaling rescues Gfi1b KO pheno-
type. To test whether Gfi1b null phenotypes can be rescued by
reactivating Wnt/β-catenin signaling pathway in primary HSCs
and MKs, we explanted bone marrow cells from Rosa Cre-ER,
Gfi1bfl/fl mice or controls after injection of Tamoxifen to induce
Gfi1b deletion, followed by a lineage depletion. The cells were put
in culture and treated with recombinant Wnt3A (a canonical Wnt
ligand) (Fig. 9a). After 7 days in culture, non-treated HSC and
MK samples from Gfi1b KO mice expanded as expected several
fold over WT controls (Fig. 9b). However, treatment with Wnt3A
inhibited this expansion in a dose dependent manner, most sig-
nificantly in MKs (Fig. 9b). To validate this hypothesis further, we
infected isolated CD45.2+ Gfi1b-deficient lin-BM cells with
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retroviral vectors directing the expression of the constitutively
active form of β-catenin or GFP as a control. These cells were
transplanted into irradiated CD45.1 recipient mice in order to
study the impact of canonical Wnt signaling activation in Gfi1b
KO cells. Flow cytometric analysis, 4 months post transplanta-
tion, showed that Gfi1b-deficient β-catenin+ HSCs frequencies
were significantly lower than those of GFP controls (Supple-
mentary Fig. 8a and b) suggesting that activating the canonical

Wnt signaling pathway by retroviral expression of active β-cate-
nin, inhibits in vivo expansion of Gfi1b KO HSCs. Finally, we
follow up on the findings that Gfi1b loss leads to impaired MKs
spreading on fibronectin coated matrix and treat Gfi1b null MKs
with Wnt3A in a dose dependent manner. The effects are
quantified by measuring the RI and find that Gfi1b null MKs
became less round, start spreading and resemble WT MKs when
treated with Wnt3A (Fig. 9c, d). Conversely, treatment of Gfi1b
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WT MKs with Wnt3A led to a RI decrease and higher Wnt3A
concentration treated WT MKs resemble untreated Gfi1b KO
MKs (Fig. 9d and Supplementary Fig. 8c). This data suggest that
Gfi1b is required to maintain a level of Wnt/β-catenin activity
necessary to control HSC and MK cellularity and the response of
MKs to integrin.

Discussion
The concept that Gfi1b regulates Wnt/β-catenin target genes is
supported by several, independent lines of experimental evidence
from this study: Gfi1b is found in β-catenin protein complexes
found in immune-precipitations analyzed by mass spectrometry
as well as BioID experiments and western blotting; Gfi1b, LSD1,
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and β-catenin co-target promoters and enhancers at endogenous
levels in the erythroleukemic K562 cell line; β-catenin binds
significantly less at specific target regions in K562 cells upon
GFI1B depletion; GFI1B activates TCF-dependent transcription
in a TOP/FOP reporter assay and Gfi1b deficiency leads to lower
Wnt/β-catenin signaling in MK and HSCs in vivo when measured
by two different Wnt/β-catenin dependent reporter mice. Also,
Gfi1b- deficient murine HSCs and MKs show deregulated
expression of Wnt target genes and knockdown of GFI1B in K562
cells reproduces this deregulation of Wnt target genes seen in cells
from Gfi1b knockout mice. And lastly, cellular defects associated
with Gfi1b deficiency can be in part restored by overexpressing β-
catenin or by stimulating the Wnt/β-catenin signaling pathway.

Our biochemical analyses suggest that a tripartite Gfi1b/LSD1/
β-catenin complex exists occupying promoter and enhancer
regions. This is supported by published ChIP-seqs from trans-
fected cells over-expressing these factors and our own ChIP-seqs
on K562 cells in which this complex exists endogenously at target
sites. One important line of evidence suggesting the importance
of GFI1B for β-catenin recruitment to DNA is the fact that almost
all β-catenin binding sites significantly overlap with GFI1B
binding sites (see Fig. 8a). Notably, we discovered that GFI1B is
essential for β-catenin to associate with specific target regions, like
YAF2 and CCRL2, upon Wnt signaling activation. Other loci, like
AXIN2 and SP5, did not show a significant change in β-catenin
levels upon GFI1B depletion, despite the tripartite complex being
detected at these loci in K562 cells. This indicates that β-catenin
may also bind to some loci independently of GFI1B.

Interestingly, the majority of β-catenin targets are co-occupied
by GFI1B and LSD1, while β-catenin only co-occupies a very small
fraction of GFI1b/LSD1 targets (108 of 5727 in Wnt treated cells,
see Fig. 8a). This may indicate that besides GFI1B and LSD1’s
influential role in Wnt/β-catenin biology, both are involved in
multiple other processes, whereas many β-catenin targets are
affected by GFI1B and LSD1. In addition, it is notable that while
the overall number of β-catenin peaks increases following Wnt3A
treatment (from 603 to 815), a considerable number of promoters
were bound by β-catenin in untreated cells (247), suggesting the
existence of a baseline level of activity of β-catenin.

The tripartite Gfi1b/LSD1/β-catenin complex also acts in such a
way that GFI1B recruits LSD1 to β-catenin or at least enhances the
interaction between LSD1 and β-catenin. This is supported by
reporter gene assays and immune-precipitation experiments with
mutant forms of GFI1B that lack or disrupt the SNAG domain and
no longer bind to LSD1. Our data corroborate findings in other
systems in particular the observation that β-catenin can recruit
LSD1 to regulate the expression of the tumor suppressor Lefty1 in
mouse embryonic stem cells47. Similarly, another study identified
LSD1 as a component of β-catenin complexes that also contained
DNMT1 in human colorectal cancer cell line HCT11648. It has been
shown as well that LSD1 promotes Wnt/β-catenin pathway acti-
vation in liver cancer initiating cells and HCT 116 cell line49,50.

We have obtained data supporting that a tripartite Gfi1b/
LSD1/β-catenin complex can act as either an activator or

repressor. For instance, the canonical Wnt/β-catenin target gene
Ccnd1 promoter is occupied by Gfi1b, β-catenin, and LSD1 in
mouse ESCs and its expression and H3K9 acetylation levels are
decreased in Gfi1b-deficient cells upon Gfi1b knockdown.
Additionally, our findings that LSD1 and GFI1B together enhance
TCF mediated transcription even more than GFI1B alone support
a model of a Gfi1b/LSD/β-catenin activator complex. Alter-
natively, we show that GFI1B interacts with a number of β-
catenin inhibitors, such as CtBP1 or TLE1. It is therefore con-
ceivable that GFI1B can also sequester these inhibitors, thereby
liberating β-catenin from their inhibitory effect, leading to
increased β-catenin target gene expression. The results from our
TOP/FOP reporter assay with GFI1B in the presence of CtBP1 or
TLE1 also support this possibility.

In contrast, the non-canonical Wnt genes NFAT5, PTK7 and
ROCK2 show increased expression in Gfi1b-deficient cells and the
NFAT5 promoter shows increased H3K9 acetylation. This sug-
gests that non-canonical Wnt targets respond differently to
GFI1B than canonical Wnt/β-catenin targets. Also, regulation of
Wnt/β-catenin target genes by Gfi1b is evident in primary flow
sorted hematopoietic cells and MKs obtained after prolonged
culturing with growth factors and cytokines. However, their Gfi1b
dependent regulation of expression is not the same, suggesting
that the regulatory link between Gfi1b and β-catenin and their
gene expression effects is context dependent.

Analysis of consensus motifs at GFI1B and β-catenin binding
sites also supports a regulatory interaction between the two
proteins but do not reveal the mechanism of this interaction.
While there are promoters where GFI1B and β-catenin bind only
after Wnt treatment (AXIN2 and YAF2 are examples), Wnt sti-
mulation does not alter the majority of GFI1B and LSD1 binding
and β-catenin generally binds to promoters where GFI1B and
LSD1 are already present. The fact that GFI1B binding motifs are
less frequent at such sites compared to sites bound by GFI1B but
not β-catenin suggests that GFI1B plays a role at these sites which
is specific to the regulation of β-catenin targets. It should be noted
that consensus motifs are not strictly required for binding to
DNA. It is possible for transcription factors to bind in the absence
of their established motif, and to have their nucleotide sequence
preference altered by DNA shape, genomic context, DNA mod-
ifications and coding and noncoding (genetic) variation51. Our
data suggest that GFI1B recruitment to TCF/LEF sites can be
independent of its consensus element. An alternative possibility is
that GFI1B can be recruited in a complex with β-catenin to TCF
at sites where TCF binds DNA. In this situation GFI1B does not
necessarily have to contact DNA directly and thus would not
require a DNA binding motif to be present at this site. Inde-
pendently of this, we also suggest an additional potential
mechanism whereby GFI1B could activate TCF-dependent tran-
scription by sequestering negative regulators without binding
DNA or occupying a specific site via another factor. This
mechanism is also independent of DNA binding. At the moment,
we have evidence supporting these models without excluding one
or the other. It is also possible that GFI1B is present at sites prior

Fig. 8 GFi1b, β-catenin and LSD1 co-occupy sites at enhancer regions and gene promoters. a Venn diagram showing GFI1B, β-catenin and LSD1 ChIP-seq
promoter binding prior to and after Wnt3A treatment of K562 cells. P indicates statistical significance of overlap between GFI1B and β-catenin calculated
using Fisher’s exact test. b Example of target genes Axin2 and Yaf2 bound by GFI1B, β-catenin and LSD1 and H3K4me1 and H3K9me2 enrichment before
and after Wnt3A treatment. Arrowhead indicates the presence of Gfi1b and TCF binding motifs in the Axin 2 promoter. c Motif enrichment analysis under
GFI1B peaks alone (top) and Gfi1b/β-catenin overlapped peaks (bottom). d GFI1B (top) and β-catenin (bottom) ChIP-PCR analysis in K562 stable clones
expressing GFI1B (S23) or scramble (C5) shRNA (error bars show s.d, n= 3 technical replicates). e Distribution of β-catenin peaks based on their distance
to GFI1B peaks (left panel) and LSD1 peaks (right panel). f Distribution of LSD1 peaks based on their distance to GFI1B peaks (left panel) and reversely (right
panel). g Venn diagram showing GFI1B, β-catenin and LSD1 binding at enhancer regions prior to and after Wnt3A treatment of K562 cells. h Distribution of
β-catenin peaks (left) and their overlaps with GFI1B and/or LSD1 peaks based on the genomic feature of each bound region
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to the recruitment of β-catenin as a form of priming, and that
once β-catenin is recruited to these sites, it forms a new complex
with GFI1B that is responsible for the regulation of the gene.
The fact that recruitment of β-catenin to many of these sites
is reduced in the context of GFI1B knockdown supports this
hypothesis.

While Gfi1b deletion leads to both HSC and MKs expansion and,
upon Wnt3a treatment, a significant decrease in expansion in both
cell populations, there are differences in the expression of Wnt target
genes between these cell populations (Fig. 6d). This may be due to
different transcription factors and other gene regulator within the two
different cell populations. For example, self-replicating and
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pluripotent HSCs distinctly contain Gfi1 and PU.1, while the more
differentiated MKs contain Gata1 and Fli1 which are not prominent
in HSCs52,53. These transcription factors could distinctly influence
Gfi1b’s genomic target regions within these different cells populations
and lead to expressional differences of Wnt target genes, further
highlighting the need for future research.

Our finding that treatment of Gfi1b-deficient HSCs and MKs
with Wnt3A treatment can rescue both the expansion of HSCs
and MKs, as well as the spreading of Gfi1b-deficient MKs
strongly supports a role of Gfi1b as a regulator of the Wnt/β-
catenin pathway. This may be possible through β-catenin
recruitment to target loci that do not depend on Gfi1b, such as
AXIN2 and SP5, but which nevertheless are targeted by the tri-
partite complex. Other transcription factors like, Gata1, Fli1,
TCF1 or LEF1 could potentially be influencing factors of β-
catenin recruitment in these cases. Further evidence comes from
our experiments using retroviral transduction of active β-catenin
into bone marrow cells of Gf1b- deficient mice, which led to a
significant reduction of HSCs and MKs cell numbers in mice
transplanted with transduced BM cells.

Our findings describe an unexpected function for GFI1B in
modulating Wnt/β-catenin signaling, which differs from its tra-
ditional activity as a transcriptional repressor, since mutants that
lack direct DNA binding still activate TCF dependent transcrip-
tion and the genomic sequences at sites of co-occupation of Gfi1b/
β-catenin and LSD1 lack the classical Gfi1/Gfi1b DNA consensus
motif, suggesting that GFI1B may act as part of yet undescribed
regulatory complexes. This new function of Gfi1b as a regulator of
the Wnt/β-catenin pathway appears essential for HSCs and MKs
to maintain their cellularity and for MKs to respond to integrin
ligands properly (Fig. 9e). Although further investigation into the
precise mechanism of this novel role is required, it is plausible that
the level of Gfi1b expression is critical not only for the fine-tuning
of the expression of Wnt/β-catenin target genes, but also for the
balance between canonical and non-canonical Wnt signaling in
these cells to maintain their functionality.

Methods
Mice. Gfi1bfl/fl mice9 were crossed with Rosa-CreERT2, and Axin2+/LacZ (Jackson,
B6.129P2-Axin2tm1Wbm/J) or TCF/Lef:H2B-GFP (Jackson, 61Hadj/J) transgene
reporter line. PF4-cre mice were used to delete Gfi1b in MKs for immuno-
fluorescence microscopy analysis. Age and sex-matched mice were used in all
experiments. For BM transplantation C57B6 CD45.1 mice were used. All mice were
housed under SPF conditions and the IRCM Institutional Review Board approved
all animal protocols and experimental procedures were performed in compliance
with IRCM and CCAC (Canadian Council of Animal Care) guidelines.

Treatment. Suboptimal doses of tamoxifen were injected at 100 mg per kg at day 0
followed by 50 mg per kg the day after, and mice were analyzed at day 10.

Flow cytometry analysis, sorting of HSCs and MKs. Hematopoietic cells were
analyzed with LSR, or LSR Fortessa flow cytometers (BD Biosciences, Mountain
View, CA) and analyzed using BD FACS Diva software (BD Biosciences) or FlowJo
(for histogram overlays; Tree Star). For cell sorting, lineage negative BM cells were
first depleted using mouse lineage cell depletion kit (Miltenyi Biotec) then applied
to five-laser FACSAria II sorter (BD Biosciences).

Cell culture. K562 (ATCC CRL-3344), HEL (ATCC TIB-180) cells were main-
tained in RPMI media (Multicell) supplemented with 10% Bovine Growth Serum
(RMBIO Fetalgro) and 100 IU Penicillin and 100 μg/ml Streptomycin (Multicell).
HEK-293 (ATCC CRL-1573) and U2OS (ATCC HTB-96) cells were maintained
DMEM media (Multicell) with above mentioned supplements. We verified that
none of the cell lines used in this study were found in the Register of Misidentified
Cell Lines maintained by the International Cell Line Authentication Committee.

Antibodies. The following antibodies were used for western blots analysis at
1/1000 dilution: β-catenin (cell signaling 9566 and 4176), TLE1 (sc-9121), TLE3
(sc-13374), Pontin52 (ab133513), CHD8 (cell signaling 7656), LSD1 (sc-67272 and
cell signaling 4064), Gfi1b (ARP30094 and sc-28356), Tubulin (cell signaling 9099),
G6PD (ab993), HDAC1 (ab702A). Uncropped and unprocessed scans of the
western blots are provided in Supplementary Data 3.

Immunofluorescence of Gfi1b WT/KO MKs. Lineage depleted bone marrow from
PF4-Cre Gfi1b-flox/flox and Gfi1b-wt/flox mice were cultured in Stemspan/2.6% FBS
supplemented with 1% L-Glutamine and SCF (20 ng per ml). TPO (50 ng per ml)
was added to fresh medium at day 2 and cells were cultured for 4 more days. MKs
were enriched on a BSA gradient and plated on fibronectin (500 µg per ml; Life
Technology) coated 12-µ-chamber slide (ibidi). Cells were incubated at 37 °C, 5%
CO2 for 3–6 h with or without Wnt3A (R&D systems) allowing megakaryocytes to
attach and spread. After incubation cells were fixed with 4% formalin, permeabilized
with 0.1% Triton-X100 in PBS, and blocked with FcBlock (1:500; BD Biosciences).
Cells were then labeled with FITC-CD41 (BD Biosciences), AF555-β-tubulin (Cell
Signaling) and covered with Vector Shield containing DAPI (Vector Laboratories).
Immunofluorescence imaging of the slides was done using a DCX-950P DP72
camera (Sony) mounted on a Leitz DMRB microscope (Leica). Images were analyzed
using ImageJ v1.46r (NIH).

BioID-MS data analysis. The BioID-MS data were analyzed using the ProHits
software54,55. The Proteowizard4 tool was used to convert RAW files to.mzXML
files. Peptide search and identification were performed by using Human RefSeq
version 57 and the iProphet tool integrated in ProHits56.

GO term enrichment analysis. Functional annotation of GO terms was analyzed
by using the g:Profiler tool57. Biological process or molecular function of prey
proteins identified in GFI1B-BirA*-Flag BioID/MS or β-catenin-BirA*-Flag
BioID/MS with the indicated constructs are shown in heat map analyses. Reviewed
UniProtKB entries of the prey proteins analyzed in Significance Analysis of
INTeractome (SAINT) results generated in ProHits were entered in the Query field
on g:Profiler for GO term analysis54,55,58. Contaminant proteins identified in
GFI1B-Flag AP/MS were filtered by using the Contaminant Repository for Affinity
Purification (CRAPome)59 repository prior to the GO term analysis on g:Profiler.
The enrichment score of GO terms is shown as the −log10 of corrected P values.

Dot plot analysis. SAINT output files of GFI1B-BirA*-Flag BioID/MS or β-cate-
nin-BirA*-Flag BioID/MS data analyzed in ProHits were submitted in ProHits-viz
to perform dot plot analyses60.

TOP/FOP Flash reporter assays. 293T Cells were transfected with TOP/FOP
Flash reporters, β-galactosidase, and effector plasmids using Lipofectamine®
(ThermoFisher) and luciferase activity was normalized by β-galactosidase activity61.

Quantification of intracellular β-galactosidase activity. Lineage negative BM
cells were loaded with 2 mM Fluorescein di-β-D-galactopyranoside (FDG) sub-
strate (AAT Bioquest) by hypotonic shock at 37 °C for 5 min, prior to cell surface
antibody staining. β-galactosidase reaction was stopped with 1 mM Phenylethyl
β-D-thiogalactopyranoside (PETG, Sigma).

Gene expression profiling by RNA-seq analysis. Bone marrow from 2 tibiae,
2 femora and 2 humeri (from 5 Rosa-Cre Gfi1bfl/fl and 10 Rosa-Cre Gfi1bwt/fl mice
treated with tamoxifen 2 weeks prior the experiment) was harvested in PBS/2.5%
FBS and pooled prior to lineage negative depletion using autoMACS Pro separator
(Miltenyi Biotec). Cells were incubated with a lineage antibody cocktail (B220,
CD3, CD4, CD8, Gr1, CD11b, NK1.1, Il7R, CD19) and then labeled with PE/Cy5-
streptavidin, PE-anti-CD41, AF700- anti-CD9, APC- anti-CD150, BV421-anti-
cKit, BV510-anti-CD48 and PE/Cy7-anti-Sca1 antibodies. MKs (Lin− cKit+ CD41
+ CD9+), HSCs (Lin− cKit+ Sca1+ Cd48− CD150+), and HSCs CD41low CD9 low

were sorted on FACSAria II sorter (BD Biosciences). RNA was extracted using
MagMax-96 Total RNA Isolation kit (Ambion) and quality-checked with RNA
6000 Pico kit (Agilent). RNA-seq libraries were prepared from the RNA extracts
using the Illumina TruSeq Stranded mRNA Kit according to the manufacturer’s
instructions, and sequenced using the TruSeq PE Clusterkit v3-cBot-HS on an
Illumina HiSEq 2000 system. Sequencing reads were aligned to the mm10 genome
using Tophat v2.0.1062. Reads were processed with Samtools63 and then mapped to
Ensembl transcripts using HTSeq64. Differential expression was tested using the
DESeq R package65(R Core Team 2015, http://www.r-project.org/). A genome
coverage file was generated and scaled to RPM using Bedtools66. RNA-seq data
are available under accession number GSE71310 (MKs) and GSE85737 (HSCs).
Total read numbers and aligned read numbers for each experiment is shown in
Supplementary Data 1.

Functional analysis. The enrichment of selected biological functions of interest
(Supplementary Table 1) was also analyzed using the GSEA tool67. Normalized
read counts for Ensembl genes from HTSeq were used and enrichment calculated
using 1000 Gene Set permutations. Unsupervised clustering analysis was done
using web tool ClustVis (https://biit.cs.ut.ee/clustvis/).

Consensus motif analysis. Motif scanning was performed using the AME tool
from the MEME Suite68 using the JASPAR CORE 2016 database.
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Chromatin immuno-precipitation (ChIP). GFI1B, LSD1, β-catenin and histone
modification ChIPs were performed on 1–20 × 106 K562 cells treated or untreated
in culture with 100 ng per ml rhWnt3a (5036-WN; R&D Systems) or CHIR99021
(SML1046;Sigma) for 4 or 8 h, respectively. The cells were cross-linked with 1.5mM
EGS for 20min and 1% formaldehyde for 8 min before quenching with 125mM
glycine. Cells were lysed in lysis buffer and sonicated using a Covaris E220 to
generate 200–600 bp fragments69. Samples were immuno-precipitated with 2–5 µg
of either anti- GFI1B (ARP30094_P050; Aviva Systems Biology), anti-LSD1
(ab17721;Abcam), anti-β-catenin antibody (71–2700; ThermoFisher), anti-
H3K4me1 (ab8895, Abcam), anti-H3K4me2 (ab11946; Abcam), anti-H3K4me3
(ab8580; Abcam) or anti-H3K9me2 (ab1220; Abcam). Libraries were generated
according to Illumina’s instructions. Libraries were sequenced on the Illumina Hi-
seq 2000 following the manufacturer’s protocols to obtain 50 bp paired end reads.
ChIP-seq results for Gfi1b binding in HPC7 cells38 and CTCF in ESCs46 were
obtained from the laboratory website of Dr. Goettgens (http://hscl.cimr.cam.ac.uk/).
Results for β-catenin39 and LSD140 binding in ESCs were obtained from GEO
accessions GSE43597 and GSE22557, respectively. External datasets were obtained
in the form of.bed files of peaks and.wig visualization tracks, aligned to the mm9
build, with the exception of LSD1, which only included the.bed peak file.

Annotation databases used. For gene promoters, we used the Ensembl Genes 92
database, dataset GRCh38.p12. (https://useast.ensembl.org/index.html) For
enhancer regions, we used the Fantom5 human_permissive_enhancer-
s_phase_1_and_2 enhancers (February 2015) dataset (http://fantom.gsc.riken.jp).

Megakaryocytes in vitro culture and roundness index. Primary megakaryocytic
cultures were prepared by flushing bone marrow into DMEM/10% FBS and sus-
pended in 1x ACK red blood cell lysis buffer (0.15 M NH4Cl, 10 mM KHCO3, 1
mM EDTA). Cells were then labeled with a biotinylated lineage antibody cocktail
(B220, Gr1, CD11b, CD16/32) and anti-biotin magnetic beads and separated on
an AutoMACS. The negative fraction was washed with DMEM/10% FBS and
suspended in StemSpan SFEM (StemCell Technologies) that contained 2.6% FBS,
1% L-Glutamine and SCF (20 ng per ml). Cells were then cultured two days at
37 °C and 5% CO2. The media was then replaced with fresh StemSpan SFEM that
contained 2.6% FBS, 1% L-Glutamine, SCF (20 ng per ml) and TPO (50 ng per ml)
and cells were cultured for 4 more days. On the 7th day, mature megakaryocytes
were enriched on a BSA gradient and plated in fibronectin coated 12-well μ-
Chamber glass slides (ibidi). Cells were then allowed to attach and to spread for
3–8 h at 37 °C under 5% CO2. To quantify the spreading of MKs on coated slides,
we compared the periphery (P) of each cell to the circumference of a perfect circle
(2πr) having the same area as this cell and calculated a roundness index (RI)
resulting in a numerical value that increases as the complexity of a spreading cell
increases, starting at RI= 1 for a perfectly round cell11.

Statistical analysis. The paired Student t-test was chosen for analyzing the dif-
ferences in the intracellular β-galactosidase activity in MKs and HSCs. Welch
corrected Student’s t tests were used to calculate the statistical significance of results
from luciferase reporter assays. Overlap between binding sites was calculated using
Fisher’s exact test. All p-values were calculated two-sided, and values of p < 0.05
were considered statistically significant. Statistical analysis was done with Graph-
Pad Prism software (GraphPad software, La Jolla, CA, USA). The sample size of
data points for each assay is shown in Supplementary Data 2.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The raw proteomics data, which are presented in Figs. 2a, b, and 3d, is publicly available
on massIVE [https://massive.ucsd.edu/ProteoSAFe] under the following accession
number: MSV000083125. The raw ChIP-seq and RNA-seq data, which is presented in
Figs. 6–8 and Supplementary Figures 3 and 7, have been uploaded to the GEO Datasets
repository [https://www.ncbi.nlm.nih.gov/gds] and is available under the following
accession numbers: GSE71310, GSE85737 and GSE117944.
Previously published ChIP-seq data, which is presented in Supplementary Figs 4 and 5, is
available under the following accession numbers: GSE43597, GSE22557.
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