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OBJECTIVE

Sedentary children have greater risk of developing abnormalities in glucose
homeostasis. We investigated whether interrupting sedentary behavior (sitting)
with very short periods of walking would improve glucose metabolism without
affecting dietary intake in children with overweight or obesity. We hypothesized
that interrupting sitting with short bouts of moderate-intensity walking would
decrease insulin area under the curve (AUC) during an oral glucose tolerance test
(OGTT) compared with uninterrupted sitting.

RESEARCH DESIGN AND METHODS

Overweight/obese (BMI ‡85th percentile) children 7–11 years of age underwent
two experimental conditions in random order: prolonged sitting (3 h of contin-
uous sitting) and interrupted sitting (3 min of moderate-intensity walking at 80%
of ventilatory threshold every 30 min for 3 h). Insulin, C-peptide, and glucose
were measured every 30 min for 3 h during an OGTT. Each session was followed
by a buffet meal. Primary outcomes were differences in OGTT hormones and
substrates and in buffet meal intake by condition.

RESULTS

Among 35 children with complete data, mixed-model results identified lower in-
sulin and C-peptide in the interrupted condition (P = 0.007 and P = 0.029, respec-
tively); the intervention reduced insulin AUC by 21% (P < 0.001) and C-peptide
AUC 18% (P = 0.001) and improved estimated insulin sensitivity (P = 0.013).
Neither buffet total energy intake (1,262 6 480 vs. 1,260 6 475 kcal; P = 0.89)
nor macronutrient composition of the meal (P values >0.38) differed between
conditions significantly.

CONCLUSIONS

Interrupting sitting with brief moderate-intensity walking improved glucose
metabolism without significantly increasing energy intake in children with over-
weight or obesity. Interrupting sedentary behavior may be a promising inter-
vention strategy for reducing metabolic risk in such children.
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It is well established that supervised
intensive exercise training improves
glucose homeostasis in children with
overweight or obesity (1); however, the
effects of such interventions generally
disappear once supervised training ends
(2). As a result, there has been a search
for lower-cost approaches that could be
deployed long-term in school or after-
school settings to improve children’s
metabolic health.
On average, children remain sedentary

during nonsleep periods for at least 6
h/day (3,4). Emerging evidence in adults
and children suggests that extended time
spent in sedentary behaviors is directly
linked to poor metabolic outcomes in-
cluding abnormalities in glucose ho-
meostasis (5–12). Preliminary studies
in adults (13–15) and in children with
healthy weight (16) have demonstrated
short-term improvements in glucose
metabolism through interventions that
interrupt sedentary behavior. In a cross-
over trial, we demonstrated that chil-
dren of normal body weight, who
underwent oral glucose tolerance tests
(OGTTs), had improved insulin and glu-
cose concentrations when sitting was
interrupted with short (3-min) bouts
of moderate-intensity walking (16). How-
ever, not all studies of this type of in-
tervention have identified intervention
effects (17). Furthermore, there are negli-
gible prior data from children with over-
weight or obesity to demonstrate benefits
from such interventions.
We therefore sought to determine if

brief interruptions in sedentary behav-
ior, with moderate intensity walking,
acutely improved glucose metabolism
in children aged 7–11 years who were
overweight/obese. We hypothesized
that compared with uninterrupted sed-
entary behavior, interrupting sedentari-
ness with short bouts of walking would
result in lower insulin, C-peptide, and glu-
cose area under the curve (AUC) during
an OGTT.

RESEARCH DESIGN AND METHODS

Study Overview
The Eunice Kennedy Shriver National In-
stitute of Child Health and Human De-
velopment Institutional Review Board
approved the randomized crossover trial
(https://clinicaltrials.gov/ct2/show/
NCT01888939). Participants were seen
at the National Institutes of Health
(NIH) Hatfield Clinical Research Center

for three separate visits. Participants
were assessed for eligibility during a
screening visit during which written con-
sent and assent were obtained. Eligible
participants returned on two separate
occasions to complete each experimen-
tal condition (uninterrupted sitting and
sitting with short walking bouts) in ran-
dom order. To prevent possible carryover
effects (18), test visits were scheduled
7–30 days apart.

Participants
Participants were recruited using so-
cial media, community listservs, the
NIH Clinical Center ResearchMatch data-
base, mailings, and flyers from December
2014 to December 2016. Participants were
eligible if they were 7–11 years old, had
fasting plasma glucose ,100 mg/dL,
were in good health, and had overweight
or obesity as determined by BMI $85th
percentile on the Centers for Disease
Control and Prevention growth charts
(19). Participants were excluded if they
exhibited any signs of chronic disease
indicating impaired perfusion, had
fasting glucose$100 mg/dL, indicated
any symptoms of diabetes or other en-
docrine disorders, or were taking medi-
cations that might influence metabolism
or cognitive function. Other exclusionary
criteria included precocious puberty, a
psychiatric disorder that would impede
adherence with the study, and below-
average cognitive ability as indicated by
an age-adjusted score ,85 on the NIH
Toolbox Picture Vocabulary Test (20).

Screening Visit
Participants were assessed for eligibility
through a physical exam, fasting blood
analysis, and a 12-lead electrocardio-
gram. The physical exam included an
assessment for pubertal maturation
by a trained physician or nurse practi-
tioner via Tanner staging of girls’ breasts
and boys’ testicular volumes (21). An
exercise test using a modified Balke
protocol (22) to estimate peak VO2 was
performed. During this examination,
the 10-point Borg Scale of Perceived
Exertion was used to assess exercise
tolerance. Dual-criteria graphs and
the V-slope method (23) were used to
estimate the ventilatory threshold (VT)
achieved by participants. Heart rate and
VO2 at 80% of VT were used to estimate
the speed and grade for the treadmill
during the interrupted sitting condition.
Participants also completed the Picture

Vocabulary Test, a measure used to as-
sess ability to complete cognitive testing,
using the NIH Toolbox (www.nihtoolbox
.org). Body composition was assessed
using DEXA (Lunar iDXA; GE Healthcare,
Madison, WI) and analyzed with GE
Encore 15 software.

Study Protocol

Experimental Design Overview

(Randomized Crossover Trial)

Randomization was stratified based on
sex, and participants were randomized
1:1 using random permutations (www
.randomization.com) to the experimen-
tal order. Study team members assigned
participants to experimental conditions
and were thus not blinded to experi-
mental order; participants learned their
randomization sequence at their first test
visit.

Participants underwent two 3-h OGTTs
(1.75 g/kg dextrose with a maximal dose
of 75 g) on separate days under the two
experimental conditions: uninterrupted
sitting (SIT) and sitting with short walk-
ing bouts (SIT + WALK), each performed
under direct supervision of research staff.
In the SIT condition, participants were
required to remain seated for 3 h and
allowed to rise only to use the bath-
room. In the SIT + WALK condition,
participants walked on a bedside tread-
mill for 3 min every 30 min for 3 h and
were otherwise sedentary except for
bathroom use. Total walking time was
18 min. Speed and grade were individ-
ualized to each subject’s target heart
rate (80% of VT). Samples to measure
hormones and substrates were drawn
for 3 h.

Data Collection

Pre-Study Visit. Participants were given
an Actigraph GT3X+ wrist accelerometer
to wear on the nondominant wrist for
7–10 days prior to each visit to assess
habitual activity and sleep patterns.
Data were continuously recorded from
all three accelerometer axes at a rate of
80 Hz and later filtered and integrated
using the manufacturer software (Acti-
life V6.11) into 1-min epochs, yielding
activity and step counts. The values from
each axis were calculated to create a
minute-based vector magnitude.
Study Visits. Participants arrived by
8:00 A.M., in a fasted state (from 10:00 P.M.

the night prior). Vital signs, weight
(5702; Scale-Tronix, Carol Stream, IL), and
height in triplicate (242; Seca, Hanover,
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MD) were recorded, and a computer-
assisted, multiple-pass 24-h dietary
recall (Nutrition Data System for Re-
search; Nutrition Coordinating Center,
Minneapolis, MN) was conducted by a
nutrition staff member at each visit. For
blood sampling over the 3-h session, an
intravenous line was placed in an ante-
cubital vein at ;9:00 A.M. Fasting blood
samples were collected at 210 and
0 min, after which participants con-
sumed the oral dextrose solution
(thus, the OGTT was performed while
participants executed the interven-
tions). Blood samples were then col-
lected at 20, 30, 60, 90, 120, 150, and
180 min. For the sitting with short
walking bouts (SIT + WALK) condition,
blood draws were done immediately
after each 3-min walking period. Dur-
ing both conditions, participants were
asked to remain sedentary, could watch
movies, read, or do homework, and
were not allowed to consume any
energy-containing food or drink until
the OGTT was finished. Once the OGTT
completed, a.9,500-kcal standardized
buffet-style test meal (51% carbohy-
drate, 37% fat, and 12% protein) (16)
was provided in a confined room with-
out interruptions or audience. Total en-
ergy and proportion of macronutrient
consumed was calculated by weighing
test meal items before and after the
meal.
During each experimental visit, partic-

ipants wore two accelerometer devices:
one on the nondominant wrist and one
on the right hip to track in-laboratory
activity. Heart rate was monitored using
a Polar RS800CX Watch plus chest-band
electrode (Polar Electro Inc., Lake Suc-
cess, NY) during the visits to ensure
participants reached their designated
target heart rate. Hip and wrist acceler-
ometer data were aligned based on the
position of maximum cross-correlation
between the two series using custom
software written in MATLAB (MathWorks
Inc., Natick, MA). The aligned activity
series were further integrated into 60-s
epochs, and vector magnitude was calcu-
lated on a per-minute basis. Step counts
were cumulated in 60-s epochs and
based on hip-mounted data on the ver-
tical axis.

Assays
Blood was collected at each timepoint for
glucose, insulin, C-peptide, cortisol, free

fatty acids (FFAs), and triglycerides. Cat-
echolamines were also measured at the
0- and 30-min time points only. All sam-
ples were assayed by the NIH Clinical
Center Department of Laboratory Med-
icine. Insulin and C-peptide were mea-
sured with Roche Diagnostics reagents
on a Roche Cobas 6000 instrument
(model e601; Roche Diagnostics, India-
napolis, IN) via electrochemiluminescence
immunoassay. For insulin, the analytical
sensitivity was 0.2mU/mL, cross-reactivity
with proinsulin was 0.05%, average
intra-assay coefficient of variation (CV)
was 1.1%, and average interassay CV was
4.3%. For C-peptide, the analytical sen-
sitivity was 0.01 ng/mL, cross-reactivity
with proinsulin was 32.5%, and average
intra- and interassay CV were 1.1% and
4.1%, respectively. Plasma glucose was
collected, kept on ice in tubes with
powdered sodium fluoride until centri-
fugation, and determined using a Roche/
Hitachi instrument (model c502; Roche
Diagnostics). Total cholesterol and tri-
glycerides were also analyzed using the
Roche/Hitachi c502 instrument. Cortisol
was measured on an Immulite 2000 XPi
(Siemens Medical Solutions, Inc., Tarry-
town, NY) via chemiluminescent enzyme
immunoassay. The analytical sensitivity
was 0.2 mg/dL, and average intra- and
interassay CV were 6.8% and 9.9%, re-
spectively. FFAs were measured on a
Roche/Hitachi Cobas 6000 instrument
(model c501; Roche Diagnostics) using
the Wako enzymatic method. The ana-
lytical sensitivity was 0.01 mEq/L, and
average intra- and interassay CV were
1.6% and 5.1%, respectively. Catechol-
amines were measured on a Bio Advan-
tage Basic C18, 5-mm column (Thomson
Instrument Company, Clear Brook, VA)
via high-performance liquid chromatog-
raphy with electrochemical detection.
For norepinephrine, the intra- and
interassay CV were 2.9% and 5.2%, re-
spectively. For epinephrine, the intra-
and interassay CV were 4.2% and 6.6%,
respectively. For dopamine, the intra-
and interassay CV were 5.8% and 6.4%,
respectively.

The average of samples collected
at210 and 0min is reported as baseline.
The Matsuda index of insulin sensitivity
was calculated using the OGTT results
(24). Glucose effectiveness (GE) was cal-
culated as previously described (25,26).
See Supplementary Data for calculation
details.

Statistical Analysis
Statistical analyses for descriptive
characteristics, biomarker AUC, catechol-
amines, nutrition, and free-living com-
parisons were performed using SPSS
Statistics 24 (IBM Corporation, Armonk,
NY). SAS v9.3 (SAS Institute, Cary, NC) was
used for mixed models of the primary
outcomes. The power calculation to de-
termine sample size was based on a pre-
vious trial in adults (13) determining
the effect of moderate-intensity walk-
ing on insulin AUC. The calculations as-
sumed a correlation coefficient of 0.5
between repeated outcome measures
and a Cohen d of 0.40 (moderate effect
size) and suggested a total sample size
of 27 paired observations would supply
a power of 0.80. The protocol therefore
allowed for up to 50 participants to be
randomized to ensure at least 30 (15
participants per crossover order group)
had sufficient data available for analysis.

For the primary outcomes, mixed mod-
els assessed the effect of experimental
condition on log-transformed insulin,
glucose, C-peptide, and additional ex-
ploratory outcomes (FFAs, triglycerides,
and cortisol) measured at 30-min inter-
vals over the 3 h. Variance components
were estimated using the restricted max-
imum likelihood estimate method to
control for within-individual correlations
and an unstructured covariance struc-
ture. Time-invariant covariates were
baseline serum values, age (years), sex
(male = 0 and female = 1), fat mass
(kilograms), randomization order (unin-
terrupted sitting [SIT] at first visit, SIT +
WALK at second visit vs. SIT + WALK at
first visit, and SIT at second visit), visit
condition (SIT and SIT + WALK experi-
mental conditions), and pubertal stage.
Race and Picture Vocabulary Test score
were evaluated as covariates, not asso-
ciated with any outcome, and therefore
not included in the final models. Time-
variant variables were time (minutes)
and serum values. Repeated-measures
ANOVA, controlling for randomization
order in addition to the same covariates
as the primary outcome, was also used
for a post hoc analysis comparison of
insulin sensitivity calculated with the
Matsuda index (24) and calculated
GE between conditions. Peak VO2 was
also considered in this analysis, had no
statistical contribution, and thus was re-
moved. Repeated-measures ANOVAs,
controlling for randomization order, were
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additionally used to compare insulin,
C-peptide, and glucose AUC as well as
the exploratory outcomes of differences
in triglycerides, cortisol, FFA AUC, base-
line and 30-min concentrations of cate-
cholamines, and energy intake from
the test meal between conditions.
Repeated-measures ANOVAs controlling
for randomization order were also used
to investigate differences between con-
ditions on free-living calorie consump-
tion, sleep, and activity data obtained
during the week before each test visit.
Data in text are reported as means6 SD
unless noted otherwise.

RESULTS

Of 48 children screened, 43 were ran-
domized, and 35 completed all assess-
ments necessary for primary analyses
(Supplementary Fig. 1). Table 1 presents
baseline characteristics of randomized
children. The sample demonstrated rel-
atively equal male/female participation
and included a notable variety of race,
with only 40% identifying as white and
the remaining identifying with a race of

minority background. All had normal
fasting glucose at screening; 53% had
obesity, and 47% were overweight. There
were no statistically significant demo-
graphic or anthropometric differences
between those who completed and
those who did not complete the study
and additionally no difference in peak
VO2. There was an average of 22 days
between the two experimental visits.
During the week before experimental
visits, free-living energy intake, activity,
and sleep did not differ significantly by
condition (Table 2). There were no ad-
verse events recorded during the study.

During the SIT + WALK OGTT test visits,
participants demonstrated increased ac-
tivity counts fromwrist- and hip-mounted
accelerometers (Supplementary Fig. 2A
and B). A greater number of steps were
taken during the SIT + WALK condition
(10.96 2.1 steps/min; 1,9626 378 total
steps) than the SIT condition (1.2 6 0.7
steps/min; 216 6 126 total steps; P #

0.001) (Supplementary Fig. 2C). Mea-
sured heart rate during walking periods
(132.8 6 12.9 bpm) confirmed that

participants reached 80% of VT (131.6 6
13.6 bpm; P = 0.06). Participants stood
for unscheduled walking (most com-
monly to use the restroom) on average
one time per session with no difference
between conditions (P = 0.47).

Insulin secretion over the 3-h test was
significantly lower in the SIT + WALK
versus the SIT condition (Table 3) (F =
2.8; P = 0.007). OGTT mean insulin con-
centrations were lower at time points 60,
90, 150, and 180 min (P values,0.01) in
the SIT + WALK condition (Fig. 1A). Mean
insulin AUC was 21% lower in the SIT +
WALK condition compared with the
SIT condition (Table 2 and Fig. 1B)
(P , 0.001), yielding a Cohen d coef-
ficient of 0.24 (small-moderate effect).
C-peptide was also lower in SIT +
WALK versus the SIT condition (Table
3) (F = 2.26; P = 0.03), with lower
C-peptide at most OGTT time points
(Fig. 1C). Overall, the mean C-peptide
AUC was 18% lower in the SIT + WALK
condition compared with the SIT con-
dition (Table 2 and Fig. 1D) (P = 0.002),
with a Cohen d coefficient of 0.36
(moderate effect).

For plasma glucose, no main effect by
condition was identified, and the condi-
tion 3 time interaction was not signif-
icant in the mixed model (Table 3) (F =
0.75; P = 0.63) (Fig. 1E). The glucose AUC
was not significantly different between
condition types (Table 2 and Fig. 1F).

Insulin sensitivity, as calculated by the
Matsuda index, was greater during the
SIT + WALK compared with SIT condition
(4.26 2.5 vs. 3.646 2.1; P = 0.013), but
there was no detected difference in cal-
culated GE between conditions (Table
2) (P = 0.12). There were no significant
main effects, time 3 condition interac-
tions, or differences in AUC for FFAs,
cortisol, or triglycerides (Tables 2 and 3).

Baseline catecholamine concentra-
tions were not significantly different be-
tween conditions (Table 2) (P values
.0.30). Time plus 30 min norepinephrine
was greater during the SIT + WALK than
SIT condition (401 6 128 vs. 269 6
62 pg/dL; P , 0.001). No significant
differences were found for epineph-
rine or dopamine (Table 2) (P values
.0.20).

Total energy intake and percentage of
energy consumed from carbohydrates,
fats, or proteins from the test meal did
not differ by experimental condition
(Table 2).

Table 1—Baseline characteristics of randomized participants (n = 43)

Variable

Female sex, n (%) 20 (46.5)

Race, n (%)
White 17 (39.5)
Asian 2 (4.6)
Black or African American 17 (39.5)
Multiple races 3 (7.0)
Unknown/declined 3 (7.0)
Pacific Islander 1 (2.3)

Ethnicity, n (%)
Latino/Hispanic 4 (9.3)
Non-Latino/Hispanic 39 (90.7)

Age (years) 9.6 6 1.3

Pubertal maturation
Male, testis volume (mL) 4 (1–15)
Female, Tanner breast stage 2 (1–4)

Picture Vocabulary Test score1 106.8 6 11.3

Fat mass (kg)2 20.3 6 8.5

Lean mass (kg)2 30.0 6 6.3

Waist-to-height ratio 0.5 6 0.1

BMI (kg/m2) 24.5 6 4.5

BMI Z score 1.8 6 0.5

Fasting glucose (mg/dL) 90.0 6 5.4

Systolic BP (mmHg) 112.2 6 9.8

Diastolic BP (mmHg) 61.5 6 8.8

Peak VO2 (mL/kg/min) 26.2 6 8.0

HOMA-IR3 5.3 6 9.4

Matsuda index3 (during sedentary OGTT) 3.6 6 2.1

Data aremean6 SD ormedian (range) unless otherwise indicated. BP, blood pressure; HOMA-IR,
HOMA of insulin resistance. 1Proxy of intelligence quotient. 2n = 42. 3n = 32.
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CONCLUSIONS

The data presented in this study dem-
onstrate that children with overweight
and obesity have improved insulin con-
centrations and insulin sensitivity mea-
sured during an OGTT when they engage
in only 3 min of moderate-intensity
walking every 30 min. This finding is
consistent with results of studies in
adults (13,27) and in studies with chil-
dren of healthy weight (16,28). It is
contrary to one study that identified
no improvement in glucose metabolism
in 19 children (generally healthy weight)
who performed light-intensity walking
breaks every 20 min for an 8-h day
compared with a sedentary day (17).
The current study found no change in
circulating glucose or altered energy in-
take during interrupted behavior.

Moderate- and high-intensity sus-
tained exercise is known to improve
both non–insulin-mediated glucose up-
take (GE) and insulin sensitivity (29–31),
but the physiological processes through
which sedentary behavior influences
glucose homeostasis are less clear.
Some data suggest that compared with
continuous activity, prolonged sedentary
behavior might affect both insulin sen-
sitivity and GE in peripheral tissues such
as muscle (32). One bout of continuous
activity is conceptually different from
interrupted activity; however, research
on interrupted activity (including the
current study) suggests that the effects
on glucose homeostasis of interrupted
activity may be physiologically similar
to those of a single bout of continu-
ous activity. It is well understood that

continuous muscle contraction in-
creases GE, and it is also likely that
muscle contraction enhances muscle
insulin sensitivity (33), both of which
lead to decreased insulin demand. Thus,
interrupted activity may improve glu-
cose homeostasis through increased
GE and/or increased insulin sensitivity
associated with muscle contraction, al-
though mechanistic data on interrupted
activity are lacking. To explore the mech-
anisms through which interrupting seden-
tary time improved glucose homeostasis,
we estimated GE using an approach that
has recently been validated in youth with
overweight and obesity (26), along with
the Matsuda index as a marker for in-
sulin sensitivity. The data identified no
change in GE during the SIT + WALK
condition but did find significantly im-
proved estimated insulin sensitivity.
Of note, the current study was under-
powered to detect differences in calcu-
lated GE: a post hoc power analysis
based on the current study’s GE data
indicates 100 subjects would be re-
quired to find a significant difference
in GE between SIT and SIT + WALK
conditions. In regards to insulin sensi-
tivity, the improved Matsuda index is
contrary to the findings of a study of
interrupted activity in 19 adults (34). It
remains most likely that interrupted
activity improves glucose metabolism
as sustained physical activity does;
however, given the extant mixed re-
sults, further studies using more rig-
orous methods to measure GE and
insulin sensitivity are required before
definitive conclusions can be reached.

Unlike some other studies of interrup-
tion of sedentary time (13,15,16,27), we
did not find a difference in glucose AUC
by condition. The lack of effect on glu-
cose is at least partially explained by the
difference in samples studied. Compar-
ing (with unpaired t tests) the current
study cohort with our previously pub-
lished healthy-weight cohort that un-
derwent an identical protocol (16), the
overweight cohort had significantly in-
creased insulin resistance assessed with
HOMA of insulin resistance (5.3 6 9.4
vs. 1.4 6 0.7; P = 0.02) and decreased
sensitivity via Matsuda index (3.6 6 2.1
vs. 7.3 6 3.4; P , 0.001). The current
cohort was also significantly less fit, with
reduced peak VO2 (26.2 6 8.0 vs. the
healthy-weight cohort, 42.9 6 8.3 mg/
kg/min; P , 0.001). In addition to these

Table 2—Dietary recall and activity prior to visit, biomarker AUC, visit activity, and
energy intake comparison by condition

Variable SIT SIT + WALK P

Total 24-h diet recall
Total energy intake (kcal/day) 1,951.3 (651.6) 2,047.5 (570.0) 0.413
Carbohydrate intake (%)1 52.7 (9.3) 51.9 (7.9) 0.697
Fat intake (%)1 33.1 (8.5) 32.5 (7.5) 0.766
Protein intake (%)1 14.1 (4.2) 15.6 (4.5) 0.051

Wrist accelerometry (week prior to testing)
Number of valid days of data 6.9 (2.2) 6.6 (2.4) 0.982
Wear time (h/day) 22.1 (2.0) 22.2 (1.6) 0.988
Daily activity (3-D counts/day 3 1026) 3.2 (0.61) 3.20 (0.59) 0.606
Total sleep time (h/night) 7.5 (0.7) 7.6 (0.7) 0.146
Sleep efficiency (%) 86.7 (4.0) 86.5 (4.7) 0.850

Metabolic outcomes from OGTT
Insulin AUC (mIU/dL ∙ min)2,3 21,145.9

(18,280.7)
16,629.9
(17,563.0)

<0.001

C-peptide AUC (ng/dL ∙ min)2,3 14,778.5 (900.9) 1,205.7 (527.8) 0.001
Glucose AUC (mg/dL ∙ min)2,3 21,587.7

(2,215.5)
21,106.5
(2,630.4)

0.143

FFA AUC (mEq/L ∙ min)2,3 34.6 (11.0) 31.1 (11.4) 0.074
Cortisol AUC (mg/dL ∙ min)2,3 1,165.0 (229.2) 1,175.6 (292.0) 0.973
Triglycerides AUC (mg/dL ∙ min)2,3,4 16,033.6

(10,580.3)
15,969.0
(8,857.3)

0.442

Matsuda index of insulin sensitivity3 3.64 (2.18) 4.26 (2.51) 0.013
GE index3 4.04 (1.0) 3.99 (1.02) 0.124

Catecholamines during OGTT (pg/dL)5

Norepinephrine baseline3 255.0 (65.9) 243.7 (75.9) 0.527
Norepinephrine at 30 min3 268.6 (62.1) 401.4 (128.4) <0.001
Epinephrine baseline3 32.9 (17.3) 34.6 (16.4) 0.591
Epinephrine at 30 min3 26.0 (10.1) 33.7 (25.3) 0.283
Dopamine baseline 25.9 (3.9) 25.2 (0.64) 0.384
Dopamine at 30 min 25.8 (2.6) 25.6 (2.9) 0.779

Buffet energy intake after OGTT
Total energy intake (kcal) 1,261.9 (480.4) 1,259.6 (474.9) 0.890
Carbohydrate intake (%)1 49.7 (9.4) 49.2 (8.4) 0.383
Fat intake (%)1 38.2 (7.7) 38.7 (6.7) 0.379
Protein intake (%)1 12.1 (2.9) 12.2 (2.9) 0.558

Data are mean (SD). P value determined with repeated-measures ANOVA controlling for
randomization order, age, sex, fat mass, and puberty stage. n = 32–35 unless noted. Boldface
type indicates significant P values. 1Arcsine (square root) transformed for analysis. 2AUC
by trapezoidal rule. 3Log transformed for analysis. 4Additionally controlled for race. 5n = 24.
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notable differences in study groups, we
hypothesize that youth with overweight
and obesity likely maintain somewhat
increased GE compared with healthy-
weight youth as part of their response
to insulin resistance, such that their
ability to improve glucose uptake with

short, moderate-intensity walking might
be reduced, potentially explaining why
an improvement in glucose AUC was not
obtained in the current study. Nonethe-
less, the significantly lower insulin AUC
implies reduced endogenous insulin
secretion demand that, if sustained

in the long-term, might be anticipated
to slow the development of type 2
diabetes (35).

There were no significant differences
in energy intake by condition. This result
is consistent with previous studies in chil-
dren (16,28), which leads us to conclude

Table 3—Results from six separate mixed models predicting change in substrate/hormone concentrations over time by
visit type: sitting interrupted with 3 min of moderate-intensity walking every half hour (SIT + WALK) or uninterrupted
sitting (SIT)

Variable

Insulin1 C-peptide1 Glucose1

Estimate SE F2 P Estimate SE F2 P Estimate SE F2 P

Intercept 1.533 0.251 6.12 <0.001 0.539 0.121 4.46 <0.001 1.8191 0.072 25.42 <0.001

Age (years) 20.052 0.028 3.51 0.062 20.017 0.0133 1.67 0.198 20.013 0.005 5.51 0.020

Sex (reference = male) 20.075 0.070 1.15 0.284 20.055 0.033 2.79 0.096 20.020 0.012 2.51 0.113

Tanner stage 2 (reference = 1) 0.128 0.077 1.66 0.097 0.057 0.037 1.57 0.117 0.020 0.014 1.48 0.140

Tanner stage 3 (reference = 1) 0.254 0.102 2.49 0.013 0.066 0.048 1.36 0.175 0.023 0.019 1.23 0.221

Tanner stage 4 (reference = 1) 0.240 0.1557 1.54 0.124 0.071 0.074 0.95 0.341 0.017 0.025 0.67 0.504

Total fat mass (kg) 0.019 0.004 25.16 <0.0001 0.010 0.002 28.73 <0.0001 0.001 0.001 2.61 0.107

Fasting concentration3 0.004 0.001 17.96 <0.001 0.052 0.009 29.63 <0.0001 0.003 0.001 14.59 <0.001

Randomization order
(reference = SIT) 0.034 0.059 0.34 0.562 0.007 0.028 0.060 0.803 0.027 0.010 6.60 0.011

Time 135.08 0.001 186.32 <0.0001 80.86 <0.0001

Visit type (reference = SIT) 20.146 0.053 18.60 <0.001 20.066 0.028 16.79 <0.0001 20.024 0.014 2.100 0.148

Time 3 visit type 2.80 0.007 2.26 0.029 0.750 0.632
0 min 20.066 0.053 21.24 0.215 20.016 0.029 20.55 0.5830 0.002 0.014 0.16 0.873
20 min 20.013 0.055 20.24 0.812 20.024 0.030 20.78 0.438 20.003 0.015 20.22 0.823
30 min 0.068 0.053 1.27 0.205 0.068 0.028 2.39 0.017 0.022 0.014 1.55 0.121
60 min 0.146 0.054 2.69 0.007 0.061 0.029 2.09 0.037 0.008 0.014 0.58 0.560
90 min 0.161 0.054 3.00 0.003 0.085 0.029 2.95 0.003 0.006 0.014 0.43 0.665
120 min 0.044 0.053 0.83 0.408 0.015 0.029 0.53 0.595 20.013 0.014 20.91 0.365
150 min 0.177 0.053 3.36 <0.001 0.083 0.029 2.89 0.004 0.013 0.014 0.89 0.373
180 min 0.146 0.053 2.72 0.007 0.066 0.028 2.32 0.021 0.024 0.014 1.66 0.097

FFAs1 Triglycerides1 Cortisol1

Estimate SE F2 P Estimate SE F2 P Estimate SE F2 P

Intercept 21.35 0.165 28.20 <0.001 1.485 0.140 10.65 <0.001 0.842 0.130 6.47 <0.001

Age (years) 20.012 0.017 0.52 0.470 0.008 0.015 0.30 0.5860 20.026 0.014 3.80 0.052

Sex (reference = male) 0.033 0.041 0.65 0.421 20.035 0.043 0.66 0.4164 0.011 0.032 0.12 0.730

Tanner stage 2 (reference = 1) 20.019 0.044 20.44 0.663 20.035 0.049 20.72 0.474 20.022 0.036 20.62 0.536

Tanner stage 3 (reference = 1) 0.002 0.060 0.03 0.987 20.067 0.063 21.07 0.287 0.027 0.048 0.57 0.567

Tanner stage 4 (reference = 1) 0.064 0.082 0.78 0.435 0.035 0.088 0.40 0.689 0.015 0.065 0.24 0.813

Total fat mass (kg) ,0.001 0.003 0.12 0.734 0.002 0.002 0.84 0.3587 ,0.001 0.002 0.02 0.901

Fasting concentration3 0.397 0.055 51.63 <0.001 0.002 ,0.001 266.79 <0.0001 0.010 0.003 13.72 <0.001

Randomization order
(reference = SIT) 0.023 0.034 0.47 0.492 0.040 0.037 1.16 0.2810 0.014 0.027 0.28 0.597

Time 366.71 <0.001 18.70 <0.0001 31.55 <0.001

Visit type (reference = SIT) 0.085 0.040 0.07 0.7892 0.027 0.0201 14.94 0.0001 0.013 0.036 0.63 0.429

Time 3 visit type 1.30 0.246 0.94 0.475 0.54 0.803
0 min 0.001 0.040 0.24 0.814 0.006 0.020 0.31 0.759 0.042 0.036 1.19 0.236
20 min 20.007 0.042 20.16 0.875 20.003 0.021 20.16 0.872 20.024 0.037 20.64 0.525
30 min 0.065 0.040 1.62 0.106 20.053 0.020 22.59 0.010 20.008 0.036 20.22 0.825
60 min 0.048 0.040 1.20 0.230 20.037 0.020 21.84 0.066 20.049 0.036 21.39 0.165
90 min 0.025 0.040 0.61 0.539 20.036 0.020 21.79 0.075 20.020 0.036 20.55 0.581
120 min 20.009 0.040 20.23 0.821 20.040 0.020 21.99 0.047 20.014 0.036 20.40 0.693
150 min 20.015 0.040 20.38 0.705 20.035 0.020 21.75 0.081 0.004 0.036 0.11 0.912
180 min 20.085 0.040 22.11 0.035 20.027 0.020 21.34 0.180 20.012 0.036 20.35 0.724

Boldface type indicates significant P values. 1Log-transformed AUC. 2The t value for intercept and time 3 visit type interactions (random effects).
3Fasting concentration for each respective hormone.
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that the dose of activity was insufficient to
cause compensation for the energy used
during walking by increasing immediate
energy intake. If the small increase in
energy expenditure from interrupted sit-
ting canbecarriedoutover longerduration
(such as through multiple consecutive

days) without affecting energy intake,
this could potentially lead to improved
energy balance in overweight children.
For example, 18 cumulative minutes
of moderate-intensity walking would
be estimated to expend ;70 kcal of
energy/day, which would calculate to an

;500 kcal energy deficit for the week if
executed daily without compensatory
energy intake. Data regarding the sus-
tained effects, over longer intervention
periods, of interrupting sedentary behav-
iors on energy intake and weight in
children are needed.

Figure 1—The effect of sitting interrupted with 3 min of moderate-intensity walking every half hour (SIT + WALK; black circles and bars) vs. unin-
terrupted sitting (SIT; white squares and bars) on serum insulin concentrations (A), 3-h insulin AUC (B), serum C-peptide concentrations (C),
3-h C-peptide AUC (D), plasma glucose concentrations (E), and 3-h glucose AUC (F). Unadjusted mean 6 SE are shown in A, C, and F. AUC results
(B, D, and F) are mean 6 SE adjusted for randomization order. *Significantly different, post hoc paired t test, SIT + WALK vs. SIT, P , 0.05.

2226 Interrupting Sedentary Behavior in Children Diabetes Care Volume 41, October 2018



Strengths and Limitations
Strengths of the study include account-
ing for numerous potential confounders,
including, most notably, prior physical
activity (monitored by accelerometry),
body composition (obtained through
DEXA), and pubertal development. Fur-
thermore, we retained 90% of our par-
ticipants through completion (despite
only 82% having adequate data for final
analyses), which demonstrates great
feasibility and applicability for similar
studies. Finally, this study used a random-
ized crossover study design, which inher-
ently minimized the between-individual
variation from intervention-related dif-
ferences. However, there are potential
limitations to consider. First, we relied on
dietary recall to control for dietary intake
on the day prior to study interventions.
Experiments should be carried out stan-
dardizing energy intake prospectively. Sec-
ond, the study design collected data only
within the 3 h of intervention despite the
possibility of the intervention having po-
tentially salutary or deleterious effects
thereafter. Third, although the study was
adequately powered for the primary
aims, it is possible that a larger sample
would allow other effects of such inter-
ventions to be observed. Finally, the study
group was limited to youth who were
overweight and obese but otherwise had
relatively normal glucose metabolism;
thus, generalizability is limited to meta-
bolically healthy youth, and the study
does not provide definitive information
for youth who have already reachedmet-
abolic impairment such as diabetes.

Conclusion
Interrupting sedentary behavior in chil-
dren with overweight and obesity im-
proved their glucose metabolism acutely.
Future research should focus on evalu-
ating sustained outcomes of such inter-
ventions and exploring the underlying
physiologic mechanisms. If this interven-
tion provides sustained improvement in
glucose metabolism, given the logistic
feasibility and child acceptance experi-
enced in this study, widespread imple-
mentation into school or after-school care
centers could provide notable improve-
ment in glucose homeostasis in the com-
munity setting and potentially slow the
onset of type 2 diabetes in youth.
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