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A B S T R A C T   

Natural products (NPs) are a valuable source in the food, pharmaceutical, agricultural, environmental, and many 
other industrial sectors. Their beneficial properties along with their potential toxicities make the detection, 
determination or quantification of NPs essential for their application. The advanced instrumental methods re-
quire time-consuming sample preparation and analysis. In contrast, biosensors allow rapid detection of NPs, 
especially in complex media, and are the preferred choice of detection when speed and high throughput are 
intended. Here, we review diverse biosensors reported for the detection of NPs. The emerging approaches for 
improving the efficiency of biosensors, such as microfluidics, nanotechnology, and magnetic beads, are also 
discussed. The simultaneous use of two detection techniques is suggested as a robust strategy for precise de-
tection of a specific NP with structural complexity in complicated matrices. The parallel detection of a variety of 
NPs structures or biological activities in a mixture of extract in a single detection phase is among the anticipated 
future advancements in this field which can be achieved using multisystem biosensors applying multiple flow 
cells, sensing elements, and detection mechanisms on miniaturized folded chips.   

1. Natural products 

Natural products (NPs) originate from living organisms which in-
clude: (1) whole organisms (such as animals, plants, microorganisms), 
(2) parts of organisms, (3) extracts from organisms and (4) pure com-
pounds from organisms [1]. In this context, the biosensing of the bio-
molecules produced by living organisms is considered. Approximately 
25% of one million NPs obtained from plants and microbes are biolo-
gically active [2]. Although it has been hypothesized that all NPs es-
sentially have some kind of receptor-binding activities (bioactivities), 
while finding these interacting receptors can be a challenging task [3]. 

Several technologies such as the targeted purification, molecular 
tracking, drug discovery, symbiotic investigations, biomechanics, pro-
teomics, genomics, metabolomics, food science, computation, data 
mining, bioremediation and environment analysis benefit from mon-
itoring the NPs [4]. Detecting the toxic NPs is also useful in the ex-
ploration of their ecological role and more importantly in assessing the 
potential effects of these toxins on human health [5]. 

Currently, NPs have multiple applications in human health, industry 
and environmental protection and they are anticipated to be involved in 
many more areas in the future. The large chemical structural diversity 

and consequently divergent biological activities of NPs has made them 
a prominent source for various pharmaceutical products, including 
antivirals [6], anti-Alzheimer compounds [7], immunosuppressives [8], 
antioxidants [9], antimicrobials [10], anti-inflammatory compounds 
[11], anti-adipogenic agents, digestive agents, and stimulants [12]. In 
the last decade, a decrease in NP discovery has caused a dramatic de-
cline in discovery of new drugs [2]. 

1.1. Structural diversity of natural products 

The chemical diversity and biochemical specificity of NPs render 
them leading candidates of drug discovery, in addition to their multiple 
uses in industrial applications. Due to this chemical diversity, NPs in-
teract with a great number of targets and have a vast range of activities 
and stability patterns. Studies have shown that NPs possess more chiral 
centers and steric complexity. Moreover, heavy atom ration of aromatic 
NPs is less than their equivalents in synthetic or combinatorial libraries 
[13,14]. NP libraries also have a higher distribution of molecular 
properties including molecular mass, ring systems diversity, and oc-
tanol-water partition coefficient compared to the synthetic and com-
binatorial libraries [15]. 
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1.2. Source and biosynthesis of natural products 

NPs have structural complexity with exclusive biosynthetic path-
ways which have been optimized during evolution to ameliorate the 
survival of produced organisms [16]. All NP structures are synthesized 
from the overflow of fundamental primary metabolites through mul-
tiple pathways as illustrated in Fig. 1. Bioactive NPs are produced by 
members of all three domains of life, for example by plants, vertebrates 
and invertebrates, fungi, and bacteria [17]. It has also been revealed 
that the mutualistic or symbiotic microorganisms are, in fact, re-
sponsible for producing the majority of NPs being isolated from animals 
and plants [18]. Hence, a considerable number of drugs/leads isolated 
from bioactive NPs indeed originate from microorganisms [19]. 

2. Current approaches in detection and quantification of natural 
products 

The methods used in the detection or separation of NPs can be 
biological, chemical or physical. These physicochemical approaches are 
shown in Fig. 2. Despite the advantages of the analytical methods for 
the identification and screening of NPs, there are limitations in using 
these methods due to the complexity of NPs [20]. Thus, in addition to 
well established analytical methods for the detection of new NPs, 
group-specific or single structure-specific biosensors are needed to ac-
celerate and simplify the detection. For instance, a group-specific bio-
sensor is a biomimetic sensor for the detection of phenolic NPs that can 
also identify their antioxidant catechol equivalents with high sensitivity 
and specificity in a wide range of concentrations [21]. 

3. Biosensors design for detection of NPs 

Biosensors are devices used for measuring the biochemical reactions 
through signals generated by the presence of a specific analyte. Three 
main parts constitute a typical biosensor: a sensing element called 
“bioreceptor” that is a biomolecule which recognizes the analyte (target 
molecule/NPs); a transducer converting the chemical/biological signals 
into a detectable signal; and a signal processor which measures the 
transducer signal [22,23]. 

In the last decade, extensive progress has been made for biosensor 
based monitoring of biological processes and diagnostics of the diseases 

using the detection or quantitative determination of biomolecules [24]. 
Biosensors have numerous proven applications in diagnostics [25], 
drug discovery [26], biomedicine [27], environmental monitoring [28], 
food safety and processing [29], and biosafety [30] by providing qua-
litative and quantitative information on these processes [31]. 

Biosensors have the advantage of being instant, specific, portable, 
sensitive, and disposable in contrast to the traditional analytical 
methods which are rather expensive, complicated, and time-consuming 
[32]. As a distinctive advantage, biosensors are often amenable to being 
miniaturized using microfluidics systems which lead to lower cost, 
portability, and rapid operation. Advances in hardware technology 
allow biosensors to be scaled down, making them portable, less toxic to 
the environment, and increase their penetration and sensitivity [33]. 
Moreover, most of the time, they show higher sensitivity and stability 
compared to conventional sensing methods [34]. Although biosensors 
have advantages over highly sensitive analytical techniques (Mass 
Spectrometry (MS), Liquid Chromatography (LC)-MS/MS, etc. (due to 
their rapid detection and quantification, they are rarely commercialized 
for industrial applications [35]. 

Accurate biosensor design requires fundamental knowledge on the 
chemical structure of the target NPs, the concentration levels of the 
analyte [36] and its interfering species, the type of matrix, and the type 
and volume of the sample [37]. The next step is selecting a biological 
process that mediates the detection of the target analyte [38]. Detecting 
a specific analyte in a complex sample is often the main objective in 
choosing the sensing element and selectivity can be considered as the 
most influencing parameter in the performance evaluation of a bio-
sensor. Reproducibility, accuracy and precision of a biosensor sig-
nificantly affect the reliability and robustness of the results [39]. Sta-
bility, or in other words, the degree of susceptibility to external 
perturbations such as temperature, affinity and degradation of sensing 
elements is the most critical feature in the sustainability of the results 
over long-term usage of a biosensor. Sensitivity or the Limit of Detec-
tion (LOD) and linearity are other important features that should be 
considered in designing biosensors [22]. 

4. Classification of biosensors 

Biosensors can be classified according to two principal criteria: 
based on the type of their sensing element and based on the type of 
their transducer [40]. 

4.1. Classification of NPs biosensors based on sensing elements 

A biosensor has at least one biological part as a sensing element. It 
can be an enzyme/protein [41], antibody [42], DNA/RNA [43], apta-
mers [44], or a whole cell [45] which are called enzyme sensors, im-
munosensors, DNA sensors, or aptasensors. Among different biosensors, 
enzyme-based biosensors have been most widely utilized as the detec-
tors of NPs in pharmaceutical, biomedical, environmental and in-
dustrial analyses [32]. Sensing elements can also be categorized into 
three groups based on their mechanisms of interaction, which are 
biosystems, bioaffinity-biocomplexation, and biocatalytic categories 
(Fig. 3). 

4.1.1. Biosystems (microorganisms) 
Using whole cells as sensing elements has the benefits of lower cost 

and higher stability compared to molecule-based receptors; since the 
need for purification is eliminated, cells can be massively produced and 
required co-factors are already available inside the cells [46]. In these 
biosensors, changes in pH, cellular metabolism, and gene expression 
can be quantified by analyzing the response of transducers in the pre-
sence of target NPs [47]. Pfleger et al. introduced a microbial based 
sensor using Escherichia coli mevalonate auxotroph for high throughput 
screening and quantification of mevalonate in an extracellular en-
vironment [48]. Siedler et al. developed a fluorescent-based bacterial 

Fig. 1. The chemical structural origin and biosynthetic source of NPs from 
primary metabolism. 
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sensor for the screening of extracellular p-coumaric acid. In their ap-
proach, p-coumaric acid producing cells were cultivated in microfluidic 
droplets and the sensing bacteria were injected into the droplet. After 
the induction, fluorescence signals of biosensor cells were sorted and 
analyzed [49]. Urban et al. proposed a Bacillus subtilis based sensor 
having a set of optimized promoters coupled with the firefly luciferase 
reporter gene for the detection of NPs interfering with the five major 
biosynthetic bacterial pathways including fatty acid synthesis, DNA/ 
RNA synthesis, protein synthesis, cell wall, or diverse Mechanism of 
Actions (MOAs). They screened 14,000 NPs and demonstrated that the 
proposed B. subtilis reporter strains provide an effective way for 

universal high-throughput screening of bioactive compounds, ham-
pering the five key biosynthetic pathways in bacteria [50]. Ding et al. 
proposed the fluorescence whole-cell biosensors of Chromobacterium 
violaceum CV026 and Agrobacterium tumefaciens A136 for the screening 
of NPs with Quorum Sensing Inhibitors (QSIs) activity. A database of 
Traditional Chinese Medicine (TCM) was screened using this biosensor 
to find QSIs with lower toxicity acting on Pseudomonas fluorescens as a 
food spoilage agent. The loss of blue color and purple pigment indicated 
that the test NPs can inhibit the production of long chain and short 
chain N-Acylhomoserine Lactones (AHLs), respectively [51]. 

Fig. 2. Physicochemical methods of sensing the biomolecules adopted in biosensing of NPs.  

Fig. 3. Types of interactions between the biomolecule (NPs) and biosensor.  
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4.1.2. Bioaffinity (biocomplexation) 
Bioaffinity-based biosensors are widely used in the separation and 

detection of biomolecules [52]. Bioaffinity biosensors use molecular 
components as the sensing elements such as antibodies, peptides, pro-
teins, viruses, nucleic acids, aptamers and molecularly imprinted 
polymers to interact with corresponding NPs [53]. An affinity biosensor 
based on immobilized concanavalin A protein is used for the detection 
of glucose [54]. Masson et al. designed a Quartz Crystal Microbalance 
(QCM) bioaffinity sensor for detecting biotin. The sensor is based on a 
bioaffinity between avidin and desthiobiotin which is immobilized on a 
gold layer surface [55]. Mecklenburga et al. proposed a fluorescence- 
based biosensor for detecting NPs with an affinity for nucleic acids 
without the need for basic information about their structure. They used 
salmon sperm DNA as a sensing element and TP3 as a fluorescence 
molecule intercalating with DNA. When the sample solutions interact 
with DNA, the intensity of fluorescent signal reduces in proportion to 
the interacted NP. Their results showed that the polyphenolic con-
stituents of tea extract strongly interact with DNA [56]. Rezler et al. 
proposed a Surface Plasmon Resonance (SPR)-based biosensor with 
biotin-labeled human telomeric oligonucleotide immobilized on a 
streptavidin-coated chip as a sensing element for the recognition of 
telomestatin. Detection of human telomeric G-quadruplex-binding li-
gands as stabilizers of the G-quadruplex structures aids in finding an-
ticancer drugs. Telomestatin, an NP obtained from Streptomyces anulatus 
3533-SV4, interacts effectively with G-quadruplex and inhibits telo-
merase activity [57]. Metabolite biosensors are sensors based on RNAs 
or genetically-encoded proteins that interact with metabolites and 
produce an actuator output. The output controls protein expression or 
function by modulating the rate of the transcription/translation, or 
post-translational parameters [58,59]. 

4.1.3. Biocatalytic (enzyme-based) 
Enzyme-based biosensors are robust analytical tools in which en-

zymes are used as biological sensing elements. In some of these bio-
sensors, the enzyme molecules can be immobilized on the transducer 
surface to enhance the reproducibility of the detection [32] (Fig. 4). 

Abdullah et al. represented an optical tyrosinase based biosensor for the 
quantitative determination of phenolic compounds. The enzyme is 
immobilized on a chitosan film, and the enzymatic oxidation of phenol 
produces o-quinone which further reacts with 3-methyl-benzothiazoline 
hydrazine as the reagent and the resulting complex produces a maroon 
color which can be detected by a spectrophotometer. This catalytic 
biosensor had LOD of 3.0, 1.0, 1.0, and 0.9 μM for p-cresol, m-cresol, 
phenol, and 4-chlorophenol, respectively. Also, the sensor retained its 
stability for about 2 months [60]. Andreescu and Sadic developed an 
amperometric tyrosinase based biosensor for detecting natural phy-
toestrogen polyphenols. This sensor can estimate the total phenolic 
content of natural phenolic estrogens such as genistein, resveratrol, and 
quercetin [61]. Kong et al. proposed an SPR-based biosensor consisting 
of a multi-enzyme nanoreactor with a hierarchical structure using α- 
Glucosidase (GAA) and Glucose Oxidase (GOx) for anti-diabetic drug 
screening of NPs. The generated glucose by GAA is oxidized by GOx and 
the byproduct of hydrogen peroxide changes the shape of silver na-
noprism to nanodiscs which can be detected by SPR [62]. 

4.2. Classification of NPs biosensors based on transducers 

Transducers are an integral part of biosensors, as they are re-
sponsible for creating a measurable signal by energy conversion. The 
intensity of the produced signals by transducers is usually commensu-
rate to the numbers of the interactions developed between analytes and 
sensing elements [22]. Transducers are classified into five main groups 
based on the type of energies they produce upon receiving a signal from 
the sensing element, which consists of 1) electrochemical, such as 
amperometry, voltammetry, potentiometry, impedimetry, con-
ductometry, and ion charge or field effective transistors; 2) optical, such 
as fluorescence, colorimetry, SPR, chemiluminescence, Raman scat-
tering, optical fibers, Fourier-Transform Infrared Spectroscopy (FT-IR), 
and interferometry; 3) Mass change such as QCM, and 4) Miscellaneous 
that cannot be incorporated to any of the mentioned groups, such as 
calorimetric, magnetic, and combinatorial transducers [63–65]. The 
type of transducers for designing an NP biosensor can be selected from 

Fig. 4. Schematic representation of a luminescent enzyme based biosensor with an optical transducer. Enzymes as sensing elements are coupled with a fluorophore 
molecule and immobilized on a surface. 1) A solution of the NP is passed over the surface with immobilized enzymes. 2) Target molecules of NPs interact with the 
enzyme molecules. 3) After washing the unbounded molecules, an exciting wavelength is illuminated and the fluorophore molecules absorb the light and excite 4) 
Emitted photons are sensed by a luminometer/fluorimeter and further analyzed by analyzing software to validate the identity of target molecules. 
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the described classes in the following subsections. 

4.2.1. Electrochemical transducers 
Electrochemical transducers convert the biochemical signals re-

sulting from analyte recognition to the electrical signals. This type of 
transducer shows excellent accuracy, repeatability, and resolution, but 
they can be easily influenced by temperature changes, resulting in a 
short shelf-life [66]. Electrochemical biosensors mainly utilize enzymes 
as the recognition part due to the specificity of enzymatic reactions 
[67]. One of the most commonly used biosensors employing the elec-
trochemical transducer is glucometer. The interaction of glucose and 
oxygen molecules on the surface of an enzyme oxidizes hydrogen per-
oxide (H2O2) and produces electrons. The quantity of produced elec-
trons is measured by the electrochemical transducer (electrode) that is 
transformed into a measurable signal to be further amplified and pro-
cessed [68]. 

Another common type of electrochemical biosensor uses ampero-
metric/voltammetric transducers in which the produced current by the 
potential difference between electrodes and the analyte contributes to a 
redox reaction [69,70]. Karyakin et al. developed an enzyme-based 
amperometric biosensor which transduces the oxidation of glutamate 
through Prussian Blue that selectively senses the reduction of the H2O2. 

The LOD of the sensor is estimated at 10−7 M [71]. Kochana et al. 
developed a voltammetric tyrosinase based biosensor for tyramine de-
tection with a LOD of 1.5 μM for tyramine oxidation. Since tyramine 
concentration increases in proportion to the food spoilage, it is a sui-
table indicator of toxicity in the food industry [72]. Flampouri et al. 
proposed a cell-based voltammetric biosensor for cytotoxicity evalua-
tion of NPs extracts. Renal cells were immobilized on a conductive 
polymer surface. To estimate the electrocatalytic activity in the inter-
face of the renal cell/electrode, cyclic voltammetry was used. Carbon 
tetrachloride (CCl4) was utilized as a nephrotoxicity agent and the plant 
extracts were assessed for their renoprotective effect. The proposed 
biosensor was able to consider the number of cells and their potential in 
monolayer formation as indicators of cell viability or cell toxicity [73]. 
Hsieh et al. proposed an amperometric Choline Oxidase (ChOx) sensor 
for the quantification of NPs with acetylcholinesterase (AChE) in-
hibitory activity. The natural chitinous membrane was covalently im-
mobilized with an Alcaligenes sp. ChOx linked to a platinum electrode of 
the amperometric flow cell [74]. 

Other types of electrochemical biosensors use potentiometric 
transducers which sense the variations of hydrogen concentration re-
sulting from biocatalytic or bioaffinity reactions [75]. Stepurska et al. 
developed an enzyme potentiometric biosensor based on field-effect 
transistors which are sensitive to H+ ions to detect Aflatoxin B1 (AFB1) 
in food. Here, the inhibition of AChE activity on its corresponding 
substrate, acetylcholine chloride, was used as a sensing element to 
validate the presence of AFB1 in real samples [76]. 

Impedimetric transducers are another type of electrochemical 
sensor that measure the fluctuations in the charge conductance when 
the target molecule selectively binds on the surface of the sensor [77]. 
The impedimetric techniques have been used in monitoring the reac-
tions catalyzed by enzymes or the biorecognition events of whole cells 
and microorganisms, antibodies, specific binding proteins, receptors, 
nucleic acids, lectins, etc. [78,79]. Porfireva et al. developed an im-
pedimetric DNA sensor based on electropolymerization of proflavine 
layer for the detection of anthracyclines. Proflavine polymer is an 
electroconductive polymer. The recognition of the DNA deposition on 
proflavine polymers and intercalation of anthracyclines with the ad-
sorbed DNA was recognized by measuring the redox change due to the 
electron exchange of the coated poly (proflavine) on the electrode [80]. 

4.2.2. Optical transducers 
The optical transducers detect changes in the emitted wavelengths 

[81] and are classified into two groups: label-based (indirect) and label- 
free (direct). The label-based sensing implies that the target analyte is 

labeled with a reporter molecule and the detection process is performed 
using luminescent, fluorescent or colorimetric signals. In label-free 
type, the interaction of a sample with the transducer surface directly 
leads to a photonic signal [82,83]. Optical biosensors have high sensi-
tivity and compatibility with remote monitoring but are vulnerable to 
external physical disturbances [84,85]. Kreiss et al. proposed a bio-
sensor based on a whole-cell harboring bioluminescent reporter gene 
for the detection of NPs acting on the bacterial DNA supercoiling (an-
timicrobial activity). This sensor was able to identify the effect of in-
thomycin A on supercoiling of the bacterial genome in a raw extract 
[86]. 

Fluorescent-based biosensors utilize emission wavelength, emission 
intensity, fluorescence lifetime, or fluorescence anisotropy as analytical 
information. The signals may be derived from changes in pH, charge, 
polarity, or viscosity of fluorophores [87]. These biosensors use organic 
dyes, carbon quantum dots (QDs), and semiconductor QDs as fluor-
ophores [88]. Castaño-Cerezo et al. proposed a fluorescence-based 
synthetic biosensor that could detect the production of benzoic acid in a 
genetically modified Saccharomyces cerevisiae both in vitro and in vivo. 
The sensor is composed of a pHBA (4-Hydroxybenzoic Acid)-binding 
domain of HbaR from Rhodopseudomonas palustris, the transactivation 
domain B112 and the LexA DNA binding domain at the C-terminus and 
N-terminus, respectively [89]. González-Andrade et al. developed a 
fluorescent-biosensor based on human fluorophore-labeled Calmodulin 
(CaM) for the detection of potential CaM inhibitors such as mal-
brancheamide and tajixanthone. They used hCaM M124C–mBBr, which 
is a human CaM with a cysteine unit at the position 124 labeled with 
fluorophore monobromobimane (mBBr) [90]. Hunt et al. proposed a 
fluorescent cell-based biosensor for evaluation of stimulation or in-
hibition of Quorum Sensing (QS). Pseudomonas aeruginosa PAO1-JP2, a 
mutant strain unable to produce AHLs, was used for this purpose. The 
bacteria contain plasmid pKR-C12 which harbors elastase gene lasB (a 
virulence gene from P. aeruginosa) translationally fused to a green 
fluorescent protein gene (gfp). The Relative Fluorescent Units (RFU) 
were considered as QS Stimulatory values. The AHL biosensor strain C. 
violaceum CV026 was also used as a reporter organism for the identi-
fication of violacein synthesis which is a pigment regulated by QS [91]. 

Colorimetric transducers are another type of optical biosensors that 
act on the basis of changes in the wavelengths within the visible 
spectrum and have the advantages of rapidity and being observed with 
the naked eye [92]. Gold nanoparticles and silver nanoparticles are 
commonly used in colorimetric assays due to the straightforward dis-
tinction of their color transformation [93]. Rebets et al. designed and 
developed a luminescent whole-cell (Streptomyces albus) biosensor for 
detection and measurement of pamamycins, the macrodiolide anti-
biotics. The biosensor used TetR transcriptional repressor in re-
cognizing and optimizing the antibiotic producers [94]. Zhu et al. de-
veloped a dual colorimetric biosensor for simultaneous quantification 
of ochratoxin A (OTA) and AFB1 using aptamers as sensing elements. 
The sensor showed 0-5-80 ng ml−1 and 5–250 ng ml−1 LOD for OTA 
and AFB1, respectively. The color change was analyzed for OTA under 
alkaline conditions and for AFB1 under acidic conditions, which gen-
erate different colors without interfering with each other [95]. 

SPR is an optical mechanism used by some transducers based on 
photonic excitation without any need for the labeling process. 
Interaction of the target molecule with the biosensor immobilized on an 
SPR transducer induces a shift in the refraction index [96]. SPR based 
detection can qualitatively and quantitatively measure the biomole-
cular interactions with high sensitivity, compatibility with a wide range 
of target molecules, and real-time monitoring [97]. Peng et al. used a 
series of SPR- High Performance Liquid Chromatography (HPLC)-MS/ 
MS for the detection of Human Serum Albumin (HAS) binders in natural 
extracts. The SPR-based part of the sensor used a bicell-photodetector. 
Using this system, they identified 22 HAS binders in extracts of Eu-
commia ulmoides bark [98]. Saleh et al. also proposed an SPR based 
biosensor for detection of Madindoline A. The Recombinant Fc-HA and 
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gp130-Fc-HA proteins were covalently linked to two distinct flow cells 
on a dextran polymer. After injection of different concentrations of 
Madindoline A into the flow cell containing gp130-Fc-HA and the re-
ference flow cell containing Fc-HA, bound Madindoline A induced a 
steady-state equilibrium response of Resonance Units (RUeq) which 
was calculated by subtracting from the reference sensorgrams [99]. 
Chia et al. proposed a lipid based SPR biosensor for evaluation of po-
tential antibiotics such as Citropin, Caerin, and Maculatin. The anti-
microbial peptides were serially diluted in Phosphate Buffered Saline 
(PBS) and passed over the flow cells containing phospholipids. The 
bounded peptides to phospholipids at equilibrium were measured 
[100]. Hurot et al. developed a SPR based olfactory biosensor that uses 
immobilized Odorant Binding Proteins (OBPs) as sensing elements to 
examine the presence of Volatile Organic Compounds (VOCs) in solu-
tions [101]. 

There are several other types of optical biosensors used in the de-
tection of NPs. Zhang et al. proposed a cell based Resonant Waveguide 
Grating (RWG) to identify niacin in fractions of TCM plants. The affinity 
of niacin for its agonist, hydroxyl carboxylic acid receptor, changes the 
RWG and the Dynamic Mass Redistribution (DMR) profile was studied 
[102]. Tang et al. proposed a cell-based RWG biosensor for screening of 
the Protease-Activated Receptor 1 (PAR-1) antagonists among NPs. The 
cellular DMR was measured by RWG as an indication of cellular re-
sponse to stimulation of PAR1 by NPs [103]. George et al. used an 
adenocarcinoma cell line (Panc-1) Photonic Crystal (PC) for the de-
tection of NPs with cytotoxicity effect on pancreatic cancer cells. The 
sensor measured the local changes of the Peak Wavelength Value 
(PWV) of the reflected light caused by binding the cell occurrences on 
top of the sensor surface [104]. 

Chemiluminescence, a process similar to bioluminescence is in-
duced by chemical reactions without external illumination [105,106]. 
Meyer et al. established a chemiluminescence protein-based biosensor 
for the detection of tetracyclines in food and environmental samples. 
They used a competitive assay of the sensing element using im-
mobilized DNA oligonucleotide containing tetO operator sequence, and 
repressor protein TetR with biotin tag. In presence of tetracyclines, 
released TetR from its operator sequence is sensed by the illumination 
of the HRP-conjugated streptavidin catalysis linked to TetR [107]. 

4.2.3. Mass transducers 
Piezoelectric, QCM, Bulk Wave (BW), magnetoelastic, and acoustic 

wave transducers are based on mass change detection. Mass-sensitive 
biosensors are label-free sensors in which fluctuations in mass are in-
duced by the biological recognition processes [108,109]. Cornelio et al. 
described a biosensor for real-time investigation of Hemoglobin (Hb) 
degradation as a screening method for NPs with inhibitory activities by 
covalent immobilization of Hb on a quartz crystal surface. Common Hb 
hydrolysis assays use spectrophotometric approaches that are not real- 
time monitoring and are influenced by interferences. Hb hydrolysis by 
the enzyme activity causes a mass change, which is evaluated by 
monitoring the turnover number (kcat) of bovine Cathepsin D (CatD) 
after inhibition by NPs. Change in the frequency of the quartz crystal 
can be detected as an indicator of Hb cleavage by CatD activity [110]. 
Li et al. proposed a 5-Lipoxygenase (5-LOX), Surface Acoustic Wave 
(SAW) based biosensor for detection of inflammatory NPs such as 
(+)-2-(1-Hydroxyl-4-Oxocyclohexyl) Ethyl Caffeate (HOEC) which was 
detected in an indigenous plant that had been traditionally used for the 
treatment of inflammation. Targeting the 5-LOX as a vital enzyme in 
arachidonic acid cascade by HOEC was validated by this biosensor- 
based affinity detection. In this sensor, mass loading changes due to 
biomolecular interaction processes result in phase changes of the SAW 
on the surface of the sensor chip [111]. 

Calorimetric or thermal transducers are another type of mass 
transducers that measure the enthalpy fluctuations and have substantial 
potential in bioanalytical assays. Two types of this approach include 
adiabatic calorimetry (without any heat exchange between the NPs and 

the external environment) and heat conduction calorimetry (which 
measures the heat transferred from the NPs to the environment) [112]. 
Gaddes et al. designed a calorimetric enzyme biosensor coupled with a 
thermometer, Quartz Crystal Resonator (QCR), for detection of urea 
based on the reaction heat transfer. They used immobilized layers of 
urease on glass beads integrated with a flow reaction tube. The pro-
duced heat during the enzymatic catalysis of urea was measured as an 
indicator of urea content [113]. 

The instances of employing biosensors in detection of NPs are pro-
vided in Table 1. As can be inferred, the use of biosensors for NP de-
tection or screening of their biological activities mostly dates back to 
recent decades. Most of the cases used optical transducers in designing 
biosensors. 

5. Emerging biosensor-based detection methods of natural 
products 

5.1. Cell-free biosensors versus cell-based biosensors 

Whole cell-based biosensors are utilized for monitoring different 
NPs such as antibiotics, toxins, pesticides, herbicides, etc. The appli-
cation of cell-based biosensors provides some advantages over the 
commonly used biosensors using purified biomolecules. There is no 
need for purification and isolation of biocomponents in designing cel-
lular and tissue biosensors. Furthermore, cells tolerate a broad range of 
physicochemical stress, namely temperature and pH levels compared to 
the purified biocomponents. The biocomponents have higher activities; 
but, cell-based biosensors have a longer lifetime than the molecular 
based biosensors. Indeed, the presence of the cell membrane protects 
the contents against denaturation and provides a longer lifetime for a 
whole-cell compared to the free molecules. Nevertheless, due to the 
requirement of diffusing the substrate, the process would be longer in 
these biosensors [122]. Moreover, there are some challenges in cell 
storage, regeneration, heterogeneity in the cell population, and cost of 
instrumentation for their larger scale production. Kalwat et al. devel-
oped a fluorescent β cell-based biosensor for screening of marine NP 
fractions to find potential inhibitors and activators of glucose-stimu-
lated insulin secretion pathway. They expressed the insulin-luciferase 
reporter in β cells and treated the cells with NPs. Using this system, they 
could examine the effects of compounds on glucose secretion caused by 
changes in gene expression or post-translational modifications [116]. 
Korpela et al. proposed a novel type of cell-based sensor using geneti-
cally engineered E. coli to detect tetracycline antibiotics. This strain 
carries an operon of luciferase under the control of the tetracycline- 
responsive promoter tetA and the tetR repressor which emits blue light 
in the presence of tetracyclines [123]. Möhrle et al. proposed a lumi-
nescent whole-cell based biosensor for identification of macrolide 
groups with any possible biological activity. The macrolide biosensor 
consists of E. coli strain SM101 containing the mphR promoter and 
MphR repressor binding site next to the lux reporter genes which is 
coupled by an operon controlling the regulatory resistance of ery-
thromycin. Macrolides presence leads to releasing the repressor protein 
and expression of the lux operon genes results in a luminescence signal 
[114]. Han et al. proposed a FRET whole-cell based biosensor using 
HeLa–C3 cells for detection of ent-kaurene diterpenoids which induce 
apoptosis. They combined a biosensor with High-Speed Counter-Cur-
rent Chromatography (HSCCC) approach for identifying a potent 
apoptotic component from Chinese herbal extracts [115]. The parasitic 
blood fluke, Schistosoma mansoni, produces serotonin (5-HT) which 
targets the cyclic Adenosine Monophosphate (cAMP) to regulate the 
parasite movement. Marchant et al. proposed a co-expressed Sm.5HTRL 
receptor in mammalian cells beside a luminescent cAMP-biosensor for 
finding the anti-schistosomal drug candidates such as aporphines, 
protoberberines, and tryptamines which was previously shown to reg-
ulate Sm.5HTRL [118]. 

The developments in cell-free synthesis technologies have led to 
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using these systems such as aptamers, transcription factors, toehold 
switches, and aminoacyl tRNA synthetases, etc., as the recognition 
elements. The nature of in vitro cell-free biosensors leads to higher 
flexibility and operational facility of these sensors in contrast to the 
microbial cell-based sensors with higher LOD for the target analytes 
[124]. Another advantage of cell-free biosensors in comparison to the 
cell-based biosensors is their higher sensitivity and specificity, and less 
false negatives than the cell-based systems when ligands reach a toxic 
level for cells [125,126]. Song et al. used a muscarinic acetylcholine M2 
receptor based RWG for optical biosensing of the hazardous NPs (sco-
polamine, hyoscyamine, chelerythrine, and sanguinarine). In the BTPP 
method (Biosensor-based Two-phase Pharmacological Profiling) a RWG 
biosensor is used in the determination of intracellular changes which 
are induced by the protein relocalization following the stimulation of 
receptors by the toxicants. The detection principle in this sensor is to 
convert DMR, caused by the intracellular protein delocalization, into a 
measurable optical signal [117]. 

5.2. Nanotechnology based biosensors 

Using nanomaterials in biosensor design is a direct approach for 
intensification of signals, due to their exceptional conductivity, bio-
compatibility, and the great loading of signal molecules which amplifies 
the signal [127,128]. As a result, nanomaterials can increase the sen-
sitivity and decrease the LOD substantially, which leads to an enhanced 
performance of the biosensors. Nanomaterials can be used in specific 
immobilization of the sensing elements. The covalent binding of bio-
molecules to nanomaterials has the advantages of stability, reproduci-
bility of surface functionalization, and lowering the unspecific physi-
sorption [129]. Nanomaterials have also been implemented as the 
biorecognition element in SPR-based biosensors to amplify the signal 
change [130]. Various types of nanomaterials such as metal nano-
particles, carbon nanomaterials, nanowires, and semiconductors can be 
used as electrochemical signal amplifiers [70]. 

Wee et al. developed a voltammetric tyrosinase based biosensor for 
the exploration of phenolic compounds in aqueous environments. They 
applied Carbon Nanotubes (CNTs) to make a solution of Enzyme 
Adsorption, Participation and Crosslinking (EAPC) by crosslinking with 
tyrosinase molecules. Using these nanostructures, the sensitivity of the 
sensor was improved, as the LOD for phenol and catechol reached 35 
and 14 nM, respectively [119]. Bhardwaj et al. developed a SPR-based 
biosensor using antibodies to detect AFB1. The surface immobilization 
of anti-AFB1 antibodies by coating with AuNPs amplified the signal and 
reduced the LOD to 0.003 nM [120]. Othman and Wollenberger 
achieved an amperometric biosensor using immobilized laccase as the 
sensing element in the detection of phenolic NPs. They used a layer of 
carboxyl CNTs on Screen-Printed Carbon Electrodes (SPCEs) as the 
immobilization surface of laccase. The coating upgraded the ampero-
metric response to the highest level and the CNTs allowed the fast de-
tection of phenolics on the electrodes [121]. 

5.3. Magnetic beads application in biosensors 

Magnetic beads are used in biosensors to concentrate the analyte 
with a spatially distributed gradient using an external magnetic field. 
Magnetic beads loaded with specific targets can be moved within the 
sensor to a desirable point [131]. Using conjugates of magnetic nano-
particles can enhance the mass alterations and decrease the nonspecific 
binding on the near-surface of the sampled region, which in turn en-
hances the sensitivity of the detection [130]. Xin et al. developed a mast 
cell-based nanosensor for identification of Botulinum Neurotoxin Type 
B (BoNT/B). They used immobilized nano-magnetic beads coated with 
anti-BoNT/B polyclonal antibody for concentrated absorption of targets 
in sample solutions. The sensor detects 100 pM BoNT/B in less than an 
hour [132]. Lin et al. developed a field-effect enzyme biosensor for 
quantification of urea, glucose, hydrogen ions, and specific proteins in 

solutions. Calcium alginate microcubes were used for enzyme im-
mobilization in a magnetic powder. The magnetic beads acted as en-
zyme carriers by fixing the enzymes on the surface of the sensor using 
an external magnetic field. In such a system, the measured target di-
rectly interacts with the surface of the sensor, making the quantitative 
measurement of the target concentration feasible [133]. 

5.4. Microfluidics in biosensors 

Advantages of microfluidic devices include providing rapid opera-
tion, need for a small volume of samples and reagents, higher sensi-
tivity, lower power demands, and less waste production [134,135]. 
Furthermore, biosensing analysis in microfluidic scales increases the 
throughput, controllability and reliability of assays, and reduces the 
cross-contaminations. Microfluidics confine the preprocessed cells or 
biomolecules in a defined region, and as a result, allows sensing from a 
smaller sample size [136]. Olcer et al. developed a biosensor in in-
tegrated microfluidic systems consisting of channels with 10 μL capa-
city for detecting Deoxynivalenol mycotoxin in wheat grain using its 
antibody as the sensing element. The LOD of this electrochemical im-
munoassay biosensor was 6.25 ng/ml [137]. Labroo and Cui designed 
an enzyme-graphene based biosensor on a microfluidic paper for mul-
tiplex detection of different metabolites, simultaneously. In this sensor, 
every metabolite is recognized by a signal produced by the activity of 
an oxidase enzyme on the testing metabolite. The sensor recognized 
glucose, xanthine, lactate, and cholesterol in less than 2 min by LOD of 
0.3 μM for all of the analytes [138]. Fournel et al. used a SAW-based 
biosensor for real-time monitoring of phycotoxin of Okadaic Acid (OA). 
Integrating a microfluidic device in this sensor, increased the flow rate 
and mass convection on the bio-functional surface which improved the 
quality of response trend and diminished the required detection con-
centration of OA [139]. 

6. Conclusion 

NPs are chemical compounds produced by living organisms with 
progressing applications especially in the food and pharmaceutical in-
dustries. Both bioactive and toxic NPs need to be detected and mea-
sured for multiple purposes. Furthermore, monitoring NPs concentra-
tion or finding their biological activities demands more sophisticated 
tools or devices. Biosensors as analytical tools can be a new screening 
approach for improving the speed and LOD of NPs. Biosensors can di-
rectly determine the concentration of a NP, indirectly monitor their 
interaction with biological species or find their intrinsic function in a 
biological process. Thus, biosensors can detect specific NP structures 
among a mixture of compounds with similar mutagenic and/or toxic 
characteristics or conversely, a biological interaction regardless of the 
chemical structure of the NPs. However, the performance of a biosensor 
is related to the materials used in its process design, and selecting the 
appropriate detection methods. Despite all the developments in bio-
sensors, analyzing the NPs in complicated matrices still has deficiencies 
in most cases. Improving these parameters can further optimize the 
design process of emerging biosensors in the upcoming years as a new 
field of interdisciplinary research. Incorporation of the technologies 
such as microfluidics, nanomaterials, and magnetic beads in designing a 
biosensor are among the developing approaches to improve the speci-
ficity and precision of the detecting system leading to faster, cheaper, 
and more accurate detection of NPs. 

Using multisystem biosensors to detect almost all of the NPs present 
in a biological extract will be the next step in the area of NPs detection. 
Biosensors with the ability to be applied in all the environmental and 
physiological conditions with the minimum possible LOD will be de-
veloped in the future and they are certain to provide much applicability 
in NPs determinations, considerably. 
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