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Visible light-induced direct α C–H functionalization
of alcohols
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Considering the synthetic value of introducing active alcoholic hydroxyl group, developing

C–H functionalization of alcohols is of significance. Herein, we present a photochemical

method that under visible light irradiation, selectfluor can effectively promote the oxidative

cross-coupling between alcohols and heteroarenes without the external photocatalysis,

achieving the selective α sp3 C–H arylation of alcohol, even in the presence of ether.

The N-F activation of selectfluor under blue LEDs irradiation is evidenced by electron para-

magnetic resonance (EPR) study, which is the key process for the oxidative activation of

α sp3 C–H alcohols. The observed reactivity may have significant implications for chemical

transformations.
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A lcohols as one of the most common raw chemical mate-
rials, are indispensable to organic chemistry and chemical
engineering. The presence of hydroxyl group enables

them to play diverse roles such as good solvents, competent
nucleophiles1–5, suitable directing group6–8, and frequently used
proton source for a long time9–11. The strategies, sp3 C–H
functionalization of alcohols including α sp3 C–H functionaliza-
tion and remote sp3 C–H functionalization12–15, which can
transform alcohols into value-added chemicals, are significant for
the organic synthesis and bio-pharmaceuticals (Fig. 1)16,17.

During the past decade, photoredox catalysis featured by the
conversion of light energy into chemical energy and single elec-
tron transfer (SET) events, has facilitated the discovery of
numerous elegant and challenging chemical transformations18–26.
Particularly, impressive studies on employing the alcohols as
alkylating reagent with the loss of alcoholic hydroxyl groups—
achieved photochemical alkylation of electron-deficient hetero-
arenes (Fig. 2a)27–30. Considering the multiple functionality of
alcoholic hydroxyl group in bioactive molecules and the fre-
quency of its use as synthetic handles, selective functionalization
of α sp3 C–H of alcohols via a photochemical process is unde-
niably attractive for its applications in synthetic organic chemistry
(Fig. 2b)31.

To enable selective functionalization of α sp3 C–H of alcohols
to introduce the alcoholic hydroxyl group, enormous efforts have
been made by chemists. For example, remarkable works on the
cross-coupling between alcohols with unsaturated bonds such as
alkenes, allenes and alkynes have been extensively reported32–40,
providing effective routes for α sp3 C–H activation and functio-
nalization of alcohols. Furthermore, oxidation-induced C–H
functionalization as a powerful tool41–48, is successfully applied in
the α sp3 C–H functionalization of alcohols49–58. Direct oxidative
α sp3 C–H arylation by C–H/C–H cross-coupling to acquire the
modified alcohols is undoubtedly the most step- and atom-
economical method. It is worth noting that peroxide-mediated
oxidative arylation of alcohols with different heterocycles pre-
dominates this topic59,60. Herein, we describe an oxidative α sp3

C–H arylation of alcohols with heterocycles promoted by
selectfluor under visible light irradiation, which is selective for the
α sp3 C–H of alcohols, even in the presence of ethers. The N–F
activation of selectfluor by blue light emitting diodes (LEDs)
irradiation is evidenced by EPR studies. The observed reactivity
may have important implications for sp3 C–H functionalization.

Results
Exploration of reaction pathways. Selectfluor 1 is well-known as
a powerful fluorination reagent and oxidant, frequently combined
with a metal catalyst or photocatalyst in the organic synthesis61–68.
The N–F breakage of selectfluor resorts to the immigration of
external electron from a reductant. We questioned whether the
visible light irradiation could induce the N–F activation of
selectfluor to directly yield the corresponding N radical cation 2
and F radical 3 (Fig. 3a). The generated N radical cation 2 is
responsible for the abstraction of α sp3 C–H of alcohol 4 to the
hydroxyalkyl radical 6 (Fig. 3b). Afterward, the electron-deficient
heteroarenes 7 protonated by acid can capture the relatively
nucleophilic radical and deliver the corresponding radical adducts
8 (Fig. 3c). The oxidation and deprotonation of this radical
adduct 8 by another selectfluor would then afford the α-arylated
product 9 (Fig. 3d). The key difference between this oxidative α
sp3 C–H arylation of alcohols and those reported photochemical
alkylation of heteroarenes28–30, is the oxidation condition. Under
the designed oxidation condition, the spin center shift process of
the intermediate 8 can be avoided and the alcoholic hydroxyl
group is unaffected, achieving the oxidative α sp3 C–H arylation
of alcohols with heteroarenes.

This assumption that the N–F activation of selectfluor could be
achieved by blue light irradiation was evidenced by EPR
experiments (see Supplementary Methods). Two kinds of radical
signals were observed, when selectfluor in acetonitrile was
irradiated by blue LEDs and 5,5-dimethyl-1-pyrroline N-oxide
(DMPO) was employed as a radical scavenger. Fitting the EPR
spectra on the basis of electron spin resonance parameters of spin
adducts69, one of the radical 10 was confirmed as the radical
adduct between two fluorine radical and DMPO, while the other
one 11 was resulted from the oxidation of DMPO, whose ratio is
3:8 (Fig. 4a, c). In contrast, we did not detect the radical adduct
between two fluorine radical and DMPO under the darkness
(Fig. 4b, c).

Investigation of reaction conditions. With the mechanistic
evidence in hand, we started our investigations with isoquinoline
12 and ethanol as the model substrates. We identified that using
selectfluor as a visible light-activated oxidant irradiated by blue
LEDs, in the presence of 1.5 equiv trifluoroacetic acid (TFA), the
desired oxidative α sp3 C–H arylation product can be afforded in
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Fig. 1 Important molecules containing alcoholic hydroxyl groups. a Anti-malarial natural product quinine. b Inhibitor of adenosine deaminase. c Inhibitor of
gastric acid secretion
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Fig. 2 The transformation of alcohols. a Photo-induced alkylation of heteroarenes by using alcohols as alkylating reagent. b α sp3 C–H functionalization of
alcohols
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87% yield (Table 1, entry 1). It is noteworthy that upon treatment
of this reaction with green light irradiation or darkness, no
product was detected (Table 1, entries 2 and 3). Even if the
reaction system was heated to 80 °C under darkness, the con-
version was still not promoted (Table 1, entry 4). These results
might reveal that only the shorter wavelength visible light,
which possesses the higher energy could achieve the N–F acti-
vation of selectfluor and then promote the oxidative α sp3 C–H
arylation of alcohol, while the longer wavelength visible light and
heating failed. In addition, the contemporary fluorination
reagents N-fluorobenzenesulfonimide was also examined under
the same condition with blue light irradiation. However, a poor
reactivity was observed (Table 1, entry 5), probably resulted from
the higher bond dissociation energy of N–F compared with
selectfluor70. Although the common-used oxidants such as
t-butylhydroperoxide (TBHP), potassium persulfate (K2S2O8),
and (diacetoxyiodo)benzene (PhI(OAc)2) show efficient capacity
for oxidative activation of sp3 C–H, the reaction still could not be
promoted by utilizing these oxidants at 80 °C (Table 1, entries
6–8), implying the uniqueness of selectfluor under blue light
irradiation for the oxidative α sp3 C–H arylation of alcohols.

Substrate scope. With the optimized conditions established, we
hoped this method could be applied to other noble heteroaro-
matics (Fig. 5). Isoquinolines with halides and esters substituents
are competent functionalization partners, successfully delivering
the desired oxidative α sp3 C–H arylation products (14–16). It
was found that the quinoline derivatives such as methyl and

halides substituted quinolines performed good reactivities
(17–19). Importantly, the addition of methanol to benzothiazole
could be smoothly proceeded under the standard condition (20).
Unfortunately, the reactivity of pyridine and pyrazine was poor
under the same catalytic system. Subsequently, a variability
of alcohols were examined in details. Methanol, n-propanol
and n-butyl alcohol were effectively oxidized to corresponding
nucleophilic radicals and reacted with isoquinoline in good to
high yields under the photochemical condition (21–23). When
the ethanols containing isopropyl, tert-butyl, isobutyl and cyclo-
pentyl were tested, we still isolated the oxidative arylation
products with moderate yields, in spite of the steric hindrance
proximal to the α sp3 C–H of alcohols (24–27). It is worth noting
that long-chain alkyl alcohols like n-hexanol and n-heptanol are
also suitable for this protocol (28 and 29). Isopropanol could
also be tolerated, even though a low yield was obtained (30).
Notably, dioles were successfully tolerated, delivering the mod-
ified monoarylation dioles (31 and 32).

Additionally, the gram-scale synthesis experiment was carried out
(see Supplementary Methods). A comparable yield 85% was obtained
when the model reaction was performed in nearly 10mmol scale,
providing promising application in preparative synthesis (Fig. 6a).
Then, an intermolecular competition experiment was carried out
to explore the selectivity of this oxidative α sp3 C–H arylation of
alcohols with heteroarenes (see Supplementary Methods). It is
significant that the single selectivity and good yield for the
oxidative α sp3 C–H arylation of alcohols in the presence of ether
sp3 C–H were observed (Fig. 6b).
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Fig. 3 The designed reaction pathways. a The N–F activation of selectfluor under blue LEDs irradiation. b The hydrogen-atom transfer (HAT) between
generated N radical cation with alcohols to yield hydroxyalkyl radical. c The nucleophilic addition of hydroxyalkyl radical to electron-deficient heteroarenes.
d The oxidative aromatization of the radical adducts to the final product

Blue LEDs

CH3CN

1

Darkness

CH3CN

1

DMPO

DMPO

N

O

+
N

O

F

F
O

n.d.

NNClH2C F

2 BF4
–

NNClH2C F
+

++

+

2 BF4
–

10 11

Blue light irradiation
Darkness

X [G]

354035203500348034603440

ca

b

Fig. 4 The electron paramagnetic resonance (EPR) experiments. a The EPR experiment of selectfluor under blue light irradiation. b The EPR experiment of
selectfluor under darkness. c The EPR spectra of selectfluor under blue light irradiation and darkness
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Table 1 Investigation of the reaction conditions.*

N
+ OH

Selectfluor (2 equiv)
TFA (1.5 equiv)

CH3CN, blue LEDs

N

OH

12, 0.3 mmol 13, 87%

Entry Oxidant Light source T (°C) Yield (%)†

1 Selectfluor Blue LEDs 25 87
2 Selectfluor Green LEDs 25 N.D.
3 Selectfluor Darkness 25 N.D
4 Selectfluor Darkness 80 Trace
5 NFSI Blue LEDs 25 Trace
6 TBHP Darkness 80 N.D.
7 K2S2O8 Darkness 80 N.D.
8 PhI(OAc)2 Darkness 80 N.D.

*Conditions: 12 (0.3mmol), ethanol (1.5mL), selectfluor (0.6mmol), TFA (0.45mmol), in CH3CN (2.0mL) under a nitrogen atmosphere, irradiated with 3W blue LEDs at 25 °C for 24 h; N.D. not detected
†Isolated yield
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Fig. 5 Substrate scope for the α sp3 C–H arylation of alcohols with heteroarenes. Reaction conditions: heteroarene (0.3mmol), alcohol (see Supplementary Methods
for details), selectfluor (0.6mmol), TFA (0.45mmol), in CH3CN (2.0mL) (additional 0.75 mL DCE was added for 25) under a nitrogen atmosphere, irradiated with
3W blue LEDs at 25 °C for 24 h
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Discussion
To further understand this visible light-induced protocol, we
conducted several mechanistic experiments (Fig. 7). While
2,2,6,6-tetramethylpiperidinooxy (TEMPO) as radical-trapping
reagent was subjected to the standard reaction condition (see
Supplementary Methods), the oxidative α sp3 C–H arylation of
alcohols was totally suppressed, thus revealing a radical pathway
might be involved (Fig. 7a). Whereafter, the intermolecular
kinetic isotope effect (KIE) experiment was undertaken (see
Supplementary Methods and Supplementary Fig. 41 for details).
A KIE value of 2.2 indicated the cleavage of α sp3 C–H is the rate-
determining step for this protocol (Fig. 7b). Importantly, the
highly reactive N-oxide is not the reaction intermediate59, because
no product was afforded while isoquinoline N-oxide 34 was
employed (Fig. 7c).

In summary, we have developed a visible light-induced oxi-
dative α sp3 C–H arylation of alcohols with heteroarenes, which is
promoted by selectfluor under the blue LEDs irradiation. What is
essential for this protocol is the N–F activation of selectfluor
achieved by blue light irradiation. The EPR study provided
important evidence for the visible light-induced N–F activation of
selectfluor. The selective oxidative α sp3 C–H arylation of alcohols
with heteroarenes in the presence of ethers is demonstrated. The

development of related oxidative C(sp3)–H functionalization is
underway in our laboratory.

Methods
General procedure (13). A solution of isoquinoline 12 (0.3 mmol, 1.0 equiv,
38.7 mg), 1.5 mL ethanol, selectfluor (0.6 mmol, 2.0 equiv, 212.5 mg) and TFA
(0.45 mmol, 1.5 equiv, 51.3 mg) in degassed dry CH3CN (2.0 mL) were stirred
under nitrogen atmosphere and irradiated by 3W blue LEDs at 25 °C for 24 h.
Afterwards, the reaction system was quenched by saturated NaHCO3 aqueous
solution. The aqueous solution was extracted with ethyl acetate (3 × 10 mL) and
the combined extracts were dried with anhydrous Na2SO4. The solvents were
removed under reduced pressure by rotary evaporation. Then, the pure product
was obtained by flash column chromatography on silica gel (eluent: petroleum
ether/ethyl acetate= 5:1), directly giving the desired product 13 in 87% yield as
a pale yellow liquid. For 1H NMR and 13C NMR spectra of compounds 13–32
see Supplementary Figs. 1–40. Full experimental details can be found in the
Supplementary Methods.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its Supplementary information files.
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