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Abstract: The alveolar epithelium serves as a barrier between the body and the external environment.
To maintain efficient gas exchange, the alveolar epithelium has evolved to withstand and rapidly
respond to an assortment of inhaled, injury-inducing stimuli. However, alveolar damage can lead
to loss of alveolar fluid barrier function and exuberant, non-resolving inflammation that manifests
clinically as acute respiratory distress syndrome (ARDS). This review discusses recent discoveries
related to mechanisms of alveolar homeostasis, injury, repair, and regeneration, with a contemporary
emphasis on virus-induced lung injury. In addition, we address new insights into how the alveolar
epithelium coordinates injury-induced lung inflammation and review maladaptive lung responses to
alveolar damage that drive ARDS and pathologic lung remodeling.
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1. Introduction

The lungs maintain a sizeable interface (equivalent to a tennis court) between the body
and the external environment. This large surface area is necessary to facilitate efficient gas
exchange for the body’s consumptive needs but also exposes the lung epithelial surface to
potentially noxious stimuli, leading to alveolar damage and lung injury. Recovery from
injury requires that the epithelium repair or regenerate to reestablish a competent barrier.
In carrying out these processes, the alveolar epithelium modulates inflammatory signaling
to eliminate pathogens and promote lung repair.

In the face of overwhelming injury, however, physiologic repair and regeneration
mechanisms may be insufficient to reverse the epithelial damage. In this setting, patho-
logic signaling pathways are activated that lead to maladaptive repair and inflammation.
Initially, the exuberant, non-resolving lung inflammation manifests clinically as acute respi-
ratory distress syndrome (ARDS). Persistence of the maladaptive signals may activate lung
remodeling programs that are fibroproliferative and destructive, resulting in potentially
permanent lung dysfunction.

In this review, we will limit our discussion to the alveolar epithelium in order to
provide an update on the physiologic and pathologic responses to inhaled challenge that
promote alveolar injury, repair, regeneration, and remodeling, particularly in the context of
ARDS. By highlighting recent work in this area, we hope to build a more complete picture
of how the alveolar epithelium maintains alveolar homeostasis and contributes to ARDS
development.
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2. The Alveolar Epithelium at Homeostasis
2.1. Alveolar Epithelial Structure

Structural features of the alveolar epithelium include the alveolar epithelial cell mono-
layer and alveolar lining layer (Figure 1). The cellular monolayer is a mosaic of squamous
alveolar type 1 (AT1) and cuboidal alveolar type 2 (AT2) cells whose basement membranes
abut the alveolar interstitium. Opposite the interstitium lie the basement membranes and
cells of the pulmonary microvascular endothelium. Together, the alveolar epithelium,
alveolar interstitium, and microvascular endothelium form the alveolar barrier.
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Figure 1. Mechanisms of alveolar epithelial health and lung injury. The cartoon shows alveoli
under baseline conditions (left) in which alveolar epithelial type 1 (AT1) and type 2 (AT2) cells
underlie the alveolar lining layer. The glycocalyx extends from the epithelial surface. (Note: the
glycocalyx size is exaggerated.) AT1 cells span multiple alveoli through the pores of Kohn in human
lungs (1), and AT1, AT2, and microvascular endothelial cells (2) are heterogeneous groups comprised
of subpopulations. AT2-cell-derived GM-CSF (3) maintains the lung resident alveolar macrophage
population in healthy adult lungs. In lung injury (right), alveolar epithelial cell damage, junctional
and Na,K-ATPase protein loss (4), and surfactant dysfunction lead to edema fluid accumulation in
airspaces. Here, we highlight examples of the cell-autonomous and extrinsic interactions by which
the alveolar epithelium responds to injury (detailed in Section 3). (5) Alveolar responses to injury: Gly-
cocalyx shedding promotes airspace neutrophil recruitment and activation. (6) Epithelial–endothelial
crosstalk: ROS release from the injured alveolar epithelium causes mitochondrial depolarization
and cytoskeletal destabilization in the epithelium-adjacent endothelium. (7a,b) Alveolar epithelial
cell–cell communication: (7a) Inhaled S. aureus form microaggregates in structural alveolar niches,
where localized increases in cytosolic Ca2+ spread (7b) through alveolar epithelial gap junctions
to induce widespread alveolar edema. (8a,b) Reciprocal signaling between the alveolar epithelium and
immune cells: (8a) Interferon alpha secretion by influenza-infected AT2 cells induces secretion of
TNF-related apoptosis-induced ligand (TRAIL) by recruited macrophages, inducing signaling to the
uninfected alveolar epithelium, which leads to epithelial loss of Na,K-ATPase protein. (8b) Alveo-
lar macrophages directly interact with the alveolar epithelium via gap junctions to communicate
anti-inflammatory cytosolic Ca2+ signals, limiting lung injury.
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The alveolar barrier facilitates gas exchange between air and blood compartments of
the lung. As reviewed by Weibel [1], the body’s metabolic needs require that gas exchange
be efficient; thus, the alveolar barrier must be thin and extensive. AT1 cells are well-suited
to gas exchange owing to their attenuated cytoplasmic leaflets, which are in many places
less than 0.2 µm thick and spread broadly across adjacent alveoli to span an average
surface area of 5000 µm2 per cell in human lungs [1–4]. AT2 cells have a smaller apical
surface area of approximately 200 µm2 per cell but are more numerous [3]. Across the
mammalian spectrum, increased body mass correlates primarily with increased AT1 and
AT2 cell number [5], resulting in an average alveolar epithelial surface area of more than
100 m2 in adult human lungs [2,6]—a remarkable size.

The alveolar lining layer is located between the apical alveolar epithelial surface and
alveolar airspace. It is thin and continuous but pools at alveolar curvatures, where alve-
olar septa converge [7]. The lining layer consists of two phases: an aqueous hypophase
in contact with the alveolar epithelium and a surfactant film that forms the air–liquid
interface [8,9]. The hypophase contains reserve surfactant material [8,9] and the alveolar ep-
ithelial glycocalyx—a multilayered structure of proteoglycans and glycoproteins anchored
to apical membranes of alveolar epithelial cells (reviewed in [10]).

2.2. Alveolar Epithelial Homeostatic Function

Homeostatic functions of the alveolar epithelium maintain the integrity of the apical
lung surface and ensure that the alveolar airspaces remain air-filled for gas exchange.
Maintenance of air-filled alveoli requires that the alveolar epithelium secrete surfactant
and hypophase liquid and resist mechanical forces, including microvascular hydrostatic
pressure, that tend to drive fluid from microvessels into airspaces (reviewed in [1]). Mainte-
nance of apical lung surface integrity requires that the alveolar epithelium defend itself
against inhaled pathogens and undergo basal cell turnover as needed.

The alveolar epithelial barrier restricts the paracellular passage of molecules, ions,
and liquid into alveolar airspaces [11–14]. Epithelial barrier permeability is determined
primarily by the expression and regulation of tight junctional proteins, particularly those of
the claudin family [12,15–17]. Adherens junction proteins and ion transport-independent
functions of the epithelial Na,K-ATPase contribute to barrier function by promoting epithe-
lial and junctional protein integrity [18–21] (reviewed in [22–24]). Under basal conditions,
therefore, junctional and Na,K-ATPase proteins separate the alveolar epithelial apical
and basolateral membranes to establish epithelial polarity and regulate the paracellular
movement of solutes and liquid, thereby preventing spontaneous edema formation and
maintaining airspaces for gas exchange. However, when excess fluid is introduced into
alveolar airspaces, apical epithelial Na+ channels (ENaC) and the basolateral Na,K-ATPase
drive transepithelial Na+ uptake [25–30], generating electrochemical and osmotic gradi-
ents that induce absorption of Cl− and water. The excess liquid is likely resorbed by the
lymphatic system via the interstitium [31,32].

The alveolar lining layer is secreted by the alveolar epithelium and is essential to the
gas exchange function of alveoli. Alveolar surfactant is a heterogeneous mixture of lipids
and proteins that lowers surface tension at the air–liquid interface to maintain airspace
patency [33–35] (reviewed in [36,37]). Surfactant is stored in AT2 cell lamellar bodies and
secreted into the hypophase in response to lung inflation and other stimuli before it is
taken up, processed, and re-secreted by AT2 cells [38] (reviewed in [39]). The hypophase
provides a medium for surfactant system components and is generated continuously by
chloride-dependent liquid secretion into alveolar spaces through the alveolar epithelial
cystic fibrosis transmembrane conductance regulator (CFTR) protein [14,40–42].

The alveolar epithelium defends alveoli against cellular damage induced by inhaled
particles and pathogens. AT2 cell secretion of granulocyte–macrophage colony-stimulating
factor (GM-CSF) maintains the steady-state population of lung resident AMs [43], cells
whose surveillance and phagocytosis functions are critical to alveolar defense. AT2 cell-
derived surfactant proteins (SP)-A and SP-D promote AM opsonization and phagocytosis
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of pathogens and directly inhibit growth of Gram-negative bacteria and fungi [44,45]. Alve-
olar epithelial hypophase secretion may facilitate AM function by retaining and perhaps
opsonizing inhaled particles [46]. In addition, hypophase secretion contributes directly to
alveolar defense through pH-mediated regulation of SP-A and SP-D activity [44,47] and
generation of alveolar liquid flow that convectively transports particles out of alveoli [40].

To maintain gas exchange over a lifetime, the alveolar epithelium must undergo
homeostatic cell turnover. Recent research sheds new light on alveolar epithelial turnover
rates and mechanisms. In mice, lineage tracing studies indicate homeostatic alveolar
epithelial turnover is a slow process [48,49]. The turnover mechanism may depend on
juxtacrine interactions between alveolar interstitial fibroblasts and AT2 cells [48], which
serve as stem cells for the alveolar epithelium [50]. Notably, a rare AT2 cell subpopulation
appears to have higher replication capacity under baseline conditions [51]. Cells of this
subpopulation tend to be located near pulmonary microvessels [51], but their role in
homeostasis, the significance of their location, and the extent to which the cells communicate
with microvascular endothelia or pericapillary cells remains unknown. The recent finding
that the alveolar capillary endothelium is also comprised of subpopulations [52] raises
the intriguing possibility that specialized cells of the alveolar epithelium and adjacent
microvascular endothelium interact to maintain alveolar health.

3. Alveolar Epithelial Responses That Lead to Lung Injury
3.1. New Insights into ARDS Pathogenesis from Human Studies during the COVID-19 Pandemic

The destructive effects of SARS-CoV-2 infection in the lungs have brought ARDS
to the forefront of medicine and biomedical research during the COVID-19 pandemic.
Lung tissue specimens from patients with COVID-19-related ARDS demonstrate findings
typical of ARDS from many causes [53], including diffuse alveolar damage (DAD) [54]—a
pathological pattern characterized by airspace edema, hyaline membranes, and evidence of
alveolar epithelial cell hyperplasia [55]. However, reports of SARS-CoV-2-infected lung tis-
sue also indicate marked heterogeneity in the extent of alveolar epithelial infection at both
macro- [56,57] and microscopic [58] levels. These findings likely reflect the known het-
erogeneity of inhaled particle deposition in the lungs [59] but may also result, at least
in part, from variable expression of viral entry proteins across lung epithelial cell sub-
populations [60] and developmental stages [61]. Nevertheless, widespread induction of
cellular interferon responses extends to uninfected lung regions in COVID-19-related ARDS,
demonstrating that virus-induced danger signals are transmitted beyond regional sites of
injury [57]. The clinical relevance of the transmitted interferon responses is supported by
recent genomic data that identify a strong association between interferon signaling genes
and COVID-19 severity in large, diverse populations [62–64]. Interestingly, the “cytokine
storm” found in COVID-19 ARDS may result from an interferon response that is, in fact,
hypofunctional and fails to control the initial infection [63,65–68].

3.2. Direct Mechanisms of Alveolar Epithelial Damage

Mechanisms of lung injury that lead to ARDS center on alveolar epithelial cell damage,
barrier dysfunction, and surfactant system impairment, resulting in widespread pulmonary
edema formation (reviewed in [69]). Recent data reveal important roles for the alveolar
epithelial glycocalyx in lung injury pathogenesis. The glycocalyx regulates cellular barrier
function and cell adhesion (reviewed in [10]), and glycocalyx shedding can mediate lung
disease [70–73]. In patients with ARDS, glycosaminoglycan accumulation in respiratory
specimens, likely a marker of glycocalyx proteoglycan shedding, correlates with alveolar
barrier permeability indices, duration of mechanical ventilation, and matrix metallopro-
teinase 7 (MMP-7) levels [72,73]. MMP-7, via shedding of syndecan-1, a proteoglycan
prominently expressed by the lung epithelium, promotes alveolar airspace neutrophil re-
cruitment and activation after various injuries [74,75]. However, syndecan-1 shedding may
also promote a dysregulated inflammatory response by altering surfactant function and
epithelial pro-survival signals, leading to lung injury [73,76]. Taken together, these findings
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support glycocalyx shedding as a new biomarker in ARDS and suggest that modulation of
the shedding response may be therapeutic (Figure 1).

Intra-alveolar hemorrhage is a long-recognized pathological feature of ARDS [77], and
recent data suggest cell-free hemoglobin (CFH) may play an active role in driving lung
injury [78]. Experimentally, CFH instillation into murine lungs induces alveolar barrier
dysfunction and alveolar airspace inflammation [78], and alveolar permeability may be
altered via the disruptive effects of CFH on AT1 cell bioenergetics [79]. The deleterious
effects of CFH may not be restricted to epithelial surfaces, as endothelial exposure to CFH
also induces fluid barrier hyperpermeability in cultured lung endothelial cells and isolated
human lungs [80]. Together, these findings reveal that CFH can disrupt alveolar barrier
function and promote ARDS development (Figure 1).

Other recent findings build further on the growing mechanistic understanding of
ARDS pathogenesis. Two reports indicate that influenza A virus (IAV) causes alveolar
barrier dysfunction by disrupting alveolar epithelial junctional proteins [81,82]. Moreover,
findings by Ruan et al. demonstrate IAV-induced activation of the transcription factor Gil1
mediates junctional protein loss in cultured alveolar epithelial-like cells and mouse models
of IAV infection [82]. Following the onset of barrier hyperpermeability, loss of alveolar
epithelial Na,K-ATPase, ENaC, and CFTR protein by IAV [83,84] and hypercapnia [85] may
impair clearance of alveolar airspace fluid, potentiating pulmonary edema responses. In
addition, lung injury may be induced or exacerbated by pathogen-induced alveolar epithe-
lial responses that alter surfactant composition [86] and dysregulate alveolar epithelial cell
metabolism, leading to airspace inflammation [87]. Although airspace inflammation results
from many signaling mechanisms (reviewed in [88]), new data show pro-inflammatory
responses to IAV lung infection are fine-tuned by the alveolar epithelial activity of the linear
ubiquitin assembly complex (LUBAC)—a regulator of NFkB-dependent inflammation [89].

Chemical inhalation is an important but poorly understood cause of lung injury
related to industrial accidents and military and terrorist activity. Recent data provide new
insights into alveolar epithelial responses that lead to chemical lung injury. For example,
mice exposed to ricin, a plant-derived exotoxin, demonstrate rapid ricin binding to lung
epithelial cells, and AT2 cells may be particularly susceptible to ricin binding and ricin-
induced cellular damage [90]. Similar to ricin, chlorine (Cl2) gas seems to cause major
AT2 cell damage, as evidenced by alterations of lung surfactant protein content in Cl2-
exposed mice [91]. Additional alveolar epithelial responses to Cl2 gas include loss of
alveolar epithelial bioenergetics and loss of alveolar barrier function [92]. Rats exposed
to hydrogen sulfide (H2S) also respond with increased alveolar barrier permeability, and
studies using cultured alveolar epithelial-like cells suggest that H2S-induced barrier loss
may be augmented by alveolar epithelial loss of ENaC expression [93]. Together, these
new findings highlight alveolar epithelial damage, manifested in barrier and surfactant
dysfunction, as a common response to chemical lung injury and suggest therapeutic
approaches that target the alveolar epithelium may be beneficial.

Mechanical ventilation is a mainstay of clinical care for patients with ARDS and
respiratory failure, but its application can induce pressure-related lung injury (reviewed
by [94]). Although low tidal volume ventilation protects against ARDS-induced mortal-
ity [95], regional heterogeneity in alveolar edema patterns [96] generates persistent risk for
alveolar exposure to injurious conditions, even with lung-protective ventilation strategies.
New data show lung injury by ventilation-induced lung distension results from cellular
mechanosensing pathways involving the alveolar epithelial nuclear membrane and mTOR
complex 1 (mTORC1), leading to pulmonary edema, surfactant dysfunction, and lung
stiffness [97,98]. The finding that ventilator-induced lung injury causes mTORC1 activation
and surfactant dysfunction is particularly intriguing, since the mTORC1 activation occurs
primarily in the small airway epithelium [98]. As the small airways are a major site of
mechanical strain during high tidal volume ventilation [99] but not sources of surfactant
dysfunction in ARDS [100], the relationship between airway-centered mTORC1 activation
and surfactant abnormalities suggests stretch-induced signals in the small airway epithe-
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lium may be transmitted to the alveolar epithelium. Thus, these findings support the need
for better understanding of the role of small airway responses in lung injury and their
relationship to alveolar function.

3.3. Alveolar Epithelial Cell–Cell Communication Amplifies Injury Responses

IAV lung infection induces a robust cellular interferon response that limits viral
infection but also promotes inflammation-induced lung injury (reviewed by [101,102]).
New findings show IAV-induced interferon responses in infected alveolar epithelial cells
are communicated to uninfected alveolar epithelial cells. Findings by Ramos et al. show
cultured alveolar epithelial-like cells exposed to IAV express antiviral interferon-stimulated
genes in a viral dose-dependent manner and induce interferon-stimulated gene expression
in neighboring, uninfected cells [103].

To test the possibility that communication of interferon responses occurs in vivo, Stifter
and colleagues generated a fluorescent reporter mouse that visualizes cellular interferon
responses in IAV-infected lungs [104]. After intranasal IAV instillation, Stifter et al. found
marked fluorescent protein expression in AT1 cells [104], indicating AT1 cells are uniquely
responsive to IAV-induced interferon signaling. Since uninfected, fluorescent AT1 cells
were located near infected AT2 cells [104], the findings suggest infected AT2 cells transmit
signals to AT1 cells that activate AT1 cell interferon signaling. These new data support the
notion that lung infection stimulates alveolar epithelial cell–cell communication in vivo and
highlight a major role for AT1 cells in virus-induced interferon responses. Future research
may clarify the significance of AT1 cell interferon responses for lung defense, inflammatory
lung injury, and alveolar barrier function [105,106].

Alveolar epithelial cells are linked by gap junctional proteins that facilitate the intercel-
lular transit of ions and small molecules, thus forming an extensive cell–cell communication
network for the rapid coordination of cellular signals [107]. Alveolar epithelial gap junc-
tional proteins were recently implicated in lung injury caused by Staphylococcus aureus (S.
aureus) lung infection. Live imaging of intact mouse and human lungs indicate that contact
with the alveolar epithelium causes inhaled S. aureus to form microaggregates in structural
niches of the alveolar wall, where the bacteria stabilize, secrete the membrane pore-forming
toxin alpha-hemolysin, and induce cytosolic Ca2+ increase in the adjacent alveolar epithe-
lium [108]. Niche-localized Ca2+ signals spread to the epithelium of uninfected alveoli
through connexin-43-containing gap junctional channels, leading to widespread loss of
alveolar fluid barrier function and fatal lung injury [108]. These findings reveal major
roles for alveolar microanatomy and epithelial cell–cell communication in lung injury
pathogenesis, in that alveolar niches provide sites for bacterial stabilization and alveolar
epithelial gap junctions amplify the bacteria-induced injury signals (Figure 1).

3.4. Alveolar Epithelial Cells Transmit Injury Signals to Microvessels

Pro-inflammatory stimuli in alveolar airspaces induce paracrine communication from
the alveolar epithelium to the adjacent microvascular endothelium [109]. In alveoli microin-
stilled with acid, epithelial–endothelial communication is mediated by epithelial release of
diffusible reactive oxygen species (ROS) [110]. New findings generated by live imaging
of intact lungs show that acid-induced ROS release from the alveolar epithelium causes
mitochondrial depolarization and cytoskeletal destabilization in the epithelium-adjacent
endothelium, leading to alveolar barrier dysfunction [111] (Figure 1). A surprising finding
is that the depolarized mitochondria recover polarization within 30 min of alveolar contact
with acid [111]. Since acid-induced membrane pore formation in the alveolar epithelium is
similarly transient [110], taken together, these findings suggest alveoli have considerable
capacity for recovery after acid-induced cellular damage.

Pericytes—mesenchyme-derived stromal cells that directly contact microvascular
endothelial cells [112]—are located in the alveolar interstitium near the alveolar epithelium
in developing [113] and adult [114] lungs. This unique location between the epithelium and
endothelium may position pericytes to transmit alveolar epithelial-derived injury signals to
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the endothelium and thereby play a major role in lung injury development. Indeed, recent
studies in mice have identified that pericytes function as immune sensors that respond to
alveolar epithelial damage by promoting inflammatory cell recruitment [115–118].

3.5. Alveolar Epithelial Cells Organize Signaling Networks with Innate Immunity

New research shows the alveolar epithelium engages in dynamic interactions with
the innate immune system after lung injury. Work by Peteranderl and colleagues reveals a
paracrine signaling network between the alveolar epithelium and AMs that contributes
to pulmonary edema formation [83]. IAV-infected alveolar epithelial cells secrete inter-
feron alpha, which leads to release of TNF-related apoptosis-inducing ligand (TRAIL)
from AMs [83]. TRAIL signaling to uninfected alveolar epithelial cells causes kinase-
dependent degradation of the epithelial basolateral Na,K-ATPase and failure of airspace
edema absorption [64] (Figure 1). These novel findings demonstrate that effects of alveolar
epithelial injury, in this case from IAV infection, extend beyond infected cells to disrupt the
physiologic function of uninfected cells.

A burgeoning literature suggests AT1 cells are primary regulators of alveolar immuno-
logic activity [104,119,120]. Although the concept of AT1 cells as orchestrators of distal
lung inflammation is teleologically intuitive given their extensive surface area [4,5,121],
the overall understanding of AT1 cell function has lagged behind that of other cell types,
and thus AT1 cells have been traditionally considered primarily in terms of their barrier
and fluid balance functions [121]. Lin et al. [122] reported a new mechanism by which
AT1 cells facilitate neutrophil migration from microvessels into alveolar airspaces, thereby
promoting a core feature of ARDS pathogenesis [123]. The findings show mice with global
deletion of epithelial membrane protein 2 (Emp2)—a protein highly expressed by AT1
cells—have reduced numbers of neutrophils in bronchoalveolar lavage fluid after intranasal
instillation of bacteria or lipopolysaccharide (LPS) [122]. Epithelial Emp2 deletion blocks
transepithelial neutrophil migration to cause an increase in neutrophils in the lung intersti-
tium, particularly in the surrounding small airways [122]. The neutrophil migration defect
is attributed to epithelial absence of Emp2-mediated expression of neutrophil adhesion
molecules [122]. These findings shed new light on mechanisms by which neutrophils
migrate into alveolar airspaces and implicate AT1 cells as central determinants of the migra-
tion. Further research is needed to clarify the extent to which alveolar versus airway Emp2
expression is responsible for interstitial neutrophil accumulation, as well as the potential
role of Emp2 in alveolar epithelial barrier function and barrier recovery.

In addition to promoting injurious lung inflammation, interactions between the alveo-
lar epithelium and innate immune cells, most notably resident AMs, protect against lung
injury. Recent studies show depletion of lung-resident AMs by CD11c-targeted Stat5 dele-
tion augments LPS-induced lung inflammation and barrier dysfunction, likely through
loss of AM suppression of epithelial cytokine secretion [124]. Genetic reduction of AMs
augments signaling through alveolar epithelial arachidonic acid pathways to enhance
the susceptibility of AT1 cells to IAV infection and increase IAV-induced lung injury and
mortality [125], thus revealing a critical role for AMs in AT1 cell protection against inhaled
pathogens. AMs directly interact with the alveolar epithelium via gap junctions to com-
municate anti-inflammatory cytosolic Ca2+ signals, limiting LPS-induced lung injury [126]
(Figure 1). Interestingly, AM number and function become attenuated with age [127]. Con-
sidering the immunosuppressive and protective effects of AMs on the alveolar epithelium,
age-related numeric and functional deficiencies in AMs likely contribute to the increased
incidence of ARDS in older people.

4. Alveolar Epithelial Repair and Regeneration
4.1. Alveolar Epithelial Survival after Lung Injury

Recovery from lung injury requires that alveoli regain gas exchange function through
the clearance of pulmonary edema fluid and inflammatory cells and reestablishment of
the alveolar epithelial barrier. The extent to which barrier reestablishment depends on the
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regain of function in surviving alveolar epithelium versus regeneration of non-surviving
alveolar epithelium is not clear. Although the prevailing view is that alveolar epithelial cell
death is a major response to lung injury [128–130], recent studies suggest a considerable
proportion of the injured alveolar epithelium, including AT1 cells, survive injury [49,119].
Using genetically modified IAV to identify AT1 and AT2 cells that survive direct infection,
Fiege and colleagues report that alveolar epithelial cell survival correlates with time-
dependent loss of surface antigen presentation, hence avoidance of CD8-T-cell-mediated
cell killing [131]. Notably, survivor cells do not appear to be contiguous [131], suggesting
that infected cells or cells with survival capability are unevenly distributed across the
alveolar epithelium. Other mechanisms that may promote alveolar epithelial survival
include pathogen-induced mitophagy [132] and AT2 cell secretion of leukemia inhibitory
factor (LIF) [133,134].

4.2. Alveolar Epithelial Cell Contributions to Alveolar Epithelial Repair and Regeneration

A rapidly growing literature indicates that distal lung cell populations involved in
alveolar epithelial repair and regeneration after lung injury may be more heterogeneous
than traditionally considered (Figure 2). Although AT2 cells are established AT1 cell progen-
itors that respond to injury by proliferation and differentiation into AT1 cells [50,115,135],
recent data show successful alveolar epithelial repair and regeneration may also incorporate
contributions from AT1 cells and the distal airway epithelium.
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Figure 2. Alveolar epithelial responses that determine alveolar repair and regeneration. The
schematic figures 1–4 show mechanisms of alveolar repair after lung injury. (1) In health, the
alveolar epithelium is a continuous monolayer of squamous alveolar type 1 cells (AT1) and cuboidal
alveolar type 2 (AT2) cells. (2) After severe lung injury, recovery of gas exchange function requires
the replacement of damaged alveolar epithelial cells and the restoration of alveolar architecture.
(3) Alveolar epithelial progenitors (AEPs) respond robustly to local production of Wnts to (4) rapidly
expand and replenish AT2 cells. In turn, AT2 cells transition through the AT0 cell state to differentiate
into AT1 cells. Other cells that may contribute to alveolar repair and regeneration include distal
airway basal-like cells (BCs) and secretory cells (SCs).
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During development, AT1 cells may arise independently from a common alveolar
epithelial progenitor [136] or from a subpopulation of AT2 cells [137]. However, after
birth and in response to lung injury, AT2 cells are a major source of AT1 and AT2 cell
renewal [48,49,136,138–140]. New findings show the regenerative capacity of AT2 cells
may be determined by signaling by Wnt [48,141], hypoxia-inducible factor 1 alpha (HIF-
1a) [138,139], Notch [140], and fibroblast growth factor 2 (Fgfr2) [142]. AT2 subpopulations
with high regenerative capacity may be uniquely responsive to regenerative signaling. For
example, a Wnt-responsive AT2 cell population characterized by Axin2 expression [48,141]
is primed to enter the cell cycle and rapidly expand to regenerate alveolar epithelia after
IAV-induced lung injury [141]. Bleomycin instillation induces a HIF-1a-responsive AT2
cell subset to proliferate and differentiate into AT1 cells [138], and a subpopulation of AT2
progenitor cells with low surfactant protein C (SFTPC) and high programmed death-ligand
1 (PD-L1) expression proliferate after pneumonectomy, perhaps through a mechanism
involving Fgfr2 signaling [143].

In the process of repairing damaged alveoli, AT2 cells assume a transitional state before
fully differentiating into AT1 cells. In human and primate lungs, AT2 cells transition to
“AT0” cells, which may be bipotent in their ability to differentiate into AT1 or distal airway
cells [144]. Lineage tracing studies in mice characterize similar transient alveolar epithelial
cell subsets [145]. AT2 transdifferentiation may be regulated by growth factors [142] and
cytokine signaling [138]. Interestingly, the inflammatory cytokine interleukin 1 beta (IL-1β)
both supports transitional cell formation and arrests AT1 cell differentiation if signaling
is prolonged [138]. These findings suggest inflammation may impede repair, thereby
promoting persistent injury and creating a feed-forward loop of dysregulated inflammation
characteristic of ARDS.

Despite the traditional view that AT1 cells are terminally differentiated, recent stud-
ies suggest they retain plasticity and de-differentiate to give rise to alveolar epithelial
cells [146,147]. However, the contribution of AT1 cells to alveolar epithelial regeneration
after lung injury remains unclear, as the bulk of the evidence for AT1 cell plasticity in adult
lungs was generated using pneumonectomy models and organoids [146,147]. Nevertheless,
the possibility that AT1 cells retain the capacity to proliferate and differentiate into alveolar
epithelial cells, perhaps during intermediate stages of AT1 cell homeostatic regeneration,
as suggested by others [147], is intriguing.

4.3. Distal Airway Cell Contributions to Alveolar Epithelial Repair and Regeneration

New data suggest the alveolar epithelium of injured lungs may be regenerated by
progenitor cells from the distal airways. Using human lung tissue, Basil and colleagues
reported the discovery of a secretory cell population marked by high levels of secre-
toglobin family 3A member 2 (SCGB3A2) and SCGB1A1 gene expression and located in
the distal-most portions of respiratory bronchioles, near alveoli [148]. Isolated cells from
this population spontaneously decrease SCGB3A2 expression and develop AT2 cell char-
acteristics, including lamellar bodies and SFTPC expression, when cultured in specific
media [148]. In mice infected with IAV, distal airway basal-like cells activate a regener-
ation program marked by expression of the transcription factor p63 (p63) and keratin 5
(Krt5) and may migrate into damaged alveolar regions [149–151]. However, the extent to
which p63/Krt5-expressing basal-like cells contribute to alveolar repair and regeneration is
unclear. A population of club-like distal airway cells with high histocompatibility 2, K1
(H2-K1) expression is reported to have alveolar regenerative capacity and differentiate into
AT1 and AT2 cells after bleomycin-induced lung injury [152]. Bronchioalveolar stem cells
(BASCs)—specialized progenitor cells found at bronchioalveolar duct junctions—proliferate
and contribute to alveolar epithelial regeneration after naphthalene injection [153]. Genetic
lineage tracing shows the capacity of BASCs to reconstitute both airway and alveolar
epithelium in bleomycin-induced lung injury models [154]. Although, taken together, these
findings provide strong evidence that distal airway cells contribute to alveolar epithelial
regeneration after lung injury, interpretations of the data derived from mouse models are
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limited due to the anatomical differences between the distal airways of mice and humans.
As reviewed by Weibel [155] and recently illustrated by Basil and colleagues [148], human
lung airways terminate in respiratory bronchioles and alveolar ducts and lack bronchioalve-
olar duct junctions. Thus, going forward it will be important to validate findings generated
in mice in human lungs.

5. Maladaptive Alveolar Epithelial Responses That Cause Lung Remodeling

Most patients who survive ARDS experience complete recovery of lung func-
tion [156,157]. However, fibrosis, evidence of ineffective alveolar regeneration, and
an altered immune landscape are common pathological features of severe ARDS, particu-
larly in non-survivors [158–162]. Lungs of patients with severe ARDS due to COVID-19
show extensive evidence of lung injury and fibrosis [163,164], and recent findings show
patients who survived H1N1 IAV-induced ARDS had persistent lung abnormalities
visible on high-resolution computed tomography (CT) scans at three and six months
post-ARDS [165]. Thus, in some patients, lung recovery from ARDS may be absent or
prolonged. Dysregulation of the aforementioned repair mechanisms and subsequent
aberrant lung remodeling may be drivers of the maladaptive remodeling that causes
chronic lung dysfunction. Here, we review the recent literature to explore how dysregu-
lated alveolar repair and regeneration drives maladaptive lung remodeling in patients
with ARDS.

5.1. Evidence of Maladaptive Lung Remodeling in ARDS

Studies of human lung tissue support the notion that failure of alveolar repair and
regeneration mechanisms underlie the chronic lung dysfunction that can result from ARDS.
Analysis of lung tissues from ARDS patients shows evidence of delayed re-epithelialization
of the alveolar epithelium, indicative of either reduced post-injury AT2 proliferation or
defective AT2-to-AT1 cell transdifferentiation [161]. A report by Ting and colleagues
identifies diffuse airspace edema, alveolar epithelial denudation, and abundant transitional
cells in lung tissue from patients with COVID-19-related ARDS, suggesting that failed or
prolonged AT2-to-AT1 cell transdifferentiation may explain persistent barrier permeability
and respiratory failure [162].

Human lung tissue specimens also demonstrate infiltration of fibroproliferative im-
mune populations in the distal parenchyma, particularly in patients with COVID-19. Lung
tissue from patients infected with SARS-CoV-2 show accumulation of CD163-expressing
monocyte-derived macrophages that express genes associated with fibrogenesis, including
SPP1, TGFB1, TGFBI, LGMN, and CCL18 [166]. In addition, peripheral blood mononuclear
cell (PBMC)-derived monocytes exposed to SARS-CoV-2 are enriched in gene sets associated
with fibrotic responses to a greater extent than monocytes exposed to IAV [166]. Impor-
tantly, CD163-expressing monocyte-derived macrophages may associate with fibroblasts
in the lungs of patients with COVID-19-related ARDS [166] and are implicated in fibrosis
progression in idiopathic pulmonary fibrosis (IPF) [167], suggesting CD163-expressing
monocyte-derived macrophages may represent a link between ARDS and fibrotic lung dis-
ease. These data suggest the specific causes of alveolar injury and subsequent immunologic
response are major determinants of failed lung recovery after ARDS.

5.2. Mechanisms of Post-ARDS Maladaptive Remodeling

AT2 cell progenitor dysfunction is a proposed mediator of post-ARDS maladaptive
lung remodeling (Figure 3). After lung injury, proliferating AT2 cells enter a transitional
state marked by loss of AT2 cell markers and increased cytokeratin expression [168–170].
In mouse models of recovery after bleomycin-induced lung injury, AT2 cells transiently
acquire keratin 8 (Krt8) expression while transdifferentiating to AT1 cells [169]. However,
studies of lung tissues from patients with IPF show the presence of Krt8/Krt18-expressing
alveolar progenitors in areas of alveolar injury [169,170], suggesting persistence of the
Krt8/Krt18-expressing transitional state may play a role in fibrosis development [170].
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Since Krt8/Krt18-expressing transitional cells are overrepresented in both ARDS and end-
stage fibrotic lung disease [162,169], accumulation of Krt8/Krt18-expressing transitional
cells after lung injury could signal the presence of a maladaptive damage-and-repair cycle
that inhibits AT2-to-AT1 transdifferentiation.
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Figure 3. Alveolar epithelial responses that determine maladaptive lung remodeling. Schematic
representations 1–2 represent proposed mechanisms of maladaptive lung remodeling after injury.
(1) Inappropriately sustained TGFβ signaling blocks AT2-to-AT1 cell transdifferentiation, leading
to accumulation of Krt8-expressing transitional cells. The presence of these cells is associated with
the development of pulmonary fibrosis. (2) Basal-like cells (BCs) expand after injury to promote
barrier recovery after extreme injuries. In the process, basal-like cell pods emerge at sites of damaged
alveoli and form cystic structures. Tuft cells are found near BCs, but their functional significance is
not yet clear.

Complete differentiation of Krt8/Krt18-expressing AT2 cells to AT1 cells is largely
mediated by transforming growth factor beta (TGFβ) signaling [168–171]. To determine
how TGFβ regulates AT2-to-AT1 cell transdifferentiation, Riemondy et al. carried out single
cell RNA sequencing on AT2 cells obtained after LPS-induced lung injury in mice [168].
Transcriptionally distinct, injury-specific AT2 cell subpopulations emerged that included
AT2 cells that were proliferating, in cell cycle arrest, and transdifferentiating [168]. AT2 cells
in cell cycle arrest showed high expression of the TGFβ pathway genes ITGB6, FN1, TGFB2,
PDGFB, TGFBI, and TPM2 [168]. In cultured AT2 cells, TGFβ signaling induced cell cycle
arrest, and TGFβ inhibition promoted AT2-to-AT1 transdifferentiation [168]. Together, these
findings support an emerging paradigm in which TGFβ signaling halts the proliferation of
AT2 cells after lung injury, then the withdrawal of TGFβ signaling induces AT2-to-AT1 cell
transdifferentiation. As suggested by Riemondy and colleagues, persistent, inappropriate
TGFβ signaling may therefore drive maladaptive lung remodeling in injured lungs. Future
research may identify the upstream mechanisms and cellular sources responsible for TGFβ
signaling after lung injury.

Exogenous keratin-expressing cells accumulate at sites of alveolar damage in lung
tissues of patients with ARDS [161,172] and may alter the course of alveolar repair. Mouse
models demonstrate basal-like cells expressing p63/Krt5 migrate from the distal airway
to injured alveoli after IAV lung infection but may not contribute to alveolar regeneration
or the reestablishment of a gas exchange surface [149–151,173]. Rather, the cells persist
for months and occasionally form cystic structures that express airway epithelial markers
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but no markers characteristic of the alveolar epithelium [173]. Similar findings have been
recently reported in lungs from patients with ARDS, which demonstrate accumulation of
p63/Krt5-expressing basal-like cells and peribronchiolar bronchiolar metaplasia (“bronchi-
olization”) in regions of alveolar damage [161,174]. Tuft cells emerge in areas of dysplastic
alveoli along with the Krt5-expressing basal-like cells and may regulate inflammation after
viral lung injury [175,176].

Although mouse lineage tracing studies indicate that p63/Krt5-expressing basal-
like cells are derived primarily from airway epithelia [150,172,174,177,178], recent studies
suggest human AT2 cells may also be a source of Krt5-expressing basal-like cell populations
through metaplastic transdifferentiation [171]. Similar to Krt8/Krt18-expressing AT2-
derived transitional cells [168], Krt5-expressing AT2-derived basal-like cells respond to
TGFβ signaling [171], suggesting a potential lineage relationship between the two cell types.
It remains to be seen whether basal-like cell populations found within damaged alveolar
regions are basal fate-committed or regain alveolar plasticity at a later time post-injury.
In addition, future research may increase understanding of the role of keratin-expressing
basal-like cells in recovery from lung injury. Early expansion of basal-like cell populations
may contribute to the re-establishment of the lung barrier, but proper clearance of the
basal-like populations from damaged alveolar regions is likely an important step in the
recovery of alveolar function.

Advanced age is a risk factor for ARDS-related mortality [179]. Mechanisms of in-
creased age-related susceptibility to lung injury may relate to age-associated cellular senes-
cence and its effects on alveolar repair, inflammation, and fibrogenesis. Multiple animal
studies have assessed the role of cellular senescence in AT2 cell injury and repair [180–183].
Mice aged 72 weeks prior to inoculation with LPS show increased LPS-induced mortality
and lung stiffness compared with young mice, and AT2 cells from LPS-exposed aged mice
demonstrate decreased expression of cellular proliferative and apoptotic markers and
increased expression of senescence and pro-inflammatory genes [181]. In addition, genetic
models of AT2 cell senescence recapitulate findings seen in pulmonary fibrosis [183], and
recent studies suggest roles for cellular senescence in the regulation of immune microen-
vironments [167,180,184]. Despite active investigation in this area, the role of AT2 cell
senescence in the regulation of lung recovery and maladaptive remodeling remains unclear.
Better understanding is needed of how senescence bears on the lung’s capacity for alveolar
repair and regeneration, particularly in human lungs, as well as the therapeutic potential
of senescence pathway targeting.

6. Conclusions

This review of the recent literature highlights key advances in the understanding of
the alveolar epithelium in relation to health, lung injury, and lung repair and regeneration.
Recent findings have moved the field beyond the traditional AT1 and AT2 cell paradigm to
reveal new cell subpopulations that maintain alveolar homeostasis, communicate injury
signals, and participate in normal and maladaptive repair. Emerging data illuminate the
complexity of alveolar physiology and pathology to provide a more complete picture of
how alveoli maintain health and respond to injurious stimuli.

Many of the recent advances were generated using increasingly sophisticated tech-
nologies, such as in vivo lung imaging techniques that allow for real-time assessment of
host–pathogen interactions and single-cell transcriptomics that enable deep spatiotemporal
exploration of cellular phenotypes. New methods continue to be identified that can resolve
proteomes, metabolomes, and epigenomes in individual cells and are complemented by
the development of biocomputational tools for analysis of the wealth of data generated by
these high-throughput technologies. Thus, the framework provided here for the alveolar
epithelial response to injury will continue to evolve with deeper understanding of the mech-
anisms of normal and abnormal repair and provide a springboard for future investigation,
perhaps leading to the development of novel therapeutic approaches for ARDS.
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