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Tuberculosis in animals is caused principally by infection with Mycobacterium bovis and 
the potential for transmission of infection to humans is often the fundamental driver 
for surveillance of disease in livestock and wild animals. However, with such a vast 
array of species susceptible to infection, it is often extremely difficult to gain a detailed 
understanding of the pathogenesis of infection––a key component of the epidemiology 
in all affected species. This is important because the development of disease control 
strategies in animals is determined chiefly by an understanding of the epidemiology of 
the disease. The most revealing data from which to formulate theories on pathogenesis 
are that observed in susceptible hosts infected by natural transmission. These data are 
gathered from detailed studies of the distribution of gross and histological lesions, and 
the presence and distribution of infection as determined by highly sensitive bacteriology 
procedures. The information can also be used to establish the baseline for evaluating 
experimental model systems. The European badger (Meles meles) is one of a very small 
number of wild animal hosts where detailed knowledge of the pathogenesis of M. bovis 
infection has been generated from observations in natural-infected animals. By drawing 
parallels from other animal species, an experimental badger infection model has also 
been established where infection of the lower respiratory tract mimics infection and the 
disease observed in natural-infected badgers. This has facilitated the development of 
diagnostic tests and testing of vaccines that have the potential to control the disease in 
badgers. In this review, we highlight the fundamental principles of how detailed knowl-
edge of pathogenesis can be used to evaluate specific intervention strategies, and how 
the badger model may be a paradigm for understanding pathogenesis of tuberculosis in 
any affected wild animal species.
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iNTRODUCTiON

The presence of tuberculosis in wild animals has attracted scientific attention primarily because they 
are implicated in transmission of infection to livestock and other economically important species, 
and the risk of zoonotic transmission to humans. In Ireland and the UK, the European badger (Meles 
meles) is the principal wild animal species involved (1, 2). Elsewhere, wild boar (Sus scrofa) (3), 
goats (Capra hircus) (4) and species of deer, notably red deer (Cervus elaphus), fallow (Dama dama), 
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and roe deer (Capreolus capreolus) are affected in continental 
Europe (5). In New Zealand, the brushtail possum (Trichosurus 
vulpecula) is the key species affected (6). In North America, white-
tailed deer (Odocoileus virginianus) (7) elk (Cervus canadensis) 
(8) and bison (Bison bison) (9) are among the known reservoirs 
of infection. In Africa, many species of outstanding conserva-
tion merit are infected, posing a threat to the survival of local 
populations (10). With limited resources available to conduct 
surveillance programs, the gathering of basic information to 
develop an understanding of pathogenesis is rarely undertaken 
in natural-infected hosts. A key reason is often the physical size 
of the animal and the volume of tissues and specimens required 
to ensure maximum sensitivity and specificity of diagnostic 
procedures. Added problems include the availability of suitable 
samples and the potential for bias arising from misinterpretation 
of data because sampling is only from advanced disease cases or 
from cases identified by imperfect diagnostic tests.

There has been much written about the value of laboratory 
animals as surrogates in studying tuberculosis (11). This is mainly 
in the context of human tuberculosis where there is a drive to 
understand the host–pathogen interactions in great detail with 
a view to developing new therapies and vaccines (12). Those 
involved in trying to study the disease in a particular species are 
often reliant on information generated from laboratory animals, 
which may or may not be particularly relevant. Other than pro-
viding insights into pathogenesis at the animal level, laboratory 
animal models cannot contribute substantially toward under-
standing the epidemiology of human or animal tuberculosis at 
a population level. With the exception of the most commonly 
used laboratory animals, progress has also been hindered by the 
almost universal lack of reagents for specific animal species: this 
has constrained the development of diagnostic tests and limited 
the ability to understand how animals might respond to vaccines.

Nevertheless, animal models have been used extensively 
in tuberculosis research and proved invaluable in improving 
the understanding of pathogenesis and defining the subtle 
interactions between the pathogen and the host immune system  
(13, 14). The mouse model has been particularly useful and has 
revealed detailed functional information on many aspects of the 
host immunological responses to infection (15). The relative 
costs involved, the wide availability of immunological reagents, 
and the development of genetically modified lines have made 
the mouse model the pragmatic choice for many laboratories. 
However, the mouse is not considered to be a natural host for 
tuberculosis and study results often differ depending on the 
mouse strain used (16). This can be a cause for concern when 
extrapolating to different species. Other animal models includ-
ing rabbits, guinea pigs, zebrafish, non-human primates, and 
cattle (a natural host of M. bovis) are all subject to the same 
constraints when applying the interpretation of the results across 
species (11). Notwithstanding the availability of reagents and the 
logistics and welfare of housing animals, there may be differ-
ences in the host response influenced by, for example, route of 
infection and pathogenesis. This all poses particular challenges 
for the study of tuberculosis in more exotic natural susceptible 
hosts and particular care needs to be taken to translate the results 
of studies from one model animal to another species. Key to this 

is deciding which pieces of information are relevant to the target 
species and how this can be used to develop a complete picture 
of the pathogenesis of infection. In Ireland, we have compared 
natural and experimental M. bovis infection models of badgers 
with a uniform level of postmortem examination, histology, and 
bacteriology. This has provided a unique opportunity to evaluate 
and gain insights into pathogenesis in both model systems.

TUBeRCULOSiS iN BADGeRS

The involvement of badgers in the epidemiology of tuberculo-
sis in cattle is well established in Ireland and the UK (1, 17).  
Results from the four area badger removal trial in Ireland and 
the Randomized Badger Culling Trial (RBCT) in England 
provided evidence of a positive effect of badger culling on inci-
dence rates of tuberculosis in associated cattle herds (18, 19).  
Arising from these studies, current policies to eradicate the 
disease are largely focused on surveillance testing of cattle sup-
plemented with badger population control measures in areas of 
Ireland and England considered as high risk for cross-species 
transmission (1, 20). Analysis of M. bovis prevalence rates in 
approximately 5,000 badgers culled in Ireland in response to 
tuberculosis breakdowns in cattle herds has revealed a decrease 
in the overall prevalence from 26 to 11% between 2007 and 2011 
(21). Nevertheless, large-scale culling is considered to be unsus-
tainable in the long term, although it is recognized in Ireland, 
the UK, and other countries that eradication of tuberculosis 
in cattle is unlikely if the infection reservoir of M. bovis infec-
tion in badgers, and maybe other maintenance species, is not 
adequately addressed (22–24). The development of a vaccination 
strategy targeted at badgers is judged as a potentially feasible 
option; a key objective of vaccination is to reduce the transmis-
sion rate of infection within the badger population by reducing 
the level of susceptibility to infection or to alter the pathology 
of the infection in vaccinated badgers where protection is less 
than 100% to the extent that it decreases the rate of excretion of  
M. bovis and transmission to cattle (25). Until relatively recently 
there was limited detailed information relating to susceptibility 
of badgers to tuberculosis, and whether they were capable of 
resisting M. bovis infection through the generation of protective 
immune responses. A considerable body of research work has 
been carried out in Ireland and the UK to gain a greater under-
standing of the disease in badgers with the objective to develop 
and implement a vaccination strategy for badger populations 
(26). A critical step in this development stage is establishing a 
model system that closely mimics the natural infection state in 
free-living populations.

PATHOGeNeSiS OF TUBeRCULOSiS  
iN BADGeRS

Insights into the pathogenesis and a baseline for the evaluation 
of experimental infection studies have been gained in badgers to 
a degree not previously undertaken in any other natural-infected 
species (27). Badgers are considered to be highly susceptible 
to M. bovis infection (28). As in many species, tuberculosis is 
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FiGURe 1 | Location of lymph nodes (red) and visceral organs (green) 
examined for gross lesions, and samples for histological/bacteriological 
examination during systematic detailed postmortem of natural-infected wild 
badgers. Reproductive tract tissues (not shown) were also examined (31).

FiGURe 2 | Photomicrographs illustrating (A) three granulomas of varying 
size indicated by white arrowheads in a hyperplastic/reactive lymph node  
of a badger; (B) higher magnification image of one of these granulomas. 
Hematoxylin and eosin stains, magnification ×20 (A) and ×100 (B).
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principally a respiratory disease in badgers but in a natural-
infected population there appears to be a second route of trans-
mission by contamination of bite wounds, which is less prevalent 
but still significant. Pulmonary infection is established following 
inhalation of infectious aerosols and this leads to protracted pro-
gression toward a clinical state of disease (29). Aerosol infection 
results in a chronic disease and infected animals can express a 
variety of disease states ranging from latent subclinical infection 
(i.e., no visibly detectable lesions or clinical manifestations of 
disease) to moderate disease (with size-limited pulmonary and 
extrapulmonary lesions) and to severe overt disease with gen-
eralized pathology. In the majority of aerosol-infected badgers, 
however, infection remains latent and the proportion of badgers 
that develop generalized disease is small (29, 30). By contrast, 
bite wound infection results in a more rapid and progressive 
infection with typically generalized infection and lesions  
(29, 31). Despite the absence of lesions in the majority of infected 
animals, badgers with any state of infection may pose a risk of 
transmission to susceptible hosts where there is close and fre-
quent contact.

More refined insights into the pathology of disease have been 
revealed from detailed postmortem studies of culled badgers 
(31, 32). The sequence of events in the pathogenesis, includ-
ing the early dissemination of infection from the lungs, is best 
demonstrated when the distribution of infection in the badgers 
is examined in a broad repertoire of anatomical sites (Figure 1). 
Gross visible lesions are commonly found in the thoracic cavity 
(lungs, tracheobronchial and mediastinal lymph nodes), with 
the head and body lymph nodes the most frequently affected 
extrathoracic sites. Visible lesions are scarce in the abdominal 
cavity; however, a broad range of tissues and organs may be 
infected. In badgers presenting with only a single site of infection, 
the distribution pattern is much the same as that in badgers with 
multiple infection sites. This could signify that host–pathogen 
interactions during the initial stages postinfection, rather than 
tissue predisposition, dissemination, or progression of disease, 
govern the infection distribution. Tuberculosis can also develop 
when bite wounds become infected with saliva containing infec-
tive bacilli. The spectrum of infected bite wounds can range from 
circumscribed subcutaneous granulomas, lacerated wounds 

draining abscesses, to large open ulcerated areas devoid of skin. 
The pathogenesis of infection following bite wound contamina-
tion differs from that after aerosol infection in that there is rapid 
progression of infection, a greater number of lesions, and wider 
distribution and severity of infection (27).

The presence of discrete tuberculous granulomas is the char-
acteristic of infection in badgers as also occurs in other reservoir 
hosts including cattle (33), possums (34), and ferrets (35). These 
are composed largely of epithelioid cells, macrophages, and spo-
radic lymphocytes. Lesions are typically cellular and proliferative 
to a large extent, with limited necrosis, mineralization, or fibrosis 
(29, 36–38). Histologically, there is a wide variety in the size and 
structure of lesions present in an animal, and even in individual 
tissues (Figure  2). As the severity and size of lesions increase 
and the granulomas expands, the central mass of epithelioid cells 
increase and are enclosed by a peripheral rim of lymphocytes 
with the outer layer composed of macrophages and neutrophils, 
bounded by a narrow uneven fibroblast layer. As the infection 
progresses, lesions coalesce and may form large areas of necrosis 
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and caseastion, sometimes associated with mineralization. The 
presence of acid-fast bacilli (AFB) becomes more common as the 
area of necrosis increases and then may be extracellular. In lung 
lesions, there may be erosion of bronchi and bronchioles walls, 
and AFB may be present in cellular debris in the lumina.

The specific immunological responses to infection with  
M. bovis can also offer important insights into key aspects of 
pathogenesis. However, measurement of these responses in 
badgers or other wild animals can be problematic not only 
because of a lack of reagents but also the requirement to 
repeatedly capture and collect samples from animals. In an 
experimental setting, this is feasible and it is possible to moni-
tor changes in responses as the infection progresses (39, 40)  
As in all species studied, the predominant early specific 
immune response following M. bovis infection of badgers 
is T  cell-mediated (CMI), leading to proliferation of T  lym-
phocytes, secretion of interleukin-2 (IL-2) and release of 
pro-inflammatory cytokines including interferon-γ (IFN-γ) 
(41–43). The responses can be measured ex vivo following 
antigenic stimulation of blood or purified peripheral blood 
monocytes with tuberculin or the specific mycobacterial 
antigens ESAT-6/CFP10 cocktail. Where longitudinal studies 
have been conducted in wild badgers, the strength of the initial 
IFN-γ responses correlates with the progression of infection 
(44). Serological responses are associated with a later stage of 
infection when visible lesions are likely to be present and sever-
ity of disease is high (45). The immune-dominant serological 
antigen is restricted to the mycobacterial antigen MPB83, 
although the sensitivity of detection of antibodies recogniz-
ing this antigen is relatively low across the full spectrum of 
infection severity (46, 47). The innate immune response to 
infection with tuberculosis is regulated through the activity of 
macrophages; the key cells that are permissive for the growth 
of intracellular mycobacteria. Activated macrophages produce 
reactive nitrogen intermediates that are directly inhibitory for 
the growth of a wide range of intracellular organisms including 
M. tuberculosis (48) and M. bovis BCG (49). Nitric oxide (NO) 
is produced through oxidation of L-arginine (50) in a reaction 
catalyzed by an inducible nitric oxide synthase (iNOS) (51). 
However, studies in badgers have revealed that blood monocyte- 
derived macrophages do not produce NO or upregulate iNOS 
expression following in vitro activation of macrophages (52). 
This intriguing finding might imply that badgers should  
lack the ability to control infection via the innate response, 
though there is no strong pathological evidence to support this.

eXPeRiMeNTAL iNFeCTiON MODeLS  
iN BADGeRS

While the use of natural-infected animals has proved invaluable 
for investigating pathology across the broad spectrum of disease 
ranging from early infection to clinical disease, experimental 
models have the advantage of allowing study of the kinetics 
of disease progression and immunological responses starting 
from a fixed dose and a fixed point of time (28, 39, 40). This 
can facilitate reproduction of disease in a format necessary for 

the development of diagnostic tests and for evaluating vaccines.  
In order to understand fundamental aspects of pathogenesis, the 
experimental model needs to be framed around relevant infec-
tion routes, and plausible challenge doses that are reflective of 
natural transmission. The profile of infection that is generated 
should also be characteristic and consistent within the recog-
nized spectrum of the naturally occurring disease. Principally, 
this requires evenness in the profile of lesion development and 
distribution of infection as found in natural M. bovis infection. 
In developing the badger infection model for tuberculosis in 
Ireland, the key factors that were considered to achieve this end 
were the choice of M. bovis strain, route of infection, the infec-
tive dose, and the kinetics of infection. The strain of M. bovis 
used for experimental infection was first isolated from a lesion 
in a clinically diseased badger (28). Spoligotyping revealed that 
the strain type was common in both infected badgers and cattle. 
In an initial study, the infective doses used were  <10 colony 
forming units (CFU) (low dose), ~100  CFU (medium dose), 
and ~3,000 CFU (high dose) with delivery by the endobronchial 
route of infection, to mimic the dominant respiratory route of 
natural infection (28).

The results of this study showed that badgers were very sus-
ceptible to infection: all of the badgers had established infection 
across each of the doses used when animals were euthanized 
at 17  weeks postinfection (28). The results also demonstrated 
that the dose of M. bovis had a little effect on the distribution 
of infection but as the dose increased so did the rate of disease 
progression. There was a consistent profile of infection among 
the groups exposed to each dose according to the measures 
employed: distribution and number of lesions, severity score of 
gross lesions, distribution and number of infected tissues, levels 
of extrathoracic infection, and distribution and number of histo-
logical lesions. The inoculation resulted in a variety of infection 
states, ranging from latency (absence of gross lesions), to gross 
lesions in the lungs, draining and extrathoracic lymph nodes, 
and pleura. The experimental infections appeared to mimic the 
more severe end of the spectrum of lung disease found in natural-
infected badgers in that pulmonary lesions ranged from 1- to 
2-mm diameter discrete tubercles, to extensive miliary lesions, 
with consolidation and pervading caseation of lobes (Figure 3). 
Cavitation and liquefaction were not seen (37).

The CMI responses, as determined by antigen stimulation 
of peripheral blood mononuclear cells (PBMCs) with bovine 
purified protein derivative tuberculin (PPD-B), increased to 
levels associated with the infective dose and pathology recorded 
postmortem (39). The badgers infected with the highest dose of 
M. bovis developed the earliest immune responses at 3  weeks 
postinfection. In addition, the highest infective dose correlated 
with the most consistent CMI response. In those animals with 
latent infection the CMI responses were weak and indistinguish-
able from non-infected control animals over most of the study 
period. In contrast to the CMI response, the humoral antibody 
responses of the badgers were intermittent over the time period 
of the study and not strongly influenced by the dose of M. bovis.

The aim of the follow-up study was to describe pathological, 
bacteriological, and immunological changes over a 24-week infec-
tion period using only the high-dose rate (46, 53). Inoculation by 
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FiGURe 3 | Experimental infection. Lesions of experimental pulmonary 
tuberculosis with miliary lesions of a uniform size in the inoculated lobe. In 
natural-infected badgers typically fewer pulmonary lesions are observed and 
they vary in size.
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the endobronchial route resulted in a non-progressive infection 
in most of the badgers, with limited dissemination of infection 
from the thoracic cavity. Where this occurred it was principally 
to the mesenteric and hepatic lymph nodes. However, there was 
a lack of uniformity in the progression of disease across time. 
There was contraction in the distribution of infection from 
that seen at 6 weeks to that at 12 weeks, but then progression 
of infection between 12 and 18  weeks but similar results for 
18 and 24  weeks. The analysis suggested that changes in the 
distribution of infection between time points arose from non-
uniform development of lesions within badgers and that local 
resolution of lesions may have also occurred. The CMI responses 
to PPD-B were first detectable 3 weeks after infection, and over 
the study period the responses of the PBMC to antigen stimula-
tion with PPD-B and the specific antigen CFP-10 were positively 
associated with the presence of gross lesions in the infected 
badgers. There was no evidence of a direct correlation between 
the strength of the response and the severity or distribution of 
observed lesions. The serological response was largely restricted 
to MPB83 across all states of infection. An interesting finding 
from this study was the generation of immunoglobulin-G (IgG) 
recognition of MPB83 coincident with the CMI response at 
3 weeks postchallenge.

A key feature of the badger experimental model has been the 
dose-dependent recreation of different states of infection, ranging 
from latency to clinical disease, all characteristic of natural infec-
tion. This is unique among natural hosts of infection in that each 
state in the badger can be defined by a combination of pathological 
and immunological parameters. In human tuberculosis, latency 
(skin test and IFN-γ immunological responses but no clinical or 
radiographic signs) is significant in the epidemiology of disease 
(54, 55). Latency is also an important feature in natural-infected 
badgers where, in a high proportion of infected badgers, infection 

is not associated with any clinical signs or gross pathology (31). 
The apparent lack of immunological responses in the natural or 
experimentally reproduced latency may reflect how the different 
immune systems control very low levels of infection, or strains of 
low virulence, e.g., bacillus of Calmette–Guérin (BCG), or may 
point to differences in pathogenesis of infection in the different 
hosts (56).

BCG vACCiNATiON AND PATHOGeNeSiS 
OF DiSeASe iN BADGeRS

Having established an experimental infection model that mim-
ics the characteristics of moderate-to-severe natural disease, 
the studies progressed to evaluating BCG vaccine protection 
using the endobronchial experimental infection model (57, 58). 
A second objective was to determine if vaccination altered the 
pathogenesis of disease. The first study examined the effect of 
vaccination on the distribution of experimental infection. The 
BCG vaccine was administered in two different ways: subcu-
taneous injection (~5 ×  105 CFU) and application to mucosal 
membranes (nasal and conjunctival mucosa with total final 
vaccine dose of 4 × 105 CFU). This latter route of immunization 
facilitated the delivery of BCG directly to an available mucosal 
surface, as a proxy route for delivery of an oral vaccine. With 
this protocol, the BCG was likely to be presented to the immune 
system via lymphoid tissues of the nasal cavity and/or conjunc-
tiva. Inhaled aerosol particles may also have been exposed to the 
lymphoid tissues of the lower respiratory tract.

Following vaccination and endobronchial challenge (~104 CFU 
M. bovis) infection was established in all vaccinates and in all of 
the control group. Compared with the controls, vaccinates had 
fewer sites of infection, sites of extrathoracic infection, and sites 
with gross lesions. In the group vaccinated by the subcutaneous 
routes, all these measures were lower than for those vaccinated 
by the mucosal route. Vaccination also altered the distribution 
of gross lesions following challenge with no extrathoracic gross 
lesions in the vaccinates. These effects were more pronounced for 
the subcutaneous group. It was 2 weeks after M. bovis challenge 
that the subcutaneous vaccinated group responded to PPD-B, 
whereas the remaining groups responded from 4 weeks postchal-
lenge. Over the period of infection, the highest immune responses 
were recorded in the non-vaccinated/infected control group. The 
immune profiles observed also associated with lesion severity 
scores measured at postmortem in all groups. Vaccination was 
also expressed by a significant delay in seroconversion to MPB83, 
which correlated with the levels of severity of the disease in all 
groups. From an immunological perspective, an intriguing find-
ing was the lack of CMI activity in response to vaccination, as 
measured by IFN-γ production. This has been found in other 
captive badger studies and there is evidence that it correlates 
positively with the dose of vaccine delivered (59). It is tempting 
to speculate that this lack of CMI activity following vaccination 
is mechanistically related to the absence of similar responses in 
latent-infected badgers. In both cases, it might suggest that innate 
T cells play a prominent role for limiting multiplication of bacilli 
and maintaining them at low numbers. In recent years, there is 
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growing evidence of non-specific protective effects generated by 
vaccination with BCG and other live vaccines (60). It is thought 
to be mediated by cross-reactivity of T-cell responses to related 
and unrelated pathogens, and/or by “trained immunity” whereby 
the innate immune system is modified by epigenetic program-
ming following initial exposure, in order to increase resistance 
to reinfection (61, 62). The repeated exposure of badgers to envi-
ronmental mycobacteria may provide the conditions necessary 
for training of the innate immune system to maintain subsequent 
exposure to M. bovis as a latent infection in most cases, and to 
limit the requirement of a CMI response in response to BCG 
vaccination.

Further studies examined the effect of oral BCG vaccination 
(endo-esophageal instillation of ~108 CFU BCG encapsulated in 
a lipid formulation) on protective effect and the distribution of 
infection after experimental challenge (63, 64). The predominant 
effect of BCG vaccination was seen as a reduction in the severity 
and number of gross lesions, decreased mycobacterial load in 
the lungs, and reduced number of sites of infection. However, 
vaccination did not alter the thoracic–extrathoracic pattern of 
infection. The CMI responses recorded in each of the vaccine 
groups were consistent with protection when expressed by 
pathology severity scores.

The most effective way of validating an experimental vaccina-
tion model is to compare it to vaccination of free-living animals 
in their natural environment. This allows vaccine protection to 
be assessed in a scenario of natural transmission. It also addresses 
an inherent limitation of captive animal vaccine studies where 
the infective dose and time of infection are controlled, leading 
to a relatively homogenous infection level in all animals from 
using relatively high-challenge doses. Two vaccine field trials 
have been carried out in badgers, in the UK and Ireland (65, 66). 
An injectable BCG vaccine for badgers was used in the UK trial 
and the results reported a 74% reduction in seropositivity among 
vaccinated badgers as compared with non-vaccinated badgers 
(65). Further analysis using a combination of diagnostic tests 
revealed a decreased risk of cubs testing positive as the propor-
tion of adults vaccinated increased (67). In the Irish study, there 
was also a clear reduction in the rate of seroconversion among 
vaccinated badgers as compared with the non-vaccinated badg-
ers, and in those vaccinated animals that did seroconvert, there 
was a significant time delay to when seroconversion occurred 
relative to the non-vaccinated badgers (66). The delayed time 
to seroconversion was consistent with that recorded in the cap-
tive badger vaccine studies where vaccine protection was also 
measured by time to seroconversion following endobronchial 
M. bovis challenge (33). A follow-up analysis using a different 
serology test confirmed that the proportion of seropositive 
animals was reduced in the vaccinated population compared 
with the non-vaccinated animals over the course of the trial (68).

BCG vACCiNATiON AND DiSSeMiNATiON 
OF iNFeCTiON iN BADGeRS

In all of the experimental vaccine studies, the protection levels 
generated by vaccination with BCG did not prevent establishment 

of infection; this may have reflected the severity of challenge 
resulting from endobronchial delivery of virulent M. bovis. 
However, vaccination did not appear to substantially change the 
pathogenesis of disease. One notable finding of the experimental 
vaccine protection studies was the level of dissemination of infec-
tion from the lung in all infected badgers including vaccinates. 
The principal measure of vaccine-induced protection was a 
reduction in the severity of thoracic and extrathoracic lesions 
rather than a reduction in the wider distribution of infection. The 
BCG vaccine is known to limit disseminated disease when deliv-
ered to children but is less effective in protecting adults against 
pulmonary disease (69–71). During the early innate stages of the 
immune response dissemination from the initial site of infection 
may occur before migration of the mycobacteria to a lymph 
node stimulates the development of a CMI response (72). Lesion 
development characteristic of tuberculosis will not commence 
until a sufficiently potent CMI response is generated, and this 
may take several weeks, dependent on the potency of the immune 
response and the severity of the infective dose. In the badger 
experimental model the average time to detect a measurable CMI 
response is 2–4 weeks (58, 63). During the period preceding this 
response, infected macrophages can use the lymphatic system to 
pass through the draining lymph nodes and circulate throughout 
the host. When a sufficiently dominant CMI response is induced, 
infected macrophages can become immobilized in lymph node 
tissue and further migration is restricted. Lesions can then 
develop and progress at sites where infected macrophages are 
resident, including those areas of the lung where infection was 
initiated. Following vaccination, antigen specific T-cells still take 
time to accumulate, allowing the infective bacilli to multiply and 
spread. In the badger model, the earliest time point for measur-
ing postinfection responses is 2  weeks. The data indicate that 
responses in vaccinates appear around this time point and earlier 
than in non-vaccinates. Nevertheless, it still allows time for dis-
semination of infection to occur in the days following establish-
ment of infection, by translocation of infected macrophages via 
the lymphatic system or the blood stream. Local dissemination 
may occur by movement of infected macrophages within tissues 
or following accumulation of infected debris in the lymphatics, 
or blood vessels, airways, renal or gastrointestinal system (29). 
This may partly explain why vaccination is particularly success-
ful in reducing the severity of disease but has limited impact on 
distribution of infection.

eXPeRiMeNTAL iNFeCTiON MODeLS 
FOR DOMeSTiC SPeCieS AND wiLD 
ANiMAL TUBeRCULOSiS

Studies in natural susceptible hosts and experimental studies in 
captive natural susceptible hosts are indispensable in advancing 
the understanding of the pathogenesis of tuberculosis. This in 
turn can generate confidence in the interpretation of results from 
experimental vaccine—challenge studies. In many domestic spe-
cies, e.g., cattle, goats, and deer, the presentation of tuberculosis 
is similar to that observed in the greater majority of infected 
humans in that it is a chronic, slowly progressive disease with 
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pathology predominantly confined to the lower respiratory tract, 
with associated cellular immune responses (73, 74). However, 
the occurrence and prevalence of latency in these species has 
not been clearly established and is difficult to identify in either 
natural-infected or experimentally infected animals.

Many of the pathogenesis studies and infection models 
developed in livestock and wild animals have been motivated 
by the desire to develop vaccines to control inter-species spread 
of tuberculosis (75). With this in mind, development of a reli-
able experimental infection model is important for a number 
of reasons including (a) the need to establish infection with an 
appropriate dose, (b) keeping the dose biologically plausible, 
(c) obtaining a balance ensuring infection is successful in all 
animals including vaccinates, (d) ensuring that the infection 
route used and the pathology generated is at least within the 
spectrum of the disease in its natural state, and (e) there are 
appropriate and measurable parameters for quantifying protec-
tive immunity.

Unlike laboratory animal model systems, livestock and wild 
animals are usually natural hosts for infection and are relatively 
outbred. Therefore, replicating the pathogenesis of natural 
infection might be confounded by the differing environmental 
conditions experienced by free-living and captive animals, 
and also different levels of natural susceptibility to infection. 
Experimental infection of domestic cattle with low doses of  
M. bovis (102 to 103 CFU) by intratracheal/endobronchial inocu-
lation or by aerosol-generating systems has resulted in lesions 
similar to those detected in the lungs and associated lymph 
nodes of natural-infected animals (76, 77). A natural challenge 
system of housing tuberculosis-free cattle with natural-infected 
animals has been presented as a biologically plausible chall enge 
system but with a highly variable degree of success (78, 79).  
Experimental infections using endobronchial (M. caprae) 
or aerosol delivery (M. bovis) have been carried out in goats  
(80, 81). In both cases, the distribution of lesions mimicked 
those seen in natural infection. Further studies in goats experi-
mentally infected with selected members of the M. tuberculosis 
complex (M. bovis, M. caprae, M. tuberculosis) revealed differ-
ent clinical outcomes with lesion scores ranking highest with  
M. bovis, then M. caprae and M. tuberculosis (51). These results 
highlight a good example of host tropism associated with closely 
related mycobacterial species. Sheep have also been experimen-
tally infected with M. caprae by the endotracheal route resulting 
in granulomatous caseous and necrotizing lesions in the lung 
and associated lymph nodes, typically found in natural cases 
of sheep tuberculosis (82). In addition, there were similar 
measured immunological, pathological, and bacteriological 
parameters as found in experimental M. caprae infection of 
goats. In deer naturally infected with M. bovis, the distribution 
of lesions differs from other domestic animals in that lesions 
are found predominantly in the retropharyngeal lymph nodes 
followed by lung and thoracic lymph nodes. Experimental 
infection models in deer routinely target inoculation of the ton-
sillar crypts to mimic natural infection and lesion distribution  
(83, 84). Additional studies in white-tailed deer have demon-
strated that dissemination from the tonsil is an infrequent event 
involving low numbers of bacilli (85).

Ferrets (Mustela Furo) are susceptible to infection with  
M. bovis and are considered as part of the epidemiology of  
M. bovis transmission in New Zealand (86). As mustelids related 
to badgers, they offer some advantages as a model animal spe-
cies in that they are available from licensed suppliers, and are 
relatively easy to house and maintain in captivity. Experimental 
infection models have been established where M. bovis was 
delivered to captive ferrets by the oral or aerosol route (35, 87). 
In both models, infection was found in the thoracic cavity and 
also in the mesenteric lymph nodes. The mechanism of dis-
semination from the primary site of infection in both models 
is not clearly understood. To date, experimental challenge by 
the endobronchial route has not been reported; this would 
allow for direct comparison of different aspects of pathogenesis 
with badgers, which might reveal subtle differences in specific 
host–pathogen interactions influencing dissemination.

The wild boar (Sus scrofa) is considered as a key maintenance 
host for tuberculosis in Spain with prevalence rates >50% in areas 
with high-density populations (88). Vaccination is being explored 
as a potential strategy to control the level of disease in these wild 
animals. In the first challenge study, a field isolate of M. bovis was 
delivered to boar by the oropharyngeal route using a range of 
infective doses between 102 and 106 CFU (89). All four challenged 
wild-boar-developed lesions and severe generalized lesions were 
observed in two animals exposed to the highest dose: this was 
not considered typical of the lesion distribution encountered in 
natural infections.

Routes of infection not observed in natural-infected wild 
animals have been used in experimental infections to achieve 
particular outcomes. Such alternative inoculation routes have 
been used to experimentally infect New Zealand brushtail 
possums to counter the high susceptibility of these animals to 
experimental infection and the rapid progression of disease. 
Delivery of M. bovis via conjunctival instillation resulted in 
established infection in a dose-dependent manner (90). The 
infection progressed slowly in the possums, generating palpa-
ble lesions in superficial lymph node lesions, and widespread 
distribution of macroscopic and microscopic lesions, all 
characteristics of the disease in wild, natural-infected pos-
sums. Percutaneous inoculation of M. bovis suspension into 
the paws resulted in gross lesions in superficial lymph nodes 
as is observed in natural-infected possums (91). As with the 
conjunctival challenge route, percutaneous infection prolonged 
the postchallenge survival period. However, although these two 
alternative routes of infection do result in gross lesion distribu-
tion as seen in natural-infected wild possums, they significantly 
underestimate the distribution of infection as seen when more 
detailed postmortem examination procedures are employed (6). 
Natural transmission between infected and susceptible captive 
possums was also investigated as a possible method of evaluat-
ing vaccination in captive possums but proved unsuitable (92). 
The rate of M. bovis transmission was lowest when animals were 
mixed at random; however, transmission increased significantly 
with mixing of more sociable possums. This indicated that 
transmission was influenced by the proximity of susceptible and 
infected possums leading to increased frequency and duration 
of social interactions.
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Though the presence of visible lesions, whether in experimen-
tally infected or in natural-infected animals, can point toward 
the likely route of natural infection, caution must be taken in 
interpreting such data when only a limited number of infection 
parameters are measured. This highlights one of the difficulties 
when working with relatively large animal species to understand 
pathogenesis. The sensitivity of detection of infection can be 
severely compromised in large animals, such as cattle and deer, 
simply because of the difficulty of detecting small lesions or 
infection in large organs and lymph nodes (93). This can lead 
to biases when analysis is based on visible lesion detection.  
In all animals, there is the possibility of microscopic lesions or 
small bacteriological loads existing in the carcase but too small 
to detect, this being an increasing probability as the mass of the 
animal increases. Sampling from natural-infected populations 
can also compound this when only animals considered likely to 
have large lesions, or strong reactors to the skin test are recruited 
for analysis. The problem here is that it represents a relatively late 
stage of disease progression and the distribution of lesions may 
not reflect the early stage of pathogenesis and the likely route of 
infection.

Even when using natural-infected animals across a broad 
spectrum of disease, the interpretation can be subjected to 
bias if insensitive protocols for bacteriology and histology are 
employed. In studying the disease in natural-infected badgers, 
we tried to minimize these biases by randomly sampling from 
the infected population and by using sensitive bacteriological 
and histological procedures on a predetermined set of 36 tissues 
covering a wide range of anatomically diverse tissue samples 
in each animal. In addition, the tissues for bacteriology were 
collected aseptically so that the bacteriological detection of 
infection was maximized and tissues were individually cultured 
for the same reason (31). This intensity of pathological investiga-
tion has not been repeated in any other natural-infected animal 
species but for the badger, at least, it provides a reference point to 

compare natural-infected animals with those from experimental 
infection studies.

CONCLUDiNG ReMARKS

The pathological and bacteriological examination of natural-
infected badgers with tuberculosis when using sensitive post-
mortem examination procedures has provided an important 
and essential baseline for understanding the pathogenesis and 
epidemiology of tuberculosis in this species. It has also provided 
the framework for developing experimental infection studies, 
which has allowed the evaluation of diagnostic assays and the 
measurement of vaccine efficacy. There is a growing awareness 
that M. bovis infection is naturally endemic in a diverse range of 
domestic and wild animals, as well as in humans. Experimentally, 
at least, it seems that most animal species are susceptible to infec-
tion. With the continuous threat of infection spreading from 
wild animals to livestock and the risk of onward transmission 
to humans, the continued improvement in knowledge of patho-
genesis and epidemiology will serve to lessen the transmission 
risks into the future.
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