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Abstract 

Protein deglycase DJ-1 (Parkinson disease protein 7) is a 20 kDa protein encoded by PARK7 gene. 
It is also known as a redox-sensitive chaperone and sensor that protect cells against oxidative 
stress-induced cell death in many human diseases. Though increasing evidence implicates that DJ-1 
may also participate in ocular diseases, the overview of DJ-1 in ocular diseases remains elusive. In 
this review, we discuss the role as well as the underlying molecular mechanisms of DJ-1 in ocular 
diseases, including Fuchs endothelial corneal dystrophy (FECD), age-related macular degeneration 
(AMD), cataracts, and ocular neurodegenerative diseases, highlighting that DJ-1 may serve as a very 
striking therapeutic target for ocular diseases. 
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Introduction 
Protein deglycase DJ-1 is coded by the human 

PARK7 gene on chromosome 1 (1p36.12–1p36.33) [1], 
and also named as Parkinson disease protein 7 due to 
the fact that DJ-1 was first discovered in Parkinson’s 
disease (PD) patients [2]. DJ-1 is a member of the 
DJ-1/Hsp31/PfpI superfamily [3]. With a size of 20 
kDa [4], DJ-1 consists of 189 amino acids (9 α-helices 
and 7 β-strands in total) [5] and it is usually presented 
as a dimer which is important for its biological 
activity. Mutations destroy the dimer structure of 
DJ-1. For instance, L166P and M26I weaken its 
biological activity [6]. 

The DJ-1 protein is abundantly expressed in 
more than 22 human tissues [7]. DJ-1 is associated 
with multiple biological functions, such as 
mitochondrial function regulation [8], transcriptional 
regulation, molecular chaperone [9], glyoxalase [10], 
cysteine protease regulation, glutathione regulation 
[11, 12], dopamine regulation [13], and the subunit of 
RNA-binding protein regulation. Of most importance, 
dependable findings revealed that DJ-1 possesses an 
antioxidant activity and plays a role as a redox 
activated chaperone [9] in cytoprotective function 
under stimuli challenge [14, 15]. DJ-1 has 3 cysteine 
residues, Cys-106, Cys-46 and Cys-53, with Cys-106 

being the active site [16]. DJ-1 may exhibit its 
anti-oxidative defence through oxidation of Cys-106 
to regulate transcription factors instead of removing 
ROS directly.  

DJ-1, an important endogenous antioxidant, is 
expected to be a target of mechanism-oriented 
therapy for neurodegenerative diseases, cardiovas-
cular diseases, and cancers [17]. Many ocular diseases 
are associated with oxidative stress but DJ-1 is never 
reviewed in ocular diseases. In this review, we discuss 
the role of DJ-1 in the pathogenesis of ocular diseases 
and the mechanism to target DJ-1 for treatment of 
these diseases. 

Fuchs endothelial corneal dystrophy 
(FECD)  

FECD is a severe corneal dystrophy with slow, 
progressive loss of corneal endothelial cells resulting 
in corneal edema and vision loss at the late stage. 
Currently, corneal transplantation is the mainstream 
treatment option to restore the vision [18]. Oxidative 
stress has been considered to exert an important role 
in the apoptosis of corneal endothelial cells (CECs) in 
FECD. Nuclear factor erythroid 2–related factor 2 
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(Nrf2) is a foremost transcription regulator of cellular 
protector against oxidative stress. DJ-1 is a protein 
stabilizer of Nrf2 and was markedly decreased at both 
mRNA and protein levels of CECs in FECD. Under 
oxidative stress, DJ-1 protein synthesis was 
significantly up-regulated in normal CECs. Whereas 
decreased levels of DJ-1 was found in FECD at 
baseline, which-diminished Nrf2 nuclear translon-
cation and accelerated CECs apoptosis. The pathway 
of DJ-1/Nrf2 axis could serve as a new therapeutic 
target of FECD by slowing CEC degeneration in 
FECD [19]. Sulforaphane (SFN) is thought as an 
‘‘indirect antioxidant’’ and can augment effects on 
varieties of antioxidant genes. In Alireza Ziaei et Al. 
study, SFN enhanced nuclear translocation of Nrf2 in 
human FECD specimens under tert-Butyl hydro-
peroxide (tBHP) induced oxidative stress and led to 
increased DJ-1 synthesis. This proof-of-concept 
investigation indicated that DJ-1 may protect FECD 
against oxidative stress by activating Nrf2-antioxidant 
response element (ARE) pathway [20]. Ultraviolet A 
(UV-A), with a wavelength of 320-400 nm can initiate 
cell apoptosis indirectly by producing reactive oxygen 
species (ROS). Small interfering RNA (siRNA) of DJ-1 
was transfected into the normal human corneal 
endothelial cell line (HCECi) to obtain the 
DJ-1-deficient CECs. Increased ROS overproduction 
and decreased DJ-1, nuclear Nrf2 proteins were found 
in DJ-1 siRNA-treated cells when compared to 
controls. DJ-1-deficient CECs exhibited a vulnerable 
response to UV-A irradiation, and the declined in DJ-1 
led to activation of caspase-3 and phospho-p53 under 
the oxidative stress. And plays a central role in the 
execution-phase of cell apoptosis, indicating that DJ-1 
may serve a protective role against UV-A-induced 
apoptosis by inhibiting phospho-53-mediated 
apoptosis pathway. Down-regulation of DJ-1 also 
attenuated Nrf2 nuclear translocation, causing the 
decreasement of transcription of antioxidant genes 
(NQO1 and HO-1) in DJ-1-deficient CECs and 
weakened antioxidant defense [19].  

DJ-1 may serve as a potential treatment option 
for corneal endothelial disorders, such as FECD. 
Further studies are required to understand the role of 
DJ-1 in FECD more precisely.  

Age-related macular degeneration (AMD) 
AMD is a common retinal disease and also a 

leading cause of irreversible vision loss in the old 
patients. The degeneration of retinal pigment 
epithelium (RPE) cells, which is the pigmented cell 
layer just outside the neurosensory retina that 
nourishes retinal visual cells, in association with 
oxidative stress is related to AMD pathogenesis. 

The photoreceptors and RPE in DJ-1-deficient 

retinas exhibited signs of physiological dysfunction, 
accompanied by the increased carbonyl content 
(protein oxidation product), nitric oxide synthase 
(iNOS, an oxidative stress marker) and decreased 
Nrf2 expression (antioxidant transcriptional 
regulator) in retina/RPE lysates of DJ-1 KO mice. 
Moreover, a single tail vein injection of NaIO3 (an 
oxidizing reagent) significantly accelerated RPE 
degeneration in DJ-1 KO mice [21]. Reduced 
photoreceptor activity was also found by the ERG in 
old DJ-1 KO retinas when compared to age-matched 
controls. These results suggest that DJ-1 is a 
protecting factor for RPE/photoreceptors against the 
oxidative stress (such as ageing) by regulating Nrf2 
signaling. Therefore, DJ-1 may serve as a potential 
target for the prevention of the geographic atrophy 
and vision loss in AMD [22].  

Cataract 
Cataract is the leading cause of blindness 

worldwide. Increasing age is considered as the main 
contributor to cataract, and the ageing eyes are 
susceptible to be at extensive risk to oxidative stress 
[23]. DJ-1 with oxidized cysteine at vital sites was also 
found to be dramatically expressed in lens fibers [24]. 

The experiment demonstrated that the cysteine 
residues of DJ-1, Cys46 and Cys53, were found to be 
oxidized in aged cataractous human lenses. Similar 
results were also found in glutathione-depleted 
mouse (LEGSKO) lenses and in vitro oxidation model 
triggered by H2O2 when compared to controls. As 
long-lived proteins, the lens proteins are inclined to 
damage accumulation. Substantial evidence points 
out that cataract is associated with disulfide-linked 
high molecular weight crystal aggregation. The 
oxidation of DJ-1 protein was closely related to 
disulfide cross-linking. The disulfide ratio of the 
Cys46 and Cys53 in an aged human lens is much 
higher than the controls. Similar results were also 
detected in Cys46 and Cys53 oxidation in LEGSKO vs. 
age-matched mouse lens and in vitro modelling 
samples.  

The above results indicate that DJ-1 is a 
significant oxidation site in the lens via the disulfide 
cross-linking [25]. 

Ocular neurodegenerative diseases 
Ocular neurodegenerative diseases, such as 

glaucoma, optic neuropathies are characterized by the 
damage of the optic nerve as well as progressive 
deterioration of retinal ganglion cells (RGCs), which 
constitute significant elements for chronic visual 
injury [26-28]. Oxidative stress plays an important role 
in the pathogenesis of ocular neurodegenerative 
diseases [29]. Glutathione level, a significant 
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antioxidant in the retina, is decreased markedly in 
plasma of glaucoma patients [30, 31]. The antioxidant 
drug, Geranylgeranylacetone (GGA) is effective in 
protecting RGCs in glaucoma mouse models [32]. 
Optic neuritis (ON), an optic nerve disease, is strongly 
associated with inflammatory demyelination [33] and 
present symptoms in 20% of multiple sclerosis (MS) 
patients [34]. Oxidative stress is indicated to play a 
key role in the pathogenesis of MS [35] and 
antioxidants are demonstrated to be effective in 
ameliorating the inflammation of the optic nerve. For 
instance, natural antioxidant lipoic acid [36] and 
spermidine [37] are effective in suppressing 
inflammation and protecting RGCs in the optic nerve 
of experimental autoimmune encephalomyelitis 
(EAE) mice. These findings suggest that antioxidants 
may serve as effective treatment options for ocular 
neurodegenerative diseases. DJ-1 regulates varieties 
of signal transductions related to oxidative stress and 
may exhibit anti-oxidative effects as well as protect 
RGCs via various signaling pathways such as Nrf2 
pathway, PI3K/Akt pathway and ASK1 pathway. 

Nuclear factor erythroid 2-related factor 2 
(Nrf2) pathway  

Nrf2 is a master transcription factor associated 
with oxidative stress and can modify the basal and 
inducible expressions of several antioxidant genes 
[38]. Nrf2 KO mice are vulnerable to the ocular 
diseases and are related to oxidative stress. Genetic 
ablation of Nrf2 can aggravate irreversible RGCs 
apoptosis and visual deficits in the murine model 
[39].Gene therapy with Nrf2 could reduce RGCs 
degeneration [40]. DJ-1 stabilizes Nrf2 and induces the 
expression of antioxidant thioredoxin 1 through the 
Nrf2 pathway [41]. These findings above indicate that 
DJ-1 could be a potential therapeutic target for ocular 
neurodegenerative diseases via regulating the 
activation of Nrf2.  

PI3K/Akt pathway 
The phosphoinositide 3-kinase (PI3K)/Akt 

signaling pathway plays an important part in 
blocking oxidative stress [42] and functions as a 
neuroprotective effect for the injured RGCs [43]. 
Activation of the PI3K/Akt pathway provides a 
possible therapeutic target for RGCs damage in retinal 
ischemia [44, 45]. Phosphatase and Tensin homolog 
deleted on chromosome 10 (PTEN) is a negative 
regulator of PI3K/Akt pathway [46]. DJ-1 activated 
PI3K/Akt pathway and exhibited its cytoprotective 
role via the inhibition of PTEN [47, 48] indicating that 
DJ-1 may serve as a strategy to achieve 
neuroprotection of RGCs in ocular neurodegenerative 
diseases. 

ASK1 pathway 
Apoptosis signal-regulating kinase 1 (ASK1) is a 

member of the stress-responsive mitogen-activated 
protein kinase kinase kinase (MAP3K) family and 
plays a vital role in regulating oxidative stress [49] or 
cytokine-induced apoptosis [50]. ASK1 is activated by 
the phosphorylation of a vital threonine residue in the 
oxidative stress state [51]. ASK1 deletion reduced the 
oxidative stress level and the factors which cause 
oxidative stress, for instance, TNF-α [52]. ASK1 
deletion prevented RGC apoptosis and increased 
RGC survival in mice model of glaucoma [53]. This 
experiment shows that ASK1 is a negative factor for 
RGC, and ASK1 inhibition can be an effective target 
for treatment of glaucoma. Under oxidative stress, 
DJ-1 binds with ASK1 via the Cys-106 and forms the 
mixed disulfide bonds, which provide cytoprotection 
in mouse embryonic fibroblast [54, 55]. These results 
indicate that DJ-1 may provide a promising approach 
for the treatment of glaucoma. 

The above pathway describes the role of DJ-1 in 
the protection of RGCs. DJ-1- related treatment, by 
targeting oxidative stress could be a promising step in 
the management of ocular neurodegenerative 
diseases. 

Uveal Melanoma (UM) 
DJ-1 was found as a putative oncogenic gene 

years ago [56]. Accumulate evidence have shown that 
DJ-1 is frequently overexpressed and secreted in 
several tumor cells, for example, prostate cancer [57], 
hepatocellular carcinoma [58], non-small cell lung 
carcinoma (NSCLC) [59], laryngeal squamous cell 
carcinoma [60], and esophageal squamous cell 
carcinoma (ESCC) [61], indicating that DJ-1 
overexpression is a regular event in cancer cells.  

Choroidal nevi, which is referred to as 
pigmented lesions are usually benign. However, 
Choroidal nevi may develop to UM, and the risk of 
malignant transformation is estimated 0.011%. 

Elevated serum levels of DJ-1 in choroidal nevi 
patients had a significant correlation with clinical risk 
factors of malignant transformation (e.g. nevus 
thickness > 1.5 mm, a large basal diameter > 8 mm). 
DJ-1 level was shown to have a positive correlation 
with clinical risk factors for choroidal nevi growth 
and may be a promising biomarker of malignancy 
[62].  

UM, is a cancer of the melanocytes in the uvea 
(the iris, ciliary body, and choroid) of the eye. It is 
considered as the most frequent primary intraocular 
malignant growth in adults with high risk of blood 
disseminating and hepatic metastases [63, 64]. UM-A, 
a primary and well-characterized UM cell, is proved 
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to be a valuable cell model for studying UM in vitro. 
DJ-1 protein could be secreted by both UM-A and 
other UM cell lines cultured in vitro, but not by 
normal melanocytes, indicating that DJ-1 protein may 
serve as a potential serum marker for UM [65]. DJ-1 
level in serum of patients with metastatic UM was 
reported to be significantly upregulated, either 
compared with UM disease-free controls (at last 10 
years following primary UM treatment) or compared 
with normal healthy controls. The study further 
indicated that overexpression of DJ-1 may be 
associated with metastatic UM. Consequently, DJ-1 
could be a potential serological biomarker for 
detection of UM metastases in patients at an early 
stage [66, 67].  

To summarize, DJ-1 is closely related to the 
occurrence and development of UM and can be used 
as a biomarker for UM diagnosis and prognosis 

evaluation. However, the mechanism is still not clear 
and more investigations are still needed.  

Conclusions 
DJ-1 is expressed in various ophthalmological 

diseases and the function of DJ-1, as well as the 
underlying pathway involved varies in different 
diseases. As discussed above, DJ-1 plays a role as an 
antioxidant in FECD, AMD, cataracts, and ocular 
neurodegenerative diseases. Both in vitro and in vivo 
studies showed that it may exert protective role 
through various pathways (Nrf2 pathway, PI3K/Akt 
pathway, ASK1 pathway). Furthermore, DJ-1 is 
overexpressed in the progression of UM and can be 
used as a biomarker for UM diagnosis. Thus, DJ-1 
could be a promising target directing the future 
treatment of related ocular diseases. 

 

 
Figure 1. Schematic diagram of DJ-1 regulation in ocular diseases. Under oxidative stress, the level of DJ-1 and Nrf2 are decreased in the cornea, causing the CECs 
apoptosis and leading to the reduction of FECD. DJ-1 and Nrf2 in the lens, resulting in the formation of a disulfide bond, crystal turbidity, and cataract formation. DJ-1 
and Nrf2 are reduced in the retina, accelerating RPE degeneration and leading to AMD. Oxidative stress also induces the downregulation of Nrf2, DJ-1/PI3K/Akt and 
activation of ASK1, leading to the aggravation of irreversible RGCs apoptosis, resulting in ocular neurogeneration diseases. The expression level of DJ-1 in UM is 
significantly upregulated, DJ-1 protein may serve as a potential serum marker for UM. 

 

Table 1. Selected studies on the relationship between DJ-1 inducer/suppressor and ocular diseases 

Ocular Disease Type Models Results Reference 
FECD In vitro Human corneal 

endothelial cell lines 
SFN enhanced nuclear translocation of Nrf2 in human FECD specimens under tBHP induced 
oxidative stress and led to increased DJ-1 synthesis. 

[20] 

In vitro CECs from ex vivo 
corneas of DJ-1 
knockout mice 

DJ-1-deficient CECs exhibited the vulnerable response to UV-A irradiation, and the decline in 
DJ-1 led to activation of caspase-3 and phospho-p53 under the oxidative stress, which plays a 
central role in the execution-phase of cell apoptosis. 
DJ-1 may serve a protective role against UV-A-induced apoptosis by inhibiting 
phospho-53-mediated apoptosis pathway. 

[19] 

AMD In vivo DJ-1 KO mice DJ-1 is a protecting factor for RPE/photoreceptors against the oxidative stress (such as aging) 
by regulating Nrf2 signaling and DJ-1 may serve as a potential target for the prevention of the 
geographic atrophy and vision loss in AMD. 

[21, 22] 
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Ocular Disease Type Models Results Reference 
Cataracts In vivo cataractous human 

lens; 
glutathione-depleted 
mouse 

Cys46 and Cys53 were found to be oxidized in aged cataractous human lens and 
glutathione-depleted mouse. 
The oxidation of DJ-1 protein was closely related to disulfide cross-linking. 

[25]. 

ocular 
neurodegenerative 
diseases 

In vivo Nrf2 KO mice RGC apoptosis is considerably increased in Nrf2 KO mice, and gene therapy with Nrf2 can 
reduce RGC death. 
DJ-1 can stabilize Nrf2 and induce the expression of antioxidant thioredoxin 1 through the 
Nrf2 pathway. 

[41]. 

In vitro Mouse NIH3T3 cells Activation of the PI3K/Akt pathway is often induced by substances able to prevent RGC death 
in retinal ischemia. 
DJ-1 activated PI3K/Akt pathway and exhibited its cytoprotective role via the inhibition of 
PTEN. 

[47, 48] 

In vivo mice model of 
glaucoma 

ASK1 deletion prevented RGC apoptosis and increased RGC survival in mice model of 
glaucoma. 

[53] 

In vitro mouse embryonic 
fibroblast 

DJ-1 can bind with ASK1 via the Cys-106 under oxidative stress. [54] 

UM In vitro UM cell lines DJ-1 protein could be secreted into the bloodstream by both UM-A and other UM cell lines 
cultured in vitro, but not by normal melanocytes, indicating that DJ-1 protein may serve as a 
potential serum marker for UM.  

[65] 

Abbreviations: FECD, Fuchs endothelial corneal dystrophy; SFN, Sulforaphane; AMD, Age-related macular degeneration; Nrf2, Nuclear factor erythroid 2-related factor 2; 
tBHP, tert-Butyl hydroperoxide; CECs, corneal endothelial cells; PI3K, phosphoinositide 3-kinase; RGC, retinal ganglion cells; PTEN, Phosphatase and Tensin homolog 
deleted on chromosome 10; ASK1, Apoptosis signal-regulating kinase 1; UM, uveal melanoma 
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