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Previous works on segmentation of SEM (scanning electron microscope) blood cell image ignore the semantic segmentation
approach of whole-slide blood cell segmentation. In the proposed work, we address the problem of whole-slide blood cell
segmentation using the semantic segmentation approach. We design a novel convolutional encoder-decoder framework along
with VGG-16 as the pixel-level feature extraction model. -e proposed framework comprises 3 main steps: First, all the original
images along with manually generated ground truth masks of each blood cell type are passed through the preprocessing stage. In
the preprocessing stage, pixel-level labeling, RGB to grayscale conversion of masked image and pixel fusing, and unity mask
generation are performed. After that, VGG16 is loaded into the system, which acts as a pretrained pixel-level feature extraction
model. In the third step, the training process is initiated on the proposed model. We have evaluated our network performance on
three evaluation metrics. We obtained outstanding results with respect to classwise, as well as global and mean accuracies. Our
system achieved classwise accuracies of 97.45%, 93.34%, and 85.11% for RBCs, WBCs, and platelets, respectively, while global and
mean accuracies remain 97.18% and 91.96%, respectively.

1. Introduction

Blood is the most delocalized liquid in the body, delivering
oxygenated blood from the respiratory system to the other
parts of the body and transporting carbon dioxide back [1].
It also helps in the excretion of wastes through the kidney
and carries nutrients from the digestive system to the other
tissues of the body [2]. Human blood consists of red blood
cells (RBCs, erythrocytes), white blood cells (WBCs, leu-
kocytes), and platelets with the ratio of 40% RBCs and 60%
WBCs and platelets. Accurate segmentation and classifica-
tion of RBCs and WBCs play a vital role in the identification
of blood-related diseases like blood cancer, syndrome,
leukemia, anemia, AIDS, and malaria. -e basic determi-
nation about classification and segmentation of blood cells is
the correct identification of blood constituents and ex-
traction of useful information from the microscopic image.

-e blood analysis can be accomplished either by manual
counting methods or machine-based methods. Manual
counting methods are very tedious, long, subjected to error,
and prone with respect to the hematologist expertise. -is
makes an automatic blood cell image analysis essential for
correct and efficient identification of blood-related abnor-
malities. Currently, several color space techniques are used
for the partitioning of microscopic images like RGB, HIS,
and LAB, but RGB is the most commonly used color space
technique due to its close association with the human visual
system [3]. Most of the previous works target the single cell
segmentation [4–7]. -e single cell technique targets only
one type of cell (WBCs or RBCs) for segmentation at one
time. But, none of the previous techniques used the whole-
slide segmentation of all three types of blood cells simul-
taneously. Semantic segmentation became popular for dense
pixel prediction of objects in images using fully
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convolutional networks (FCNs) [8, 9]. -ese networks are
penetrated deeply for the detection, classification, and
prediction of the pixel base region of interest (ROI). Con-
volutional neural networks not only improve the local region
of interest [10, 11] but also give enormous progress for
whole-image segmentation. Semantic segmentation shows
the inheritance behavior [11] among the ROI location and
semantics. Semantic segmentation addresses the what (se-
mantics) and where (location) questions in the input image.
Semantics and location information are encoded in a
nonlinear local-to-global pyramid fashion through deep-
feature extraction. We focus on the segmentation of WBCs,
RBCs, and platelets within a whole-slide image of the cell
using the semantic segmentation technique.

In this work, we are going to introduce a novel algorithm
for the semantic segmentation of whole-slide RBC, WBC,
and platelet images along with development of the state-of-
the-art mask-based manually designed blood cell dataset
extended from ALL-IDB [12] as the standard for validation
of semantic segmentation. -e basic motivation behind
semantic segmentation is that it is capable of segmenting an
unknown image into different portions or objects. -e main
contributions of this work are as follows:

(1) A robust algorithm for accurate and efficient seg-
mentation of whole-slide WBC, RBC, and platelet
cells based on semantic segmentation.

(2) Development of the state-of-the-art manually gen-
erated mask-based blood cell dataset extended from
ALL-IDB. -is dataset includes individual mask of
each type of blood cells, i.e., WBCs, RBCs, and
platelets, along with whole-slide image mask. Pix-
elwise labeling is performed on each type of blood
cell mask.

(3) A technique that predicts the pixel base ratio of
WBCs, RBCs, and platelets in the whole-slide image.
-is technique plays an important role in the ac-
curate and efficient blood counting during the di-
agnosis of different types of diseases.

-e rest of the paper is organized as follows: Section 2
describes the state-of-the-art previous work, Section 3 de-
scribes the approach used for the current work, while data
collection/preparation, experimental work, results, and
conclusion are described in Sections 4–7, respectively.

2. Related Work

Previous work on blood cells like white blood cells (WBCs)
and red blood cells (RBCs) [4–7] has used K-means, Zack
algorithm, gradient magnitude, watershed transform, and
SVM for segmentation along with some preprocessing for
image enhancement [13]. -ese works show outstanding
performance for efficient detection and segmentation of
blood cells. But most of the work discusses the treatment of
single cell from the image (WBCs or RBCs). In [14, 15],
Quiñones et al. and Shahin et al. developed an algorithm for
the counting and segmentation of leukocytes (WBCs) by
using HSV color space/Zak algorithm and adaptive

neutrosophic similarity score/Otsu’s thresholding, respec-
tively. In [15], BS_DB3 and ALL_DB1 and ALL_DB2 [12]
datasets were used for segmentation purposes, while
Quiñoneset al. [14] used a total of 12 blood smear images for
counting specific type of blood cells in an image. Liu et al.
[16] performed segmentation of white blood cells using
mean shift clustering and watershed operation on 306 im-
ages collected from Hospital of Shandong University. All of
them performed analysis on single type of blood cells. No
one discussed the segmentation of whole-slide blood cell
image into WBCs, RBCs, and platelets. Miao and Xiao [5]
performed segmentation on the cropped cells of WBCs and
RBCs simultaneously not on whole-slide image with 97.2%
and 94.8% accuracy, but they ignored the platelets and also
performed negatively on low-quality images. -eir algo-
rithm shows that the undersegmentation and over-
segmentation rates of RBCs are 1% and 3%, respectively,
which are quite high only in 100 images of dataset. Chen
et al. [17] developed a framework for the synergistic image
and feature adoption based on cross-modality adoption for
the segmentation of CT and MR images. -e proposed
model recovers the performance degradation between 17.2%
and 73.0%. Liu et al. [16] performed segmentation of white
blood cells using mean shift clustering and watershed op-
eration on 306 images collected from Hospital of Shandong
University. Shirazi et al. [6] proposed a hybrid technique by
combining the snake algorithm and Gram–Schmidt or-
thogonalization [18] for the segmentation of WBCs. -ey
performed preprocessing on the input image by the curvelet
transform through the Wiener filter to enhance the image
for better results. All the analysis was based on single cell.
Cao et al. [19] used 203 manually drawn images and 70853
images from Zhongnan Hospital of Wuhan University for
the segmentation of leukocytes. -ey used combination of
SWAM&IVFS and fuzzy divergence-based algorithms and
got 93.75% segmentation accuracy of WBCs only. White
blood cell counting was performed in [20] on ALL-IDB1, 2
datasets using SVM [21] and NNS (nearest neighbor search)
with Euclidean distance. -is technique only outperforms
on WBCs not for RBCs and platelets. In [14, 15], Quiñones
et al. and Shahin et al. developed an algorithm for the
counting and segmentation of leukocytes (WBCs) by using
HSV color space/Zack algorithm and adaptive neutrosophic
similarity score/Otsu’s thresholding, respectively. Yi et al.
[22] segmented only RBCs with the help of the marker-
controlled watershed transform algorithm on manually
collected 117 images. -ey select area, perimeter, and cir-
culatory parameter for the identification of red blood cells.
Image enhancement is also carried out as the preprocessing
step with watershed transform algorithm [23]. Normoblast
cells were identified automatically by Das et al. [24] by
performing experiments on the 950 nucleated blood cells.
-e marker-controlled watershed algorithm was used for
segmentation of RBCs. Mean intensity, standard deviation,
skewness, kurtosis, and entropy features were extracted for
correct and efficient RBC identification. Shirazi et al. [25]
segmented the RBCs using the statistical-based thresholding
method/fuzzy c-means on single blood cell on the ALL-IDB
dataset. Texture and geometrical features were extracted for
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separation of targeted cells. Area, perimeter, circulatory,
convexity, and solidity parameters were extracted in [26] for
segmentation of WBCs (lymphocytes, neutrophils, eosino-
phils, and basophils) from 117 images collected by the
authors.

3. Dataset Preparation

We use the acute lymphoblastic leukemia image database
(ALL-IDB1) [12] as the baseline dataset for our experimental
work. It consists of a total of 108 whole-slide blood cell
images. 108 images contain about 39000 blood elements. All
the images were taken with 300 to 500 magnification rate
microscopes, out of which 59 (2592×1944) cells were from
healthy individuals and 49 (1712×1368) from acute lym-
phoblastic leukemia (ALL) patients.

In Figure 1, images from Figures 1(a)–1(c) are taken
from healthy individuals, while images from Figures 1(d)–
1(f) are taken from acute lymphoblast leukemia patients.

In order to perform semantic segmentation on these
images, we extend this dataset by generating the state-of-the-
art fine tune mask image of each of 39000 blood elements
from 108 SEM images. We generate a total of 432 masks
(Figures 2–5). 108 individual masks of each blood cell type
(WBCs, RBCs, and platelets) along with 108 combine masks
without background. Pixels of each mask image are labeled
according to their blood cell type. All these masks work as
ground truth images during training and testing process. All
the extended pixel-level mask images are available at LINK.

In Figure 2, the images shown in Figure 2(a) are taken
from ALL-IDB. Figure 2(b) represents the RBC individual
mask (ground truth) from the original image. Rest of the
cells are ignored. However, Figure 2(c) represents pixelwise
labeling of each RBC. All the pixels where RBCs are present
are set as black, otherwise white.

In Figure 3, images shown in Figure 3(a) are taken from
ALL-IDB. Figure 3(b) represents the WBC individual mask
(ground truth) from the original image. Rest of the cells are
ignored. However, Figure 3(c) represents pixelwise labeling
of each WBC cell. All the pixels where WBCs are present are
set as black, otherwise white.

In Figure 4, images shown in Figure 4(a) are taken from
ALL-IDB. Figure 4(b) represents the platelet individual
mask (ground truth) from the original image. Rest of the
cells are ignored. However, Figure 4(c) represents pixelwise
labeling of each platelet. All the pixels where platelets are
present are set as black, otherwise white.

In Figure 5, images shown in Figure 5(a) are taken from
ALL-IDB. Figure 5(b) represents the combine mask (ground
truth) of each type of cell from the original image. Rest of the
area that represents background is ignored. However,
Figure 5(c) represents pixelwise labeling of each type of cell.
In the combined mask, each type of cell is given a specific ID
for representation during pixel base labeling, i.e.,

Masking value replacement with respective IDs

MaskAll (find (RBC_M> 0))� 1 (Red)

MaskAll (find (WBC_M> 0))� 2 (Blue)

MaskAll (find (PLT_M> 0))� 3 (Green)

4. Methodology/Our Approach

4.1. Preprocessing. To prepare the input images according to
the standard input of the proposed system, preprocessing is
applied on the dataset.

Preprocessing comprises 8 steps shown in Figure 6: (1)
System reads original and fine-tuned manually generated
mask images from memory. (2) All the masked images are
checked for 3 channels of color. If any image found RGB, it
will convert into 2 channel images for further processing
with original image. Fusing of mask pixel labeling of each
type is also performed in this step. (3) -e complement of
ROI is found, value 0 is assigned to the rest of the pixels, and
unity mask is generated. (4) -e segmented image is gen-
erated with all pixel values zero. (5) In this step, we find the
pixels of RBCs, WBCs, and platelet individually. (6) All
pixels related to the RBCs are assigned with pixel ID,
PID� 1, WBCs with PID� 2, and platelets with PID� 3.
-en all the pixel-labeled images are written on the memory.
(7) In this step, resizing of original and masked images is
done according to the framework requirement and written
on the memory.

4.2. Semantic Segmentation. Semantic segmentation is
penetrated deeply for the detection, classification, and
prediction of pixel-based region of interest (ROI) in an
image. For accurate and proper segmentation of whole-slide
blood cell, we design semantic segmentation-based frame-
work along with VGG16 [10] as pretrained feature extraction
model. Figure 7 shows the main architecture and work flow
of the proposed framework.

4.3. Pseudocode of Semantic Segmentation

(1) START
(2) Load dataset (original and masked)

Dataset⟵All IDB1
Read Images (x)
Count Labels y⟵ 3

(3) Preprocessing

(a) Fusing mask pixel labeling

(i) Pixels complement
(ii) Unity mask generation

(b) Segmented images generation with zero-pixel
values

(i) Find segmented areas of WBCs, RBCs, and
platelets

(ii) Assign pixel IDs (RBC� 1, WBC� 2, and
platelet� 3)

(c) Resize original image and masked images into
300× 300× 3

(d) Write images and masks to disk as datastore

Computational and Mathematical Methods in Medicine 3



(a) (b) (c)

(d) (e) (f )

Figure 1: Sample images from ALL-IDB1 datasets.

(a)

(b)

(c)

Figure 2: RBC masks and pixelwise labeling. (a) Original image. (b) Platelet cell mask. (c) Pixelwise labeling.
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(a)

(b)

(c)

Figure 3: WBC masks and pixelwise labeling. (a) Original image. (b) Platelet cell mask. (c) Pixelwise labeling.

(a)

Figure 4: Continued.

Computational and Mathematical Methods in Medicine 5



(b)

(c)

Figure 4: Platelet masks and pixelwise labeling. (a) Original image. (b) Platelet cell mask. (c) Pixelwise labeling.

(a)

(b)

(c)

Figure 5: Whole-slide image masks and pixelwise labeling. (a) Original image. (b) Platelet cell mask. (c) Pixelwise labeling.
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(4) Load pretrained VGG16 for pixel-level feature
extraction

(5) Load blood cells datastore

(a) Original images
(b) Ground truth

(6) Split datastore into train and test sets
(7) Load the proposed DCED network
(8) Training options

(i) Min_Batch_Size⟵ 1
(ii) Epoch⟵ 500
(iii) Iterations per epoch⟵ 103
(iv) Initial learning rate⟵ 1e − 3

(9) Train the model
(10) Class-wise pixel counting of blood cells

(11) Compute evaluation metrics

(a) Accuracy⟵ (TP + TN)/(TP + TN + FP + FN)

(b) IoU⟵Target∩ Prediction/Target∪Prediction
(c) BF Score⟵ 2(Precision∗Recall)/(Precision+

Recall)

(12) END

Our semantic segmentation technique comprises 5 steps:
(1) Initially, original images along with manually generated
mask are uploaded to the system for preprocessing. (2)
During preprocessing, the first step is the fusing of mask
pixel labels for pixel complement and unity mask genera-
tion. -e next step is the generation of the segmented image
with all pixel values zero. -en, we find the separate seg-
mented areas of each type of blood cell using manually
segmented images and assign specific pixel ID to each cell’s

Read input and 
masked images from 
memory 

Complement pixels 
and unity mask 

generation 

Segmented images 
with all pixel values 

zero 

Resizing of original 
and masked images 

Write masked and
original image

on memory for training

(i)

Find semented areas of 
RBCs
WBCs
Platelets

(i)
(ii)

(iii)

Assign pixel IDs 
RBC = 1
WBC = 2
Platelet = 3

(i)
(ii)

(iii)

Processing
RGB check
Fusing mask pixel 
labeling

(i)

(ii)

Figure 6: Flow chart of preprocessing.

Input (300 × 300)

Convolution layer + batch normalization + ReLU
Pooling layer 

Up-sampling/encoder
SoftMax classifier

Pooling indicesPreprocessing
RGB to Gray
Fusing mask 
pixel labeling 
ID assigning 
Resizing 

(i)
(ii)

(iii)
(iv)

Segmented image

Figure 7: A deep convolutional encoder-decoder (DCED) network for semantic segmentation.
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type, i.e., RBCs� 1, WBCs� 2, and platelets� 3. (3) After
that, each original image and masked labeled images are
resized according to the standard network input. (4) In his
step, VGG16 is loaded as the pretrained feature extraction
model. (5) Blood cell is split into train and test images and
loaded in the datastore. (6) Now the proposed framework
DCED network is loaded for training. (7) After training
process, segmented whole-slide blood images are produced
along with pixel level counting of each type of blood cell. For
validation purposes, three types of evaluation matrices are
used during the testing phase. -ese matrices are accuracy,
IoU, and BF score. We perform semantic segmentation on
the whole-slide blood cell image. We also propose a novel
and state-of-the-art technique for blood cell type counting
on pixel level that is very helpful for disease diagnosis related
to blood cells and cell counting. -is technique gives exact
number of blood cell counting.

5. Training and Evaluation Matrices

5.1. Training. Our proposed model is trained and tested on
the ALL-IDB1 dataset. A total of 108 whole-slide blood cells
with 39000 blood elements are used, out of which the system
chooses randomly 103 images for training and 5 images for
testing purposes. We train our model on 500 epochs along
with 103 iterations in each epoch and minibatch size of one.
-e initial learning rate is set as 1e− 3.-e segmented image is
obtained at the last layer of the decoding part of architecture.
-e system is trained on Windows 10 operating system with
24GB RAM and 2GB NVIDIA 750Ti single GPU.

5.2. Evaluation. -is section describes all the results ob-
tained during the training and testing phases.

5.2.1. Epochs vs Accuracy and Epochs vs Loss Projection.
In Figure 8, Figure 8(a) shows the ratio between the number
of epochs used during training and accuracy achieved
against each epoch. Figure 8(b) shows the ratio between the
number of epochs and loss against each epoch.

Figures 6 and 7 illustrate the fine tuning of the proposed
model (DCED framework) during 500 epochs on the
dataset. -e graph shows that accuracy and corresponding
loss of training process started from 41.38% and 1.21%,
respectively, at first epoch. But, after training of 10 epochs,
the accuracy goes to 80.56%, while corresponding loss de-
creases up to 0.65. After that, the accuracy fluctuates between
83% and 92.56%. Highest accuracy is achieved at the epoch
number 134, while minimum validation loss is achieved at
the epoch number 428 with 0.0230 rate.

5.2.2. Iteration vs Accuracy and Iteration vs Loss Projection.
We train our model on 500 epochs. Each epoch consists of
103 iterations. -e total number of iteration during training
was 51500. Following graphs, Figure 9 shows the accuracy
and loss against the iteration.

Figure 9(a) shows the ratio between the number of it-
eration and accuracy achieved against iteration. Figure 9(b)

shows the ratio between the number of iteration and loss
against each iteration.

At iteration number 1, the accuracy plot started from 0
and directly jumped to 40.18% with 1.2 loss. After 1000
iterations of the training data, accuracy increased up to
80.56% while loss decreased to 0.65. After 14000 iterations,
the peak of the graph showed the highest accuracy rate, while
after 44000 iterations, the system attained the lowest rate of
loss with 0.023 loss. Figure 10 gives a clear picture of both the
consistency in accuracy and loss during the training phase.

Figure 11 elaborates the frequency of each blood cell
element, i.e., WBCs, RBCs, and platelets, in one image. It
contains 93.55% RBCs, 6.09% WBCs, and 0.34% platelets.

5.2.3. Evaluation Matrices. We evaluate our model on 3
evaluation matrices: (1) accuracy (global and mean); (2)
intersection over union (IoU) (MeanIoU and Weight-
edIoU); and (3) MeanBFScore.

5.2.4. Accuracy. In semantic segmentation, percent of
correctly classified pixels are determined by calculating
accuracy. It is the ratio between correctly identified positive
pixels (TP), correctly identified negative pixels (TN) over
TP, TN along with falsely identified positive (FP), and falsely
identified negative pixels (FN):

accuracy �
TP + TN

TP + TN + FP + FN
. (1)

We calculate accuracy of each class of the blood cells, i.e.,
RBCs, WBCs, and platelets, along with global accuracy of all
classes. Individual class accuracy is shown in Table 1. We
have got accuracies of 97.45%, 93.34%, and 85.11% for RBCs,
WBCs, and platelets, respectively. Our algorithm achieved
97.18% global accuracy and 91.96% mean accuracy, which is
shown in Table 2.

5.2.5. Intersection over Union (IoU). Intersection over
union (IoU) [27] is a class of image segmentation eval-
uation matrix that quantifies the ratio between over-
lapping of target ground truth mask and prediction
output. It is calculated by finding the ratio between the
intersection of target and prediction pixels over all pixels
in both masks:

IoU �
Target∩Prediction
Target∪Prediction

. (2)

We have got IoU of 0.54431, 0.40626, and 0.009304 for
RBCs, WBCs, and platelets, respectively, shown in Table 1,
while MeanIoU and WeightedIoU were 0.31996 and
0.53511, respectively.

5.2.6. BF Score. It measures the percent of boundary match
between ground truth boundary and predicted boundary of
an object [28]. It is a combined ratio of twice of precision and
recall product over sum of recall and precision:
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BF score �
2∗ (Precision∗Recall)

Recall + Precision
. (3)

Classwise MeanBFScore of our technique was 0.59489,
0.33086, and 0.15307 for RBCs, WBCs, and platelets, re-
spectively, while overall MeanBFScore was 0.40654.
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Figure 8: Epoch vs (a) accuracy projection and (b) loss projection.

M
in

 b
at

ch
 ac

cu
ra

cy

40

50

60

70

80

90

10000 20000 30000 40000 500000
Iteration

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
in

 b
at

ch
 lo

ss

100000 30000 40000 5000020000
Iteration

(b)

Figure 9: Iteration vs (a) accuracy projection and (b) loss projection.
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Figure 10: Training progress of the proposed model.
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6. Results and Discussion

-e proposed model comprises 2 phases: (1) preprocessing
phase, in which original images and ground truth masks are
modified according to the required format, and (2) deep
convolutional encoder-decoder phase (DCED), which
consists of a pretrained VGG16 model for pixel-level feature
extraction and encoder-decoder framework for training and
testing of blood cells. In order to prove the outperformance
of our model, we calculate classwise accuracy, IoU, and
MeanBFScore of our model.

6.1. Accuracy. Table 1 shows the classwise accuracy of each
blood cell. Our model achieved RBC segmentation accuracy
of 97.45%, while WBCs and platelets are 93.34% and 85.11%
correctly segmented. Intersection of union (IoU) of the
proposed model for RBCs, WBCs, and platelets are 0.54431,
0.40626, and 0.009304, respectively. We got MeanBFScore of
RBCs� 0.59489, WBCs� 0.33086, and platelets� 0.15307.
Figure 9 shows the accuracy, IoU, and MeanBFScore of each
blood cell visually.

Combined analysis of each evaluation matrix is shown in
Table 2. Our model attains global and mean accuracies of
0.97184 and 0.91969, respectively. MeanIoU and weighted
IoU are 0.31996 and 0.53511, while MeanBFScore of all the
three classes is 0.40654 shown in Figure 12.

6.2.ClasswisePixelCountingofBloodCells. During the blood
disease prediction, accurate pixel counts each type of blood
cell are very important. Our technique also gives the accurate
pixel count of RBCs, WBCs, and platelets. Table 3 shows the
number of pixels of each blood element. In Figure 13, the
chart shows the number of each blood cell pixel in the test
image.

6.3.ComparisonwithPreviousWork. Technique proposed in
[19] only targets the RBC segmentation with 93.5% accuracy,
while the techniques in [4, 15, 29] target only WBC seg-
mentation with an accuracy rate of 82%, 97.6%, and 90%,
respectively. In [5], the author targets RBCs and WBCs with
an accuracy rate of 94.8% and 97.2%, respectively. All these
segmentations are performed only on single cell. Our model
targets the whole-slide image and segments each blood cell
type, RBCs, WBCs, and platelets, and gets high accuracy rate
(given in bold in Table 4) RBCs� 97.45%, WBCs� 93.34%,
and platelets� 85.11%. Our method also outperforms in the
context of global accuracy with a percent rate of 97.18%. We
also used three types of evaluation matrices to find the ef-
fectiveness of the proposed framework. In addition to this,
we also introduce a state-of-the-art technique for accurate
counting of each blood cell on pixel level that gives im-
portant assistance for blood counting tests. Table 4 shows the
comparative summary of our model with previous work.

6.4. Computational Speed. -e average training time of
DCED framework with 500 epochs is 10 hours approxi-
mately, while the testing time for one whole-slide blood
image is 1.5 second on Windows 10 operating system with
24GB RAM and 2GB NVIDIA 750Ti single GPU.
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Figure 11: Frequency of blood cells.

Table 1: Classwise accuracy, intersection of union, and Mean-
BFScore of RBCs, WBCs, and platelets.

S. no. Class Accuracy IoU MeanBFScore
1 RBCs 0.97451 0.54431 0.59489
2 WBCs 0.93342 0.40626 0.33086
3 Platelets 0.85112 0.009304 0.15307

Table 2: Global accuracy, mean accuracy, MeanIoU,WeightedIoU,
and MeanBFScore.

Evaluation matrix Value
GlobalAccuracy 0.97184
MeanAccuracy 0.91969
MeanIoU 0.31996
WeightedIoU 0.53511
MeanBFScore 0.40654
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Figure 12: Classwise evaluation matrix charts of RBCs, WBCs, and platelets.

Table 3: Pixels counting of blood cell element.

S. no. Name of cell Pixel count
1 RBCs 2.3076e+ 08
2 WBCs 1.5036e+ 07
3 Platelets 8.609e+ 05
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Figure 13: Counting of blood cell element within image.

Table 4: Quantitative comparison of proposed technique with existing techniques.

Paper WBCs
seg

RBCs
seg

Platelets
seg Accuracy (%) Global

accuracy Evaluation matrices Cell type

Nikitaev et al.
[4] ✓ ✕ ✕ WBCs� 82 ✕ Accuracy Single cell

Miao and
Xiao [5] ✓ ✓ ✕ WBCs� 97.2

RBCs� 94.8 ✕ Accuracy Single cell

Cao et al. [19] ✓ ✕ ✕ RBCs� 93.75 ✕ Accuracy Single cell
Shahin et al
[15] ✓ ✕ ✕ WBCs� 97.6 ✕ Accuracy Single cell

Mohammed
et al. [29] ✓ ✕ ✕ WBCs� 90 ✕ Accuracy Single cell

Proposed
method ✓ ✓ ✓

RBCs = 97.45
WBCs= 93.34
Platelets = 85.11

97.18% Accuracy, IoU, mean and
weighted IoU, BFScore

Whole-slide image, segment
WBCs, RBCs, and platelets

simultaneously
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6.5. Advantages over Existing Techniques. -e proposed
framework has upper hand on existing work related to blood
cell segmentation in respect of the following:

(i) We used whole-slide image segmentation rather
than single cell

(ii) We used pixel-level semantic segmentation ap-
proach of blood cell rather than object-level classic
segmentation methods

(iii) We also proposed state-of-the-art fine-tuned masks
of whole-slide blood images

(iv) A novel technique for blood cell counting at pixel
level

(v) We used three different evaluation matrices for
validation of technique rather than only accuracy

(vi) Less execution time for testing of whole-slide blood
cell, i.e., 1 sec per image

-e main limitation of this work is that in some cases, it
may require huge amount of labeled data like in scene
classification. In such type of problems, millions of labelled
images are required which are not available.

7. Conclusion

-is work addresses the problem of semantic segmentation in
medical imaging especially in blood cells. To the best of our
knowledge, we are the first who target the semantic segmen-
tation of the whole-slide blood cell.-e proposed framework is
designed for accurate semantic segmentation of the whole-slide
blood cells. We proposed a novel convolutional encoder-de-
coder framework along with VGG16 as pixel-level feature
extraction model. Prior to the training process, dataset passed
through the preprocessing step where all the original images
along withmanually generatedmasks processed for conversion
into the format that is suitable for underlying framework. Our
system is evaluated on the basis of 03 evaluation metrics. We
got outstanding results with respect to class wise as well as
global and mean accuracies. Our system achieved classwise
accuracies of 97.45%, 93.34%, and 85.11% for RBCs, WBCs,
and platelets, respectively, while global and mean accuracy
remain 97.18% and 91.96%, respectively. In future, we will
perform experiment on dilated and blurred images.

Data Availability

-e xxx.jpg data used to support the findings of this study
have been deposited in the Google Drive repository
(https://drive.google.com/drive/folders/1F7kZ1SRWUD9
R6aHLMkj3wsjcHnvlGuwP?usp�sharing).
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