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Heterozygous mutations of the GBA1 gene, encoding for lysosomal enzyme
glucocerebrosidase (GCase), occur in a considerable percentage of all patients with
sporadic Parkinson’s disease (PD), varying between 8% and 12% across the world.
Genome wide association studies have confirmed the strong correlation between PD
and GBA1 mutations, pointing to this element as a major risk factor for PD, possibly
the most important one after age. The pathobiological mechanisms underlying the
link between a defective function of GCase and the development of PD are still
unknown and are currently the focus of intense investigation in the community of
pre-clinical and clinical researchers in the PD field. A major controversy regards the
fact that, despite the unequivocal correlation between the presence of GBA1 mutations
and the risk of developing PD, only a minority of asymptomatic carriers with
GBA1 mutations convert to PD in their lifetime. GBA1 mutations reduce the enzymatic
function of GCase, impairing lysosomal efficiency and the cellular ability to dispose of
pathological alpha-synuclein. Changes in the cellular lipidic content resulting from the
accumulation of glycosphingolipids, triggered by lysosomal dysfunction, may contribute
to the pathological modification of alpha-synuclein, due to its ability to interact with
cell membrane lipids. Mutant GCase can impair mitochondrial function and cause
endoplasmic reticulum stress, thereby impacting on cellular energy production and
proteostasis. Importantly, reduced GCase activity is associated with clear activation of
microglia, a major mediator of neuroinflammatory response within the brain parenchyma,
which points to neuroinflammation as a major consequence of GCase dysfunction.
In this present review article, we summarize the current knowledge on the role of
GBA1 mutations in PD development and their phenotypic correlations. We also discuss
the potential role of the GCase pathway in the search for PD biomarkers that may enable
the development of disease modifying therapies. Answering these questions will aid
clinicians in offering more appropriate counseling to the patients and their caregivers
and provide future directions for PD preclinical research.
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INTRODUCTION

Parkinson’s disease (PD) is the second most common
neurodegenerative disorder after Alzheimer’s disease, with
a 0.3% prevalence in the general population, increasing to 1% in
people older than 60 years and to 3% in the over 80s (Lee and
Gilbert, 2016).

PD is characterized by a wide spectrum of motor and
non-motor symptoms (Lee and Gilbert, 2016). According to
clinical and imaging findings, the neurodegenerative process of
PD may begin 7–10 years before the appearance of the classic
motor symptoms bradykinesia, rigidity, and tremor (Hawkes,
2008; Schapira and Tolosa, 2010). Non-motor symptoms, a
crucial component of the PD clinical picture, include olfactory
loss, rapid eye movement sleep behavior disorders (RBD),
constipation, dysautonomia, and depression, and can precede
PD motor symptoms by many years (Schapira and Tolosa, 2010;
Schapira et al., 2017; Heinzel et al., 2019).

The majority of PD cases are idiopathic, with a 10–15%
fraction being associated with gene mutations (Sidransky
et al., 2009; Westbroek et al., 2011; Schapira, 2015). In the
context of PD genetics, the attention of many groups have
converged, in recent years, onto the GBA1 gene, which encodes
glucocerebrosidase (GCase), a lysosomal enzyme that breaks
down glucocerebroside into glucose and ceramide (Beutler et al.,
2005; Grabowski, 2008).

Homozygous mutations in the GBA1 gene cause Gaucher’s
disease (GD), which may present with either neurological
involvement (neuronopathic) or not (non-neuronopathic).
Interest in GBA1, as a causative factor for PD, was initially
sparkled by the observation, in the 1990s, that among GD
patients and GBA1 mutation carriers, a higher proportion
developed parkinsonian symptoms (Neudorfer et al., 1996;
Machaczka et al., 1999). Moreover, the association between
GBA1 mutation and PD development was confirmed by
a large multicenter study demonstrating a significantly
higher prevalence of GBA1 mutations among the PD
population (Sidransky et al., 2009). Although the proportion
of PD patients with GBA1 mutations varies by ethnicity
and sequencing methods used, recent studies suggested
that the heterozygous status confers a cumulative risk of
developing PD of 5% at age 60, rising to 15–30% at age
80 (Schapira, 2015; Balestrino and Schapira, 2018). The
GBA1 mutation prevalence is estimated between 2.35% and
9.4% in the PD population, climbing to 31.3% in the
PD Ashkenazi Jewish (AJ) population (Schapira, 2015)
indicating these mutations as the most common genetic
risk factor for PD.

GD patients and asymptomatic heterozygous GBA1 mutation
carriers share the same risk of developing PD (Alcalay et al.,
2012), but not all GBA1 mutant carriers will develop the disease.
Interestingly, PD risk seems to be affected by GBA1 mutations
with varying degrees of severity (Sidransky and Lopez, 2012;
Migdalska-Richards and Schapira, 2016).

GBA1 mutations reduce the enzymatic function of GCase,
which may favor toxic accumulation of alpha-synuclein fibrils
in the typical intra-neuronal inclusions (Lewy bodies) found

throughout the central nervous system of PD patients (Balestrino
and Schapira, 2018). Alternatively, or in addition to, changes
in the cellular lipidic content, resulting from the accumulation
of glycosphingolipids associated with lysosomal dysfunction,
may contribute to the pathological modification of alpha-
synuclein. Various classes of lipids can strongly interact
with alpha-synuclein, causing modifications of its native
structure, which can favor the formation of fibrils and
subsequent aggregation of the protein (Morabito et al., 2017;
Fecchio et al., 2018).

GCase defects may also contribute to neuroinflammation, a
phenomenon that is increasingly implicated in PD pathogenesis,
as suggested by various studies demonstrating that a reduction
in GCase activity is associated with clear activation of microglia
in the brain parenchyma (Ginns et al., 2014; Rocha et al., 2015c;
Soria et al., 2017; Mus et al., 2019).

Moreover, GCase deficiency has been observed in idiopathic
PD (iPD) patients without GBA1 mutation, suggesting a central,
more widespread involvement of this enzyme in PD pathogenesis
(Chiasserini et al., 2015; Parnetti et al., 2017).

From a clinical point of view, GBA1-associated PD (GBA-
PD) is very similar to iPD, except for an earlier onset and
higher prevalence of cognitive deterioration and non-motor
features, manifesting before the development of the PD motor
features (Siebert et al., 2014). The risk of cognitive impairment in
GBA-PD patients is 2.4-fold higher than in non-carriers (Nalls
et al., 2013). GBA1 heterozygous carriers have an increased
chance of developing either PD or dementia with Lewy bodies
at an earlier age of onset, a higher risk for progression to
dementia, visual hallucinations, autonomic dysfunction and
faster progression of motor symptoms than non-carriers, and an
overall decreased survival rate (Winder-Rhodes et al., 2013; Cilia
et al., 2016).

GBA1 mutations causing GD have been categorized
as ‘‘severe’’ (L444P, for example) or ‘‘mild’’ (N370S, for
example), with a residual GCase activity of 13–24% and
32–38%, respectively (Beutler et al., 2005). N370S and L444P
mutations are the two most relevant GBA1 mutations in
the PD population although, recently, the E236K mutation,
which is absent in the GD population, has been identified
as the most prevalent PD-associated GBA1 mutation
(Duran et al., 2013). Mutation severity can influence
PD phenotype profoundly. A meta-analysis revealed that
the risk for dementia in PD patients carrying ‘‘severe’’
mutations is 2- to 3-fold higher than in those carrying
‘‘mild’’ mutations (Cilia et al., 2016). A more recent study
extended this notion demonstrating that psychiatric symptoms,
cognitive impairment, and olfactory deficiency are more
pronounced in PD patients carrying severe GBA1 mutations
(Thaler et al., 2018a).

In this review article, we summarize the current knowledge
on the multiple roles that GBA1 mutations, and resulting
GCase/lysosomal impairment, may play in the pathogenesis
of PD and their phenotypic correlations. We also discuss the
potential role of the GCase pathway in the search for PD
biomarkers andmolecular targets that may help the development
of disease modifying therapies.
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NEUROPATHOLOGICAL POTENTIAL
MECHANISMS OF GBA-PD

The mechanism by which GBA1 mutations are linked to
PD is still poorly understood. However, as in iPD, several
mechanisms may be involved in both the development and
progression of GBA-PD, such as alpha-synuclein accumulation,
neuroinflammation, mitochondrial deficiency, autophagic
dysfunction, and oxidative stress (Schapira and Tolosa, 2010;
Blandini et al., 2019).

Glucocerebrosidase and Alpha-Synuclein
The relationship between alpha-synuclein accumulation and
GCase is still a matter of study. Experimental findings and clinical
observations led to three main hypotheses that may explain this
relationship. These hypotheses may not be mutually exclusive
and multiple mechanisms might be in place.

The gain-of-function hypothesis suggests thatmisfoldedGCase
directly interacts with alpha-synuclein, leading to an increase of
alpha-synuclein accumulation and aggregation (Sidransky and
Lopez, 2012). Indeed, GCase was observed in abnormal protein
aggregates, such as Lewy bodies and neurites, from GBA-PD
brains, confirming a co-localization of mutant GCase and alpha-
synuclein in vivo (Goker-Alpan et al., 2008). Cullen et al. (2011)
reported increased alpha-synuclein levels in GBA mutant neural
cells. This finding was confirmed by Xu et al. (2011) in the
forebrain and cerebellum of mice carrying the homozygous
V394L GBA1 mutation. However, this hypothesis is at odds
with the general observation that congenital diseases involving
enzymes almost exclusively cause a loss of function and that null
GBA1 mutations are associated with PD risk (Neumann et al.,
2009; Gan-Or et al., 2015; Franco et al., 2018).

According to the loss-of-function hypothesis, GBA1 mutations
may affect GCase protein structure, leading to decreased
enzymatic activity via multiple mechanisms (e.g., the failure of
the GCase protein to exit the endoplasmic reticulum or to link
with its transporter). The reduction in GCase activity causes
an accumulation of its substrates with subsequent perturbation
of lipid homeostasis. This affects trafficking, processing, and
clearance of alpha-synuclein, resulting in accumulation and
aggregation of the protein (Mazzulli et al., 2011; Westbroek
et al., 2011; Sidransky and Lopez, 2012; Suzuki et al., 2007;
PMID: 26362253). In line with this, Rocha et al. (2015a) observed
that increased levels of glucosylsphingosine are associated
with reduced GCase activity in the substantia nigra and
hippocampus of iPD patients. Daily systemic treatment with
selective GCase inhibitor conduritol-β-epoxide (CBE) in mice
promoted the accumulation of lipid substrates and insoluble α-
synuclein aggregates in the substantia nigra (Rocha et al., 2015a).
Huebecker et al. (2019) recently reported a significant increase
in glucosylceramide levels in the substantia nigra of iPD patients
in association with deficiencies in multiple lysosomal hydrolases,
including GCase, α-galactosidase, and β-hexosaminidase. These
findings partially contradict previous studies that did not report
GCase substrate accumulation in the brain of PD patients with
heterozygote GBA1 mutations or iPD patients with reduced
GCase activity (Murphy et al., 2014; Gegg et al., 2015). These

discrepancies are not easy to reconcile, but might be due, at
least in part, to differences in the brain regions examined and/or
to the different methodologies used to measure lipid substrates.
Still at odds with the loss-of-function hypothesis, pharmacological
inhibition of GCase activity by CBE in cells overexpressing alpha-
synuclein and primary neurons did not alter alpha-synuclein
levels or solubility (Zurbruegg et al., 2019; Henderson et al.,
2020). On the contrary, siRNA knockdown of the GBA1 gene
significantly increased alpha-synuclein levels, suggesting that
alpha-synuclein accumulation is unlikely to be solely due to
decreased GCase activity (Zurbruegg et al., 2019).

A third hypothesis proposes a bidirectional loop in which
GCase deficiency facilitates alpha-synuclein oligomer formation
that, in turn, impairs GCase activity, ultimately promoting
further formation of alpha-synuclein oligomers (Mazzulli
et al., 2011). Accordingly, overexpression of exogenous alpha-
synuclein in in vitro models causes reduction of GCase activity
and protein levels (Gegg et al., 2012). In addition, Wong
and Krainc (2016) have demonstrated that loss of GCase
activity in human midbrain neuron cultures promotes alpha-
synuclein accumulation and toxicity, which in turn disrupts
trafficking to lysosomes of GCase and additional lysosomal
hydrolases, further contributing to GCase deficits and—more
in general—to lysosomal dysfunction. This hypothesis is not
completely supported by in vivo studies, since no changes in
GCase protein levels and activity were observed in the brain
of different mouse models overexpressing human wild-type or
A53T (M83KO) alpha-synuclein (Richter et al., 2014; Henderson
et al., 2020). In addition, it should be noted that build-up
of alpha-synuclein has been documented in many lysosomal
disorders (LSD; Saito et al., 2004; Suzuki et al., 2007; Nelson et al.,
2014; Smith et al., 2014). In Krabbe disease, a demyelinating LSD
caused by deficiency in galactosylceramidase, the accumulation
of substrate psychosine would promote the disruption of lipid
raft architecture, which in turn may affect alpha-synuclein
localization to synapses and increase its aggregation in the
neuronal cytoplasm (Smith et al., 2014). Phosphorylated alpha-
synuclein accumulation was found in the brain of patients with
Niemann-Pick type C1 disease as a consequence of defects in
intracellular cholesterol trafficking (Saito et al., 2004). Together,
these findings indicate that, as in LSD, lipid accumulation could
trigger a cascade of events driving PD pathology.

Interestingly, a recent study highlighted the importance
of the lysosomal protein cathepsin D in mediating the
increase of monomeric alpha-synuclein levels associated with
GBA1 mutations, indicating a new player in the relationship
between GCase and alpha-synuclein (Yang et al., 2020).

Despite the large body of evidence in favor of the link
between GCase deficiency and alpha-synuclein accumulation,
the question of why only a small proportion of individuals with
GBA1 mutations develops PD remains unanswered, suggesting
that other factors must be playing a role.

Glucocerebrosidase and Mitochondria
Dysfunction
Mitochondria dysfunctions have been classically involved
in the pathogenesis of iPD (Schapira et al., 1989, 1990;
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Schapira, 2008; Mounsey and Teismann, 2011; Schapira and
Gegg, 2011) and may also be a feature of GBA PD pathobiology.
Cleeter et al. (2013) demonstrated that GCase loss-of-function
triggers oxidative stress and mitochondrial dysfunction in
human dopaminergic cell lines, together with an accumulation
of alpha-synuclein. Similar findings were observed in in vivo
models of GCase deficiency. Osellame et al. (2013) found an
accumulation of dysfunctional mitochondria with subsequent
reduction in respiratory chain complex activities and oxygen
consumption in a mouse model carrying homozygous knock-out
of the GBA1 gene.

Similarly, a reduction of oxygen consumption and
mitochondrial adenosine triphosphate production was
demonstrated in neuronopathic GD mouse models generated
from backcrossing of the homozygous point-mutatedGBA1mice
with hypomorphic prosaposin mice (Xu et al., 2014).

Recently, Li et al. (2019) investigated the link between
heterozygous GBA1 mutation and mitochondrial dysfunction
showing that in GBA1 L444P/WT knock-in mice, the
GBA1 mutation triggers mitochondrial dysfunction by
blocking autophagy and mitochondrial priming. Moreover,
Schöndorf et al. (2018) demonstrated that neurons differentiated
from GBA-PD patients induced pluripotent stem cells
showed alterations in morphology, energy metabolism, and
mitochondrial function.

Glucocerebrosidase and Endoplasmatic
Reticulum Stress
Endoplasmic reticulum-associated degradation (ERAD)
promotes balanced cell proteostasis, degrading altered
proteins through ubiquitination and proteosomal degradation
(Migdalska-Richards and Schapira, 2016). ERAD impairment
leads to the accumulation of misfolded proteins, promoting ER
stress and apoptosis.

Emerging evidence shows that ER stress has a pivotal role
in the pathobiology of PD (Mercado et al., 2013; Sardi et al.,
2015), but few studies have analyzed, so far, the link between
ER stress and the pathogenesis of GBA-PD. Mutant misfolded
GCase triggers ER stress and evokes proteasomal degradation
(Ron et al., 2010; Maor et al., 2013). Indeed, a study on human
GD fibroblasts showed misfolded GCase retained in the ER
(Bendikov-Bar et al., 2011). Moreover, the degree of GCase
retention in ER and proteasomal degradation seems to be
correlated with GD severity (Ron and Horowitz, 2005). Gegg
et al. (2012) found that ERAD was increased in the GBA-PD
brains. Furthermore, a study using induced pluripotent stem cells
from GBA1 carriers confirmed increased ER stress and ERAD
(Fernandes et al., 2016).

Interestingly, blocking GCase activity with CBE also
stimulated ER stress in neuroblastoma cells, suggesting that
GCase activity reduction, also in the absence of a GBA1mutation,
may play a role in this context (Gegg and Schapira, 2018).

Glucocerebrosidase and
Neuroinflammation
Neuroinflammation—mostly expressed as microglia
activation—is clearly implicated in PD progression and

accompanies dopaminergic cell death since the very early
phase of the disease (Fuzzati-Armentero et al., 2019). GCase
defects may substantially contribute to this phenomenon.
Marked increases in the level of inflammatory mediators have
been reported in the brain of a neuronopathic GD mouse model
(Vitner et al., 2012). Subsequent studies have further detailed
how a reduction in GCase activity is associated with clear glial
activation. Ginns et al. (2014) reported astrocytosis andmicroglia
activation in the nigrostriatal tract of GBA1-mutant mice, as well
as in mice treated sub-chronically with GCase inhibitor CBE,
which also induced alpha-synuclein accumulation. These results
were confirmed by the studies from Rocha et al. (2015b) andMus
et al. (2019), both showing that a CBE-induced drop in GCase
enzymatic activity activates microglia throughout the brain.
Interestingly, using a DAT-GBA1-KOmouse displaying selective
homozygous GBA1 disruption in midbrain dopamine neurons,
Soria et al. (2017) demonstrated strong microglial activation
in the substantia nigra of these mice, without any evidence
of dopaminergic cell loss, alpha-synuclein accumulation, or
motor abnormalities.

PATHOGENIC MUTATIONS OF
GBA1 ASSOCIATED PD

More than 300 mutations in the GBA1 gene, such as insertions,
deletions, and point mutations, have been discovered so far
(O’Regan et al., 2017; Zhang et al., 2018a). The N370S
(c.1226A > G) and the L444P (c.1448T > C) mutations
are the most common mutations worldwide (Zhang et al.,
2018b). A recent meta-analysis described other GBA1 variants,
such as R120W, IVS2 + 1G > A, H255Q, D409H, RecNciI,
E326K, and T369M related to PD risk. Ethnic heterogeneity of
GBA1 mutations in PD was also reported. R496H and 84insGG
increase PD risks exclusively in AJ populations, while L444P,
E326K, T369M, R120W, IVS2 + 1G > A, H255Q, D409H,
and RecNciI were found more frequently in non-AJ subjects.
N370S is correlated to an increased PD risk in all populations
(Zhang et al., 2018b).

PRODROMAL FEATURES IN
GBA1 MUTATION CARRIERS

A substantial body of evidence suggests the existence of a
prodromal phase of iPD, of variable length, preceding the onset
of the classical signs of the disease (Schapira and Tolosa, 2010;
Schapira et al., 2017; Heinzel et al., 2019). The existence of
such a premotor period has been proposed based on imaging,
pathology, clinical, and epidemiological studies, suggesting that
the nigrostriatal lesion might evolve in 7–10 years before
becoming clinically manifest (Hawkes, 2008; Schapira and
Tolosa, 2010). Although stiffness, tremors, or imbalance may
be present as prodromal features (de Lau et al., 2006), the vast
majority of early symptoms and signs in PD are of the non-motor
type, including hyposmia, REM behavior disorder (RBD),
constipation, depression, and color discrimination (Hawkes,
2008; Postuma and Berg, 2016; Schapira et al., 2017).
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A prodromal phase was also described in both GD and
heterozygous GBA1 carriers without a clinical diagnosis of PD
(McNeill et al., 2012a,b). Cognitive and olfactory functions were
significantly impaired and motor testing was abnormal in GD
patients and GBA1 mutation carriers without PD, compared
to healthy subjects. No differences were found in terms of
sleep abnormalities or autonomic function (Beavan et al., 2015;
Avenali et al., 2019).

In a web-based evaluation of prodromal markers designed to
estimate PD risk, Noyce et al. (2014, 2015) observed that the odds
of having a GBA1 variant was 9.5 times higher in the ‘‘high risk
group’’ compared to other groups.

CLINICAL FEATURES IN GBA-PD

Compared to iPD, GBA-PD patients are characterized
by a slightly younger age at onset, higher incidence of
neuropsychiatric features (such as hallucination, depression,
and anxiety), greater incidence of sleep disturbances, and
earlier development of cognitive deficits (Neumann et al.,
2009; Sidransky et al., 2009; Brockmann et al., 2011; McNeill
et al., 2012b; Winder-Rhodes et al., 2013). In general, the
disease course tends to be more aggressive in GBA-PD patients
(Winder-Rhodes et al., 2013; Zokaei et al., 2014; Brockmann
et al., 2015b; Cilia et al., 2016; Jesús et al., 2016; Figure 1).

Motor Features
GBA-PD patients exhibit an asymmetric onset with the classic
triad of motor symptoms, bradykinesia, rigidity, and tremors
(Goker-Alpan et al., 2008), although bradykinesia seems to be
more common, as an initial symptom, than in iPD (Ziegler et al.,
2007; Gan-Or et al., 2010; Lesage et al., 2011).

Longitudinal cohort studies using the Unified Parkinson’s
Disease Rating Scale, motor subscale, and Hoehn and Yahr
staging showed a more rapid motor progression in GBA-PD
than iPD patients (Winder-Rhodes et al., 2013; Brockmann et al.,
2015b). One study in a large European series (Lesage et al., 2011)
reported that L-Dopa induced dyskinesias were more severe in
GBA-PD patients, but no difference was observed in another
study (Zhang et al., 2015).

Motor complications, such as swallowing disorders,
dysarthria, and freezing of gait, are observed more frequently
in GBA-PD patients (Jesús et al., 2016). The risk of developing
motor fluctuations and dyskinesia seems to be higher in GBA-PD
subjects carrying a severe mutation (Cilia et al., 2016; Jesús et al.,
2016; Lythe et al., 2017).

Non-motor Features
Non-motor symptoms are the earliest presenting symptoms in
GBA-PD, as well as in iPD, but some of them may be more
common in GBA-PD patients.

Compared with iPD, GBA-PD patients show a higher risk
for cognitive deterioration (Gan-Or et al., 2010). Several studies
investigated the difference in cognitive performance between iPD
and GBA-PD patients (Goker-Alpan et al., 2008; Alcalay et al.,
2012; McNeill et al., 2012b; Nalls et al., 2013; Malec-Litwinowicz
et al., 2014; Cilia et al., 2016). In a meta-analysis conducted

by Ziegler et al. (2007), the risk of cognitive impairment
was three times higher for patients with GBA1 mutations.
Cognitive impairment seems to affect memory and visuo-spatial
domains (Alcalay et al., 2012), working memory, executive and
visuospatial abilities (Mata et al., 2016), and visual short-term
memory (Zokaei et al., 2014) in particular. GBA-PD patients may
undergo cognitive decline sooner than iPD patients (Winder-
Rhodes et al., 2013; Brockmann et al., 2015b; Oeda et al., 2015;
Liu et al., 2016), although this evidence was not reported by all
studies (Aharon-Peretz et al., 2005; Clark et al., 2007; Nichols
et al., 2009).

GBA-PD shows increased frequency of psychiatric symptoms
at an earlier stage (Oeda et al., 2015; Cilia et al., 2016), as well
as a higher risk for delirium and hallucinations when compared
with iPD (Aharon-Peretz et al., 2005; Wang et al., 2014), without
differences linked to mutation severity (Barrett et al., 2014).

Olfactory functions are affected in GBA1mutation carriers, as
they are in early iPD patients (McNeill et al., 2012b).

A substantial impact of depression was initially reported
in GBA-PD patients (Machaczka et al., 1999), but was not
confirmed by subsequent studies (Winder-Rhodes et al., 2013;
Zhang et al., 2015). Analogously, conflicting results have been
reported for anxiety and apathy, whose frequency in GBA-PD
patients was found to be increased (Brockmann et al., 2011;
Wang et al., 2014) compared to iPD patients.

Dysautonomic symptoms such as bowel alteration, sexual
impairment, orthostatic symptoms, and urinary dysfunction are
other non-motor symptoms frequently reported in GBA-PD
individuals (Brockmann et al., 2011; Wang et al., 2014).

As for pain, contradictory findings have been reported,
without a clear indication that pain may afflict GBA-PD more
than iPD patients (Gan-Or et al., 2010; Kresojević et al., 2015).

Genotype-Phenotype Correlation in
GBA-PD Subjects
GBA1 mutations may have differential effects on PD risks,
depending on the specific variant, as well as on the clinical profile
and disease progression rate. For mild GBA1 mutation carriers,
the odds ratios for developing PD ranged between 2.84 and
4.94, while for severe GBA1 mutation carriers the odds ratios
were between 9.92 and 21.29 (Gan-Or et al., 2015). The risk for
dementia in GBA-PD subjects bearing severe mutations (L444P,
splicing mutation IVS10 + 1G > T) is 5.6 times greater than
in iPD patients and 2.9 times greater than in patients carrying
mild GBA1 mutations (N370S; Cilia et al., 2016). The risk of
hallucination development is not affected by the severity of
GBA1 mutations (Barrett et al., 2014).

In a more recent study, motor and some non-motor features
(depression, RBD, and olfactory loss) were significantly worse in
GBA-PD patients with severe mutations than in those bearing
mild mutations (Thaler et al., 2018a).

E326K is the most prevalent PD-associated GBA1 mutation
and has not been described in GD (Duran et al., 2013). PD
patients bearing E236K mutations show a faster progression of
motor symptoms, with gait disorders and postural instability.
They also have a higher risk of cognitive decline, but a lesser
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FIGURE 1 | Prodromal and clinical features of GBA-PD and related biomarkers. This is a graphic representation of the potential timeline by which the preclinical
symptoms and motor and non-motor features of GBA-PD may manifest. Potential biomarkers are also reported, and they are correlated with the onset of clinical
features.

risk for motor complications (Winder-Rhodes et al., 2013; Davis
et al., 2016; Mata et al., 2016).

Data on genotype-phenotype correlations between other
GBA1 polymorphisms, clinical features, and risk rate of
progression are lacking. Further research is therefore mandatory,
in order to better clarify the role of GBA1 variants in specific
clinical manifestations and disease progression.

BIOMARKERS

No reliable biomarker that may inform on the ongoing neuronal
loss, before the onset of PD clinical features, is yet available. The
knowledge that has been accumulating on GBA1 defects in PD
may help us fill this gap (Figure 1).

Neuroimaging
Positron emission tomography (PET) employing several
different radioisotopes [fluorodeoxyglucose (FDG), F-Dopa,
and C-CFT, 2β-carbomethoxy-3β-(4-fluorophenyl-tropane)]
has been used to assess brain metabolism in GBA-PD. Kono
et al. (2010) first described a significant FDG decrease in
the supplementary motor area of the frontal cortex in

GBA1 mutants (one GD-PD patient, two GBA-PD patients,
and three GBA1 heterozygous carriers). GBA-PD patients
also showed hypometabolism in the parieto-occipital cortices,
while GBA heterozygous carriers without PD showed normal
metabolism in the putamen and increased metabolism in the
caudate nucleus (Kono et al., 2010). Using a different tracer
(11C-CFT, binding to the dopamine transporter) the same
group also demonstrated a significant presynaptic dysfunction
in GBA-PD, with a severe reduction of striatal uptake in both
putamen and caudate nucleus, whereas asymptomatic GBA
carriers had increased caudate uptake with normal putamen
uptake (Kono et al., 2010).

Fluorodopa PET or single-photon emission computerized
tomography (SPECT) with dopamine-sensitive ligands in
GD-PD patients showed asymmetric striatal dopaminergic
neuronal loss with the highest reduction in the caudate and
posterior putamen nuclei; this reduction was also observed
in iPD brains, although less represented (Goker-Alpan et al.,
2012). By analyzing the resting regional cerebral blood flow,
the same authors reported bilateral hypoperfusion in the lateral
parieto-occipital association cortex and precuneus in GD-PD,
but not in iPD patients. They also demonstrated that in GD
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subjects without PD-like manifestations, the F-Dopa uptake was
decreased in the striatum, with a marked neuronal loss in the
tail of the putamen, whereas this reduction was not found in
GBA1 heterozygous asymptomatic carriers (Goker-Alpan et al.,
2012). More recently, a large cohort study conducted within
the Parkinson’s Progression Markers Initiative of the Michael
J. Fox Foundation reported increased DAT striatal binding ratios
in GBA asymptomatic carriers, compared with healthy controls
(Simuni et al., 2020).

A magnetic resonance spectroscopy study conducted by
Brockmann et al. (2012) showed significant reduction of
N-acetylaspartate and choline levels in the putamen and in the
midbrain of GBA-PD patients, compared to healthy subjects,
along with increased levels of glycerophosphoethalonamine,
pointing to a reduction in neuronal integrity and altered
membrane phospholipid metabolism.

As for MRI structural data, Agosta et al. (2013) reported
a diffused pattern of white matter alterations involving the
parahippocampal tract and the parietal and occipital lobes,
including interhemispheric and frontal cortical connections, in
GBA-PD patients compared to iPD patients. On the other hand,
when cortical thickness and subcortical volumes were more
recently analyzed, no differences between GBA-PD and iPD
patients were observed (Thaler et al., 2018b).

Transcranial sonography is able to detect substantia nigra
hyperechogenicity in 90% of iPD patients and has been proposed
as a potential screening tool for the early detection of PD
(Beavan and Schapira, 2013). The few studies conducted on
GBA1 positive individuals (Saunders-Pullman et al., 2010;
Brockmann et al., 2011; Barrett et al., 2013) reported a
greater substantia nigra echogenicity when compared to
healthy controls, but without any differences with iPD. More
recently, Arkadir et al. (2019) reported an enlarged area of
hyperechogenicity also in the substantia nigra of asymptomatic
GBA1 carriers and GD patients without PD, with respect to
healthy controls.

Finally, myocardial 123I-metaiodobenzylguanidine
scintigraphy showed a marked reduction of tracer accumulation
in PD patients carrying GBA1 mutation compared to iPD
patients (Li et al., 2014), suggesting that neurodegeneration of
myocardial nerve fibers had begun before clinical presentation
and/or that disease progression is more rapid in this population.
Reduced myocardial uptake of the tracer was also demonstrated
by Oeda et al. (2015) in GBA-PD patients, but in this case
without differences with respect to iPD.

Although several imaging biomarkers have been proposed
to discriminate PD subjects with and without GBA1 mutations,
no conclusive evidence has yet been produced. Further imaging
studies on wider populations will be needed to better clarify the
neuroimaging correlates of GBA-PD.

Biochemical Markers
Several studies investigated the possible value of GCase
enzymatic activity as a potential biomarker for PD. Decreased
GCase activity has been observed in fibroblasts and in the
cerebrospinal fluid (CSF) from GD, GBA-PD, and also iPD
patients (Parnetti et al., 2009, 2014; Gegg et al., 2012; Ambrosi

et al., 2015). Moreover, Parnetti et al. (2014) observed that PD
patients at an early stage of the disease showed lower GCase
activity levels than patients at later stages, suggesting that GCase
could have a potential role as a marker of early PD phases.

Data on GCase activity in iPD subjects are controversial.
Indeed, a study on a Dutch cohort of de novo iPD patients
(van Dijk et al., 2013) reported only a trend toward a decrease
in GCase activity. These mixed results may be attributed to
different collection and storage procedures for CSF, but also to
the intrinsic instability of GCase in CSF (Persichetti et al., 2014).

GCase enzymatic activity is also detectable in leucocytes
isolated from peripheral blood, which can be obtained with a far
simpler and less invasive procedure than CSF. Raghavan et al.
(1980) first developed a reliable and reproducible assay technique
to measure GCase enzymatic activity in human leukocytes, by
using the artificial substrate 4MU-/3-glucoside. Kim et al. (2016)
used this technique to explore if GCase activity was altered
in the leucocytes of iPD and subjects with PD associated to a
geneticmutations. They did not find differences in GCase activity
between groups of patients, but GCase activity was positively
associated with disease duration in iPD. A reduction of GCase
activity has also been observed in blood samples from both iPD
and GBA-PD patients (Alcalay et al., 2015). In these cohorts, the
authors tested the association between GCase enzymatic activity
and PD disease severity. They reported that in iPD patients,
higher GCase enzymatic activity was correlated with a longer
disease duration and a milder disease progression.

Recently, in a pilot study, Ortega et al. (2016) measured GCase
activity from leucocytes isolated from drawn heparinized blood
in GBA1 heterozygous and homozygous mutation carriers, with
and without PD, and iPD. They observed that GCase activity was
significantly lower in GBA-PD than iPD patients and even lower
in GD-PD patients, suggesting that GCase activity could be a
possible marker of the GBA1 mutated condition.

Other metabolites linked to GCase deficiency have been
analyzed in GBA-PD patients. Indeed, GCase deficiency in the
brain of PD subjects may also be correlated to pathological
alterations in the lipid metabolism (Schapira et al., 2016). In
a gas chromatography analysis, free fatty acids in the CSF of
GBA-PD patients showed a different pattern compared to iPD
and control subjects (Schmid et al., 2012). Alterations of fatty
acid metabolites have been found also in the plasma of iPD
patients, with an increase of the glucosylcerebroside substrate
and different ceramide species (Mielke et al., 2013). These results
were confirmed by Pchelina et al. (2018) in a recent study where
GBA-PD patients showed increased hexosylsphingosine levels in
plasma when compared with iPD and controls.

Alterations of other lysosomal enzymes have been described
in iPD subjects. Huebecker et al. (2019) reported that
reduction in GCase activity in human post-mortem substantia
nigra of iPD were correlated with alterations in lysosomal
sphingolipid hydrolases and concomitant glycosphingolipid
substrates accumulation. In addition, in this study iPD showed a
distinctly significant reduction in levels of complex gangliosides
(e.g., GM1a) in substantia nigra, as well as in CSF and serum.
Same findings, albeit less marked, were also observed in elderly
controls as well as in subjects with RBD (Huebecker et al., 2019).
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Although cognitive deficits are frequently reported in GBA-
PD, CSF levels of tau and β-amyloid—which are altered in
patients with Alzheimer’s disease—were unchanged in GBA-PD
patients (Beavan and Schapira, 2013). However, higher baseline
CSF levels of p-Tau in GBA-PD patients seem to be related
with increased deterioration of cognitive functions over time
(24 months; Brockmann et al., 2015a). Moreover, by assessing
CSF profiles longitudinally, GBA-PD showed lower levels of
Aβ1–42, t-Tau, and p-Tau than control subjects and LRRK2-PD.

Finally, alpha-synuclein was also measured in plasma and in
CSF in subjects carrying GBA1 mutations. Parnetti et al. (2014)
evaluated alpha-synuclein levels in CSF of iPD subjects, showing
decreased levels of total alpha-synuclein in iPD compared with
healthy controls in contrast to an increased level of oligomeric
form of alpha-synuclein and a higher oligomeric/total alpha-syn
ratio in iPD than controls. In the same study they also revealed
that in PD patients carrying GBA1 mutations, CSF levels of total
and oligomeric alpha-synuclein were higher than iPD (Parnetti
et al., 2014).

Moreover, by combining GCase activity, oligomeric/total
alpha-synuclein ratio in CSF, and age they discriminated PD
patients from controls with a high sensitivity (82%) and
specificity (71%; Parnetti et al., 2014).

Nuzhnyi et al. (2015) showed a negative association between
plasma oligomeric alpha-synuclein and GCase activity in
leucocytes from GD patients, speculating that the reduced GCase
activity may be correlated to the peripheral aggregation of toxic
alpha-synuclein species.

Recently, Lerche et al. (2020) showed reduced CSF levels of
total alpha-synuclein in GBA-PD compared to iPD and controls.
Moreover, in this study, GBA-PD subjects bearing a severe
mutation showed lower CSF levels of total alpha-synuclein than
GBA-PD with mild or risk variant mutations or iPD patients.

Overall, reduced CSF alpha-synuclein levels might reflect its
accumulation in the brain, but further studies are warranted
to better understand the meaning of alpha-synuclein changes
in the CSF of PD patients carrying different pathogenic
GBA1 mutations.

THERAPEUTIC STRATEGY FOR GBA-PD
PATIENTS

GBA-PD individuals show, especially in the initial phases of the
disease, a good response to L-Dopa, although motor symptoms
seem to progress more rapidly than in iPD. Therefore, a specific
therapeutic management should be considered in these patients.

A recent article investigating the outcomes of treatment
with deep brain stimulation in a cohort of GBA-PD patients
after a 7.5-year follow-up demonstrated similar outcomes
compared to iPD in terms of motor symptoms, whereas cognitive
deterioration and non-motor features were more represented
among GBA-PD patients (Lythe et al., 2017). However, because
of the positive effects on motor impairment, deep brain
stimulation should also be considered as a suitable therapeutic
option for these patients.

Despite the availability of successful treatments for systemic
manifestations in GD patients, these approaches do not

affect glycosphingolipid accumulation in the central nervous
system, because they are not able to cross the blood-brain
barrier. Current experimental approaches available in clinical
trials (Table 1) are founded on the main hypothesis that
the loss of function determined by GBA1 mutations causes
abnormal glycosphingolipid accumulation, leading to neuronal
dysfunction and associated proteinopathy. Increasing GCase
activity via small chaperones showed good efficacy inmodulating
pathological alterations in models of disease. In order to
address this pathogenetic mechanism, two different chaperones
that increase GCase activity in the brain were investigated.
The mucolytic ambroxol was described to improve GCase
enzymatic activity and reduce total and phosphorylated alpha-
synuclein levels in models of PD (McNeill et al., 2014; Ambrosi
et al., 2015). Currently, two clinical trials assessing the safety,
tolerability and efficacy of ambroxol are ongoing. In 2016, a
phase II, single-center (Canada), randomized placebo-controlled,
double-blind trial started to assess the safety, tolerability, and
efficacy of ambroxol on cognitive and motor symptoms of PD
Dementia (PDD; ClinicalTrials.gov NCT02914366). Preliminary
results showed that higher dose ambroxol are effective and safe
in PDD (Silveira et al., 2019). A similar approach is being
tested by Schapira’s group in a cohort of GBA-PD patients
(ClinicalTrials.gov: NCT02941822).

Another approach is being tested in the Netherlands by
Allergan in a phase I clinical trial with LTI-291, a non-inhibitory
chaperone of GCase able to both increase its catalytic activity and
extend its half-life (Nederlands Trial Register: NL7061).

An alternative therapeutic strategy that is being explored
is to reduce the accumulation of glucosylceramide (the
substrate degraded by the normal GCase) by targeting the
enzyme glucosylceramide synthetase. The substrate reduction
restored glycosphingolipid balance and reduced alpha-synuclein
accumulation in neuronal cells of PD with and without
GBA1 mutations (Kim et al., 2016; Zunke et al., 2018). In
mouse models of GBA-related synucleinopathy, the use of a
glucosylceramide synthetase inhibitor improved alpha-synuclein
degradation and the behavioral alterations (Sardi et al., 2017).
Based on these findings, a multicenter phase II, randomized,
double-blind, placebo-controlled study supported by Sanofi-
Genzyme, is investigating the safety, pharmacokinetics, and
pharmacodynamics of Venglustat (GZ/SAR402671), an oral
inhibitor of glucosylceramide synthase in GBA1 carriers with
early-stage PD (MOVES-PD study: NCT02906020).

Gene therapy approaches are also being developed as new
therapeutic strategies for PD. The most common mechanism
used to cross the blood-brain barrier is the delivery of genes
via viral vectors to the affected areas of the brain. The most
common vector used in preclinical studies on animal models
in relation to GBA1 is the adeno-associated virus (AAV).
Based on the assumption that a decrease in GCase activity
might favor alpha-synuclein accumulation and synucleinopathy
development, AAV- mediated GBA1 delivery has been tested in
mouse models of GD-related PD to assess its effects on GCase
and alpha-synuclein modulation (Sardi et al., 2011, 2013; Rocha
et al., 2015b). Sardi et al. (2011) first demonstrated that treatment
with AAV-GBA1 reduced alpha-synuclein levels, increased
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GCase activity, reduced glucosylsphingosine and glucoceramide
levels, and improved the cognitive deficits in a pre-symptomatic
mouse model of GD. The same author replicated the experiment
in a symptomatic mouse model of GD-associated PD (Sardi et al.,
2013). In this case, the increased GCase was able to modulate
the aberrant lipids accumulations, reduce alpha-synuclein and
tau aggregation, and ameliorate cognitive functions.When tested
in an A53T alpha-synuclein mouse model, the increase in
GCase levels reduced alpha-synuclein levels, demonstrating the
relationship between alpha-synuclein and GCase activity and
suggesting that this approach may also be beneficial for PD
without GBA1 mutations (Sardi et al., 2013).

Rocha et al. (2015b) also demonstrated the neuroprotective
effects of GBA1 gene transfer in rodent models of PD. They
observed that in a transgenic mouse model overexpressing
wild-type alpha-synuclein, the increased GCase activity was
able to reduce alpha-synuclein accumulation in the substantia
nigra and striatum by improving insoluble alpha-synuclein
clearance. Moreover, in a rat model of selective dopamine
neuron degeneration, they showed that the overexpression of
GBA1 preserved dopaminergic neurons from neurodegeneration
(Rocha et al., 2015b).

Recently, Morabito et al. (2017) developed a non-invasive
approach for the AAV delivery, using intravenous injection.
This method has the advantage to treat non-selective brain areas
and prolong gene overexpression. Transduction of A53T- SNCA
transgenic mice with AAV-PHP.B-GBA1 restored GCase activity
and improved alpha-synuclein pathology (Morabito et al., 2017).

Interestingly, Massaro et al. (2019) tested a gene
therapy approach on a neuronopathic Gaucher disease
mouse model. Authors demonstrated that fetal intracranial
injections of AAV-GBA1 increased GCase activity, reduced
neuroinflammation, blocked neurodegeneration, and improved
motor and systemic symptoms (Massaro et al., 2019). Finally,
the same authors assessed the effects of a systemic AAV-GBA1
injection, showing prolongation of the life span of treated mice,
reduction of visceral and motor symptoms, and protection from
fatal neurodegeneration (Massaro et al., 2020).

Gene therapy may therefore hold fascinating promises for PD
patients with and without GBA1 mutations, but clinical trials to
assess this type of approach will be needed.

COUNSELING AND GENETIC TESTING
STRATEGY IN GBA1 POSITIVE
INDIVIDUALS

Although genetic information could potentially help in the
diagnosis, prognosis, and treatment of PD, clinical practice
guidelines for PD genetic testing are not available yet, and
genetic analyses are still limited in PD patients. In the past,
the majority of the medical community was reluctant to
recommend genetic testing for PD, which was mostly restricted
to familial PD. However, in the last few years, the recent
development of clinical trials targeting patients with GBA-PD
and the launch of personalized medicine has prompted interest
in receiving genotype information and increased the demand for
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genetic counselling regarding GBA1 mutations. In this view, the
European Federation of Neurological Societies re-evaluated the
recommendations for genetic testing, proposing that it should
be considered for PD firstly when the following risk factors
are present:

(1) Family history of PD; (2) early onset of PD (before 50 years
old); or (3) individual among ‘‘population at risk,’’ such as AJ
individuals.

Genetic screening should be also performed to: (1) stratify
patients into subtypes to better understand the disease process;
and (2) provide patients with the opportunity to participate in
clinical trials with experimental therapies designed for patients
with specific genotypes (Payne et al., 2019). For all these reasons,
genetic counselling should be warranted and implemented.

CONCLUSION

GBA1mutations play a pivotal role in themolecular pathogenesis
of PD and are considered one of the most frequent risk factors for
the disease. Increasing evidence suggests that GCase deficiency
might also have a role in iPD.

The pathobiological mechanisms underlying the link between
a defective function of GCase and the development of PD are
still poorly understood, but interactions with alpha-synuclein,

lysosomal dysfunction, ER stress, and neuroinflammation may
all play a crucial role.

Further studies on large GBA1-positive populations will be
needed to precisely identify the biological factors that link
GBA1 mutations to PD. This will improve the diagnostic
and caring process, possibly leading to the discovery of new
therapeutic targets to engage in the frame of an innovative,
personalized approach to PD therapy.
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