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Abstract: The crystallization and II–I phase transition of functionalized polybutene-1 with hydroxyl
groups were investigated by differential scanning calorimetry. The results show that the incorporated
hydroxyl groups increase the nucleation density but decrease the growth rate in melt crystallization.
Interestingly, for the generated tetragonal form II, the presence of polar hydroxyl groups can effec-
tively accelerate the phase transition into the thermodynamically stable modification of trigonal form
I, especially with stepwise annealing and high incorporation. Using stepwise annealing, II–I phase
transition was enhanced by an additional nucleation step performed at a relatively low temperature,
and the optimal nucleation temperature to obtain the maximum transition degree was −10 ◦C, which
is independent from the content of hydroxyl groups. Furthermore, the accelerating effect of hydroxyl
groups on the II–I transition kinetics can be increased by reducing the crystallization temperature
when preparing form II crystallites. These results provide a potential molecular design approach for
developing polybutene-1 materials.

Keywords: butene-1 copolymer; hydroxyl group; phase transition; crystallization

1. Introduction

Polyolefin has many outstanding properties such as good chemical resistance, light
weight, easy processing ability, strong mechanical strength, and low cost. In recent years,
increasing attention has been paid to the functionalization of polyolefin to obtain diverse
molecular structures and to improve the performance of polyolefin materials.

For this purpose, incorporating additional polar functional groups into the original
nonpolar polyolefin chains is a very effective strategy [1–4]. Yuan et al. synthesized function-
alized polypropylenes containing hydroxyl groups and found that the dielectric constant
was greatly improved owing to the alignment of polarizable pendant hydroxyl groups un-
der an electric field [5–8]. Dai et al. prepared and studied a thermoplastic elastomer of polar
functionalized polyethylene. It was found that the presence of polar monomers improved
the surface performance, adhesion, and compatibility without significantly decreasing
the elastic recovery [9]. Recently, Shang et al. successfully synthesized amino-containing
polypropylene. Their results show that the presence of the amino groups improved the
surface properties and thermal stability of the materials [10]. Although there have been
efforts to modify the ultimate structure, the correlation between the polar functional groups
and the crystallite structure is still far from conclusive. Clarity is urgently required for
efficient design of the molecular structure and ultimate physical properties.

Polybutene-1 (PB-1) is an important type of polyolefin material that possesses some
excellent mechanical properties such as high toughness and creep resistance [11]. As a
polymorphic polymer, PB-1 chains can be packed into three types of crystalline modifi-
cations with different helix conformations, which determine the final mechanical perfor-
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mance [11–16]. When the polymer undergoes regular melt crystallization, the metastable
tetragonal form II with 11/3 helix is preferentially formed because of the significant kinetic
advantage. However, the most thermodynamically stable modification is the trigonal
phase with 3/1 helix [17–25]. This means that the initial tetragonal form II crystallites
spontaneously transform into the more stable trigonal phase, referred to as form I. After
the occurrence of such a solid II–I phase transition, the melting temperature rises and some
mechanical properties such as the modulus also improve significantly [26–31], but the
sample volume decreases [32,33]. Although PB-1 may also crystallize into orthorhombic
form III with 4/1 helix directly from a dilute solution [34], the phase transition from form II
to form I is a crucial issue in the processing and use of polybutene-1 materials. The practical
kinetics of the phase transition is slow, such that the production cost increases. Therefore,
control of the phase transition is crucial for the development of polybutene-1 materials.

It has been found that the phase transition can be regulated by the incorporation of
certain comonomers. For example, Zheng et al. synthesized a series of butene-1/4-methyl-
1-pentene (4M1P) random copolymers. When the 4M1P incorporation exceeds 3.4 mol%,
4M1P branches are high enough to completely impede the II–I phase transition, even when
the aging time is as long as four months [35]. The phase transition can also be accelerated
by physical and chemical approaches, such as high pressure [36], pressurized CO2 [37–39],
external or thermal stress [40–43], and even co-units [29,31,44–46]. Qiao et al. found
that the PB-1 samples were isothermally crystallized into metastable form II crystalline
modification followed by annealing at a lower temperature and subsequently at a higher
temperature to promote the polymorphic transition from form II to form I. They found
that annealing at low temperatures benefits nucleation due to the internal stress induced
by the unbalanced shrinkage of amorphous and crystalline phases with different thermal
expansion coefficients [47]. An et al. synthesized polybutene-1 ionomers and pointed out
that ions tend to aggregate to form clusters as additional intercrystalline links to enhance
II–I phase transition [48]. In addition to ionic interaction, polar groups have been reported
to be usable for the regulation of crystallization behaviors. Gupta et al. recently found that
the introduction of hydroxyl groups into polypropylene and polyethylene could increase
the nucleation density [7]. Thus, it is conjectured that polar hydroxyl groups could provide
a potential approach to tuning phase transition. However, to the best of our knowledge,
there has been no study of functionalized polybutene-1 with hydroxyl groups yet, so the
correlation between II–I phase transition with the hydroxyl groups remains unknown.

In this work, butene-1 copolymers with polar hydroxyl groups were successfully
prepared and the influences of hydroxyl groups on crystallization and phase transition were
explored with differential scanning calorimetry. It is interesting to find that the presence of
hydroxyl groups, especially at a high incorporation of 1.31 mol%, significantly accelerated
the phase transition kinetics. For nucleation in the phase transition, the optimal temperature
was −10 ◦C, independent from the incorporation. Moreover, the accelerating effect of
hydroxyl groups on the kinetics of II–I phase transition increased with the decreasing
crystallization temperature of form II crystallites.

2. Experimental Section
2.1. Materials

The polymers studied in this work were functionalized polybutene-1 with and without
hydroxyl groups. All synthetic experiments involving air- and/or moisture-sensitive
compounds were carried out in a MBraun glovebox, filled with nitrogen and using the
standard Schlenk technique. The diemethyl (pyridylamido) hafnium pre-catalyst and
the 6-iodo-1-hexene comonomers were synthesized according to [49,50]. The toluene
used was purified by an Etelux solvent treatment system. Butene-1 gas and ultrahigh-
purity nitrogen were obtained from Tianjin Liufang Industrial Gas Distribution Co., Ltd.
(Tianjin, China). Triisobutylaluminum (Al(iBu)3, 1.1 mol/L in toluene), the tritytetrakis
(pentauorophenyl) borate ([Ph3C] [B(C6F5)4]) cocatalyst, trimethylamine, 1-propanethiol,
and monothioglycerol were purchased from J&K China Chemical, Ltd. (Beijing, China) and
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used without further purification. The synthetic routes of the butene-1/6-iodo-1-hexene
copolymers and functional polybutene-1 are shown in Scheme 1.
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2.2. Copolymerization of Butene-1 with 6-Iodo-1-Hexene

The copolymers were synthesized following the method described in [48]. The ob-
tained copolymers needed to be redissolved in toluene at 100 ◦C and precipitated in
ethanol dropwise to wash off the excess comonomers and the residual catalyst decomposi-
tion products. Finally, the butene-1/6-iodo-1-hexene copolymers were dried in a vacuum
oven at 40 ◦C for 24 h. The incorporation of comonomers can be measured by 1H NMR
(Figure S1a).

2.3. Synthesis of Functionalized Polybutene-1

The obtained copolymers were dissolved in 30 mL of decalin at 90 ◦C. After cooling
to room temperature, N,N-dimethylformamide, thioglycerol, and trimethylamine were
added to the reaction system. The mixture was reacted at 70 ◦C for 50 h. The obtained
butene-1 copolymers with hydroxyl groups were precipitated out by pouring the reaction
mixture into a large amount of ethanol. The polymers were washed repeatedly with
acetone. After drying under a vacuum at 40 ◦C for 24 h, the functionalized polybutene-1
with hydroxyl groups was obtained [51]. In addition, thioglycerol was substituted by
1-propyl mercaptan in the same way to prepare the reference polymer with a similar branch
length but no hydroxyl group (Scheme 1). 1H NMR results show that the reaction was
complete (Figure S1b,c). The obtained polymers with and without hydroxyl groups were
referred to as PBHY-2 and PBHY-0, respectively, for which the number in the sample code
corresponds to the number of hydroxyl groups in each branch (see Table 1).

Table 1. Molecular characteristics of the butene-1 copolymers.

Sample Code Incorp. (mol%) Number of Hydroxyl Groups in Each Branch Mw (105 Da) Mw/Mn

PBHY038-0 0.38 0 6.9 2.02
PBHY038-2 0.38 2 6.9 2.02
PBHY131-0 1.31 0 5.2 2.23
PBHY131-2 1.31 2 5.2 2.23

2.4. Methods

The nuclear magnetic resonance (1H NMR) characterizations were performed with a
Bruker 400 MHz spectrometer (Karlsruhe, Germany). All samples were measured at 120 ◦C
with C2D2Cl4 as a solvent. The molecular weights and molecular weight distributions of the
copolymers were measured at 150 ◦C in 1,2,4-C6Cl3H3 versus polystyrene standards using
an Agilent PL-GPC 220 high-temperature gel permeation chromatography, as summarized
in Table 1.

The differential scanning calorimetry (DSC) experiments were carried out with Discov-
ery DSC25 (TA instrument, DE, USA) under a nitrogen atmosphere. The sample was first
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annealed at 180 ◦C for 10 min to erase the thermal history. Then, both the dynamic cool-
ing crystallization and the isothermal crystallization were studied. The dynamic cooling
experiments were carried out at a rate of 10 ◦C/min. Considering the various crystalliza-
tion abilities of the copolymers, broad crystallization temperature ranges of 80–95 ◦C and
65–77 ◦C were chosen for 0.38 and 1.31 mol%, respectively. In the isothermal experiments,
a much higher cooling rate of 50 ◦C/min was employed to prevent crystallization before
reaching the desired temperature.

Moreover, DSC was employed to apply different thermal protocols to prepare the
crystallites for subsequent phase transition. Scheme 2a shows the formation of form II
with the DSC dynamic cooling protocol and the transformation from form II to form I at
room temperature (25 ◦C). Scheme 2b shows that the formation of form II is the same as in
Scheme 2a, followed by annealing at a low temperature (Tlow) between −60 ◦C and 25 ◦C
for 30 min and sequentially at 25 ◦C for 50 or 120 h (for 0.38 and 1.31 mol%, respectively).
With respect to Scheme 2b, Scheme 2c shows that annealing at low temperature is fixed at
−10 ◦C for 30 min and that at high temperature is fixed at 25 ◦C for different durations.
Scheme 2d shows that form II was obtained by isothermal crystallization, which then was
annealed using the protocol in Scheme 2c. The last step of all the thermal protocols was
heating from 25 ◦C to 180 ◦C at 10 ◦C/min to assess the contents of transformed form I.
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Scheme 2. Schematic illustrations of the thermal protocols applied in this work to study (a) phase
transition kinetics at room temperature, (b) dependence of phase transition on nucleation temperature,
(c) phase transition kinetics with the optimized nucleation step, (d) dependence of phase transition
on the form II crystallization temperature.

The polarized optical microscopy experiments were performed with a Nikon ECLIPSE
LV100N POL microscope (Tokyo, Japan) equipped with an external hot stage. After
cleaning the thermal histories at 180 ◦C, the polymers were cooled to the desired isothermal
temperatures to monitor spherulite growth: 95 ◦C and 77 ◦C for the incorporations of 0.38
and 1.31 mol%, respectively.

The wide-angle X-ray diffraction (WAXD) method was employed to verify that the
crystal modification after cooling at 10 ◦C/min to 25 ◦C was form II. The WAXD mea-
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surements were carried with the Bruker D8 Discovery X-ray setup (Karlsruhe, Germany),
where the wavelength of X-ray used was 1.54 Å. The sample-to-detector distance was
56 mm. The measurement time of each frame was 1 min.

3. Results and Discussion
3.1. Influence of the Hydroxyl Groups on Crystallization

Figure 1 shows the DSC cooling and heating curves of functional polybutene-1 with
hydroxyl groups for two distinct incorporations of 0.38 and 1.31 mol%. It can be seen
that, when the incorporation is only 0.38 mol%, the cooling crystallization temperatures
are very close between the copolymers with and without hydroxyl groups. As the incor-
poration increased to 1.31 mol%, the cooling crystallization temperature of PBHY131-0
with more branches decreased with respect to the aforementioned copolymer PBHY038-0.
Interestingly, the crystallization of corresponding copolymer PBHY131-2 with hydroxyl
groups further decreased to 52.3 ◦C versus 61.3 ◦C in PBHY131-0 for the dynamic cooling
process at 10 ◦C/min. Moreover, although the crystallization kinetics may vary due to the
incorporation of branches and hydroxyl groups, the crystallites generated were always
tetragonal form II, which is the kinetically favored phase of polybutene-1 (WAXD results
given in Figure S2).
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Figure 1. Differential scanning calorimetry (DSC) (a) cooling and (b) heating curves of the butene-1
copolymers with and without hydroxyl groups.

In addition to the dynamic cooling experiments, the isothermal crystallization be-
haviors were explored at higher temperatures, which were chosen within 80–95 ◦C and
65–77 ◦C for incorporations of 0.38 and 1.31 mol%, respectively. In Figure 2a,b, the solid and
dashed lines present the crystallization of copolymers with and without hydroxyl groups,
respectively. It was observed that, for the low incorporation at 0.38 mol%, the presence
of hydroxyl groups seemed not to obviously influence the crystallization kinetics at the
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relatively low temperature of 80 ◦C, consistent with the comparable cooling crystallization
that occurs within approximately 60–80 ◦C. However, slowed crystallization kinetics by
hydroxyl groups is observed with an elevation in isothermal temperature and an increase
in incorporation. Figure 2c displays the quantified half-crystallization time (t1/2) as a
function of isothermal temperature. For example, the presence of hydroxyl groups at
the incorporation of 1.31 mol% can increase t1/2 from 730 to 2250 s for the isothermal
crystallization at 77 ◦C. It is known that by both the nuclei density and the linear growth
rate contributed to the crystallization kinetics [52–55]. In order to gain insight into the
variation in crystallization kinetics with the hydroxyl groups, the crystallization process
was monitored by polarized optical microscopy. From Figure 3a,b, it can be seen that
the nuclei density of PBHY038-2 was significantly higher than that of PBHY038-0, which
was consistent with the results observed for 1.31 mol% (Figure S3). However, the linear
growth rates that were determined from the corresponding POM images decreased from
0.24 µm/min in PBHY038-0 to 0.08 µm/min in PBHY038-2. It was indicated that, for
0.38 mol% incorporation, the distinct crystallization kinetics of PBHY038-2 with respect to
PBHY038-0 is because of the increase in nuclei density and the decrease in linear growth
rate. In this case, it could be inferred that the much slower crystallization kinetics of
PBHY131-2 is probably due to the further increase in nuclei density not compensating for
the decrease in linear growth rate.
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measured with POM during isothermal crystallization at 95 ◦C and the determined growth rates.
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3.2. Influence of the Hydroxyl Groups in Phase Transition

Although the crystallization temperatures were dependent on the incorporation and
type of functionalized groups, the resulting crystallites were all of thermally metastable
tetragonal form II (Figure S2), which tends to spontaneously transform into the more stable
trigonal form I. To study the influence of hydroxyl groups on the phase transition from
tetragonal form II to trigonal form I, the generated form II crystallites were aged at 25 ◦C
for various durations and then heated to determine the fraction of transformed form I in the
total crystallites, since form I has a higher melting temperature than form II. Figure 4a first
shows the DSC heating curves of polymer PBHY038-0 after annealing at 25 ◦C for different
times. It was seen that, without annealing, only a single endothermic peak of form II was
observed in the heating curve. However, after annealing for 10 h, one additional distinct
endothermic peak appears, which corresponds to melting of the transformed form I [48,56].
As the annealing period was further extended, the endothermic peak of the transformed
form I increased whereas that of the residual form II decreased correspondingly. The
fraction of transformed form I can be quantified from the DSC results with the following

equation: fI =
AI/∆H0

I
AI/∆H0

I +AII/∆H0
II

, where AI and AII represent areas of endothermic peaks

during melting of form I and form II, respectively, and ∆H0
I and ∆H0

II are the crystal melting
enthalpies of pure forms I and II, 141 and 62 J/g, respectively [28]. Figure 4b,c compare
the evolution of fractions of transformed form I with and without hydroxyl groups for
two distinct incorporations of 0.38 and 1.31 mol%, respectively. When the incorporation
is low, only 0.38 mol%, the kinetics of the phase transition with hydroxyl groups are
comparable with those without hydroxyl groups (Figure 4b). As the incorporation increased
to 1.31 mol%, the II–I phase transition with hydroxyl groups is higher than that without
hydroxyl groups and the difference increases with the phase transition. It was indicated that
the presence of hydroxyl groups could accelerate phase transition for the high incorporation
of 1.31 mol%.

3.3. The Relationship between Phase Transition and Transition Temperatures

It has been recognized that solid II–I phase transition is implemented as a two-step
process, triggered by nucleation and subsequently implemented by the growth of form
I within the initial lamellae [57,58]. Moreover, it has been reported that the kinetics of
II–I phase transition is determined by the nucleation step [56,59–61]. In this case, the
kinetics of the phase transition is strongly dependent on the nucleation temperature. The
lowered temperature could increase the temperature difference between crystallization
and nucleation, which increases the internal thermal stress originating from the various
thermal expansion coefficients between the crystal and amorphous regions, and might also
decrease the critical nuclei size for the newly appeared phase. To examine the relationship
between phase transition kinetics and the transition temperature, the form II crystallites
were cooled to various temperatures for a fixed duration of 30 min to allow for nucleation
and were subsequently aged at 25 ◦C for the transition. Due to the different kinetics, the
transition periods were chosen as 50 and 120 h for 0.38 and 1.31 mol%, respectively. From
Figure 5, it can be clearly seen that, irrespective of the presence of hydroxyl groups, the
maximum peak of transformed form I is observed at−10 ◦C, indicating an identical optimal
temperature for nucleation. In addition, this optimal temperature remains unchanged
when increasing the incorporation from 0.38 to 1.31 mol%, which is the same as for the
nucleation temperature in polybutene-1 homopolymer [56].

With the aforementioned optimal nucleation temperature of −10 ◦C, the solid II–
I phase transition was monitored and the evolution of the transformed form I was as
shown in Figure 6. We notice that, compared to the phase transition behavior at 25 ◦C, the
annealing at −10 ◦C for 30 min in advance can greatly accelerate the phase transformation.
Moreover, the accelerating influence of hydroxyl groups in II–I phase transition was also
confirmed for the relatively low incorporation of 0.38 mol%.
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3.4. The Relationship between Crystallization Temperature and Phase Transition

The above results focus on the influence of transition conditions on the transition
kinetics. It should be noticed that the structural characters of the initial form II that are
transformed are strongly dependent on the crystallization process from amorphous melting
to the ultimate solid. It was recently reported that the temperature used to prepare the
initial crystallites not only determines the transition conditions to influence the internal
stress but may also vary the number of intercrystalline links, which plays an important role
in the stress transport between lamellae [47]. Note that the initial form II crystallites studied
in the above sections were all prepared by a cooling process, where there is a difference in
the crystallization temperature between PBHY131-0 and PBHY131-1 (Figure 1). To know
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the dependence of II–I transition on the crystallization temperature, the form II crystallites
to be transformed were prepared at various temperatures. Figure 7 shows the fractions of
transformed form I as a function of isothermal temperature of form II preparation. It was
observed that the fraction of transformed form I increases slightly with decreasing tempera-
ture for a low incorporation of 0.38 mol% (PBHY038-0 and PBHY038-2, shown in Figure 7a)
and a high concentration of 1.31 mol% without a hydroxyl group (PBHY131-0, shown
in Figure 7b). However, PBHY131-2 with substantial hydroxyl groups shows increased
transformed form I when lowering the form II preparation temperature. This means that
the influence of hydroxyl groups on II–I transition kinetics becomes weaker at elevated
temperatures. The increase in transition kinetics with lowering crystallization temperature
was also observed in polybutene-1 ionomers with the physical ion aggregates [48]. It was
indicated that the hydroxyl groups may form some hydrogen-bonded nanoclusters, similar
to ion aggregates, which act as additional physical crosslinks to enhance internal stress
to the lamellae for form I nucleation within form II. In summary, in the presence of polar
hydroxyl groups, the solid II–I phase transition could be more efficiently accelerated by
lowering the crystallization temperature of preparing form II.
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4. Conclusions

In this work, functionalized polybutene-1 copolymers with hydroxyl groups at distinct
incorporations of 0.38 and 1.31 mol% were synthesized. The crystallization kinetics of
tetragonal form II and the subsequent phase transition into trigonal form I were studied
with differential scanning calorimetries. The influence of the hydroxyl groups on crystal-
lization and phase transition is dependent on the incorporation. For a low incorporation of
only 0.38 mol%, the introduced hydroxyl groups do not significantly affect the kinetics of
the dynamic cooling crystallization or the isothermal crystallization at temperatures below
85 ◦C, which are associated with increased nucleation density but a decreased growth rate.
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Differently, when the incorporation was increased to 1.31 mol%, the presence of hydroxyl
groups significantly decreased the crystallization temperature.

More importantly, the solid phase transition from form II to I could be accelerated by
the presence of hydroxyl groups. The results show that the influence of hydroxyl groups on
II–I phase transition is increased when increasing the incorporation from 0.38 to 1.31 mol%.
In addition, the phase transition exhibits a nonmonotonic dependence on temperature
and the optimal nucleation temperature to obtain a maximum transition degree at −10 ◦C,
independent from the content of hydroxyl groups. Furthermore, the accelerating influence
of hydroxyl groups on phase transition further increases when lowering the crystallization
temperature of preparing form II.
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.3390/polym13081315/s1, Figure S1: NMR results; Figure S2: WAXD results; Figure S3: POM results.
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