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Many have argued that we may be able to extend life and improve human health through hormesis, the beneficial effects of low-

level toxins and other stressors. But, studies of hormesis in model systems have not yet established whether stress-induced benefits

are cost free, artifacts of inbreeding, or come with deleterious side effects. Here, we provide evidence that hormesis results in

trade-offs with immunity. We find that a single topical dose of dead spores of the entomopathogenic fungus, Metarhizium

robertsii, increases the longevity of the fruit fly, Drosophila melanogaster, without significant decreases in fecundity. We find that

hormetic benefits of pathogen challenge are greater in lines that lack key components of antifungal immunity (Dif and Turandot

M). And, in outbred fly lines, we find that topical pathogen challenge enhances both survival and fecundity, but reduces ability

to fight off live infections. The results provide evidence that hormesis is manifested by stress-induced trade-offs with immunity,

not cost-free benefits or artifacts of inbreeding. Our findings illuminate mechanisms underlying pathogen-induced life-history

trade-offs, and indicate that reduced immune function may be an ironic side effect of the “elixirs of life.”
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Can organisms have it all? One of the central principles of life-

history theory is that, because they are constrained by resource

limitations, organisms cannot simultaneously optimize all aspects

of fitness (Kirkwood 1977; Stearns 1992; Zera and Harshman

2001; Roff 2002; Zuk and Stoehr 2002). This premise has been

challenged by studies reporting positive genetic correlations be-

tween fitness traits (Spitze 1991; Reznick et al. 2000; Hutch-

ings 2006; Brzek and Konarzewski 2007; Koenig et al. 2009;

Schroderus et al. 2012), studies revealing that longevity and fe-

cundity can be decoupled with molecular genetics (Flatt 2011;

Kenyon 2011), and studies documenting hormesis, which occurs

when low doses of stress-inducing physiological treatments, such

as heat shock, diet composition, and toxic chemicals, enhance

traits associated with fitness (Minois 2000; Merker et al. 2001;

Cypser and Johnson 2002; Hercus et al. 2003; Calabrese 2005;

Gems and Partridge 2008; Hunt et al. 2011).

Research on hormesis demands attention from an evolution-

ary perspective (Forbes 2000; Costantini et al. 2010). Although it

is not yet clear whether hormesis acts on Darwinian fitness, thou-

sands of studies have documented the beneficial influence of stres-

sors on important fitness traits, including longevity and fecundity

(Calabrese 2005; Gems and Partridge 2008). Studies identifying

beneficial influences of stress on fitness would challenge our un-

derstanding of evolution because it would imply that life histories

are generally suboptimal (Forbes 2000). Still, with a handful of ex-

ceptions (Maynard Smith 1958; Krebs and Loeschcke 1994; Lane

et al. 1996; Markowska 1999; Le Bourg et al. 2000; Sørensen et al.

2007), few studies have tested whether physiological treatments

that extend life come at a cost to other aspects of life history,

particularly in the ability to fight off live infections.

There are two lines of evidence implicating a link between

hormesis and immunity. First, although parasites usually reduce

the reproductive output and survival of their hosts (Lehmann

1993), a growing body of work shows that animals challenged

with dead or even live pathogens exhibit improvements in specific

aspects of their life history (Polak and Starmer 1998; Chadwick

and Little 2005; Ikeda et al. 2007). In some animals, pathogen

challenge increases resistance to subsequent infections (a pattern

referred to as immune priming, see Pham et al. 2007; Lawniczak

et al. 2007; Roth et al. 2009); but, in other animals, it enhances

aspects of physiology, often to the detriment of their ability to

fight off subsequent live infections (Leroy et al. 2012; Papp et al.
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2012; Ermolaeva et al. 2013). Although it is unknown whether

the physiological benefits of pathogen challenges fulfill the char-

acteristic pattern of hormesis (an inverted “U” dose–response

relationship with beneficial effects at low doses and toxic effects

at high doses), the finding that life-history traits can be improved

by a single dose of pathogen challenge suggests that hormesis can

be induced by host responses to pathogen challenge (Leroy et al.

2012; Papp et al. 2012; Ermolaeva et al. 2013).

Second, even when the source of stress response is not a

pathogen, hormesis appears to be driven by the expression of

genes associated with immunity (Calabrese et al. 2012). Heat

shock proteins not only contribute to heat shock induced increases

in life span (Tatar et al. 1997; Kristensen et al. 2003), but also

interact with components of the innate immune system (Chen

and Cao 2010). Additionally, the NF-kB innate immune gene Dif

has been shown to influence the hormetic benefits of cold shock

(Le Bourg et al. 2012) and its expression is known to have a

regulatory role in life-history trade-offs between longevity and

immunity (Gosselin and Abbadie 2003; Rea et al. 2005; Mattson

and Meffert 2006; Lemaitre and Hoffman 2007; Salminen et al.

2008; Pursall and Rolff 2011; Chirumbolo 2012; Gartner and

Akay 2013). Other work indicates that the activation of innate

immunity in response to pathogen challenge is linked both to

enhanced physiology and reduced ability to fight off subsequent

infections (Papp et al. 2012; Ermolaeva, et al. 2013).

Still, the evolutionary implications of hormesis are unre-

solved (Forbes 2000; Costantini et al. 2010). Does hormesis occur

in outbred lines or is it only an artifact seen in nearly isogenic

lines, as appears to be evident in diet-restricted, inbred mice (Liao

et al. 2010)? Does hormesis represent a switch of life history,

promoting survival in the detriment to other traits as suggested

for calorie restriction (Tatar et al. 2003)? Does the expression of

immune and stress genes generally facilitate or suppress enhance-

ments in longevity? Does it make sense to recommend low-level

stress as a therapy for human health, as some have done (Gems

and Partridge 2008; Rattan and Demirovic 2009; Vaiserman 2010;

Calabrese et al. 2012)? Or, does hormesis inevitably lead to trade-

offs with immunity? These are important questions to resolve not

only because they relate to how animals fight off infections and

whether we can use stress treatments to improve health, but also

because they provide a crucial test of the evolutionary principle

that life-history optimization is constrained.

Here, we address these questions using the fruit fly,

Drosophila melanogaster as host for the insect-generalist ento-

mopathogic fungus, Metarhizium robertsii (for further details,

see Gao et al. 2011; Zhong et al. 2013). This system has sev-

eral features that make it suitable for studies of pathogen-induced

fitness trade-offs and the age-specific genetic effects, which un-

derlie hormesis: topical application of dead Metarhizium spores

is known to stimulate immune responses in insects (Xia et al.

2001). Flies can be challenged by the fungal pathogen en masse

by briefly agitating them in flasks with live or heat-killed fun-

gal spores (Zhong et al. 2013). The fruit fly is well suited for

large-scale experimental demography (Kohler 1994; Priest et al.

2002). By employing the Drosophila RNAi knockdown and mu-

tant knockout lines in conjunction with appropriate control lines,

we can assess the consequence of immune- and stress-response

gene expression on longevity. Furthermore, we can also investi-

gate the effects of pathogen treatment on life-history patterns in

outbred laboratory lines to eliminate the possibility that hormesis

is a side effect of inbreeding.

Our central hypothesis was that hormesis trades-off with im-

munity. This leads to the predictions that hormetic responses to

stress should be greater in animals lacking functional immune

responses and that hormesis should increase susceptibility to in-

fection. To test these predictions, we used the following method-

ology: (1) we used an isogenic mutant stock of flies, w1118, to

investigate the dose–response relationship between topical ex-

posure to heat-killed fungus and resistance to heat stress. This

established that a single dose of topical pathogen challenge was

sufficient to induce hormetic benefits. (2) We studied a knockout

mutant of Hsp83 and used RNAi to down regulate three genes,

Dif, Turandot M, and Turandot C (all derived from the w1118

background), to test how the expression of immune and stress

genes contributes to the fitness benefits of pathogen challenge. (3)

Employing two outbred laboratory lines, we tested for pathogen-

induced trade-offs between survival, fecundity, and susceptibility

to subsequent live infections.

We chose the mutant and outbred laboratory lines for specific

reasons. We investigated Dif because it is a key component of the

Toll pathway, which confers antifungal immunity and is a putative

regulator of hormesis (Le Bourg et al. 2012); Turandot M because

it is upregulated in response to infection and provides protection

against sexually fungal transmitted infections in flies (Ekengren

and Hultmark 2001; Brun et al. 2006; Zhong et al. 2013); Hsp83

as a positive control because previous work has established that

stress-associated molecular chaperones are essential for hormesis

(Tatar et al. 1997; Qin et al. 2005); and Turandot C because it

is upregulated in response to many different types of stress and

we had previously established that there was no evidence that it

confers immunity to topical fungal infection (Zhong et al. 2013).

But, findings in the aforementioned lines could be biased because

they are mutant and are derived from an isogenic background. We

therefore tested two wild-type lines, Oregon-R, a standard outbred

laboratory-adapted line maintained in two-week culture (Milkman

1966), and Dahomey, another standard laboratory-adapted line

maintained in large populations under age-independent culture

(Chapman and Partridge 1996).
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Methods
FLY AND FUNGUS STOCKS

All experimental animals were maintained at 25°C with 12:12

light:dark cycle in standard Drosophila shell vials at low densities

(approximately 50 flies/vial) for three generations prior to the start

of the experiments. We used an oatmeal-molasses-agar media with

added live baker’s yeast and an antifungal agent (Nipagin, Sigma-

Aldrich, St. Louis, MO), which inhibits the growth of naturally

occurring saprophytic fungi.

The Dahomey strain of D. melanogaster (obtained from Stu-

art Wigby, University of Oxford) was kept in large population

cages (1 m3) with overlapping generations for two years be-

fore they were expanded over three generations in low-density

culture (approximately 50 larvae/vial). The Oregon-R strain (ob-

tained from Tim Karr, Arizona State University) was simultane-

ously expanded under low-density culture. We acquired the Hsp83

knockout mutant, Act5C-Gal4 constitutive promoter, and w1118

background strain on which the knockout and RNAi lines were

based from the Bloomington Stock Center. The UAS-TotM, UAS-

TotC, and UAS-Dif strains used were originally obtained from the

Vienna Drosophila RNAi Center, which contained the RNAi con-

structs for the Turandot M and C, and Dif genes, respectively (for

further information, see Dietzl et al. 2007; Zhong et al. 2013). The

Gal4/UAS system operates by expressing the RNAi transelement

for the target gene through the UAS promoter in all tissues of

the fly, driven by the ubiquitous Act5C-Gal4 transcription factor

providing universal knockdown of the gene.

We simultaneously generated nine distinct genotypes. We

crossed Act5C-Gal4/CyO females with males carrying one of

the UAS constructs to generate the genotypes with targeted

gene knockdowns and a knockout: Act5C-Gal4/UAS-TotM-

IR; Act5C-Gal4/UAS-TotC-IR; Act5C-Gal4/UAS-Dif-IR; and

Hsp83−/Hsp83−. We crossed Act5C-Gal4/CyO females, UAS

construct females, and w1118 wild-type females to w1118 wild-

type males to generate control genotypes: +/+, Act5C-Gal4/+,

UAS-TotM-IR/+, UAS-TotC-IR/+, UAS-Dif-IR/+. Thus, for

each gene knockdown, there were three control genotypes (+/+,

Act5C-Gal4/+, and UAS-gene of interest-IR/+), which permitted

being able to account for independent effects of the Act5C-Gal4

promoter and UAS transgenes. The effectiveness of the knock-

downs was confirmed by semiquantitative PCR (E. Immonen and

M. G. Ritchie, unpubl. ms.). In total, we cultured 2592 vials of

flies at 50 ± 10 larvae/vial before the start of the experiment (288

vials/genotype).

Metarhizium robertsii (isolate 2575) was obtained from the

Agricultural Research Service Collection of Entomopathogenic

Fungal Cultures (ARSEF, U.S. Department of Agriculture). This

fungus is a common soil-associated, insect-generalist pathogen

commonly used in pest control of large insects (Gao et al. 2011).

We inoculated quarter-strength sabouraud dextrose agar with

M. robertsii conidia (asexual fungal spores) and incubated the

plates at 28°C for four weeks before storing at 4°C for up to

three months. Conidia were collected by scraping the surface of

the sporulating culture with an inoculating loop. Conidia were

autoclaved by placing a large amount of live spores into a glass

universal that was taped inside an autoclave bag. This ensured no

moisture came into contact with the spores.

METHOD OF PATHOGEN CHALLENGE

Each pathogen challenge treatment involved placing approxi-

mately 300 mixed-sex flies of each genotype without CO2 anes-

thesia into a 250-ml conical flask with 20 mg of autoclaved (heat-

killed) conidia and agitating the flask for 10 sec. Exposed flies

were held in temporary holding vials before being transferred to

new food vials and into 10 × 15 cm demography cages (see Priest

et al. 2002). This treatment method topically inoculates flies at

fairly consistent doses of fungus, even after accounting for the

effect of grooming on topical dose (Zhong et al. 2013). Sham-

treated control flies were manipulated identically by agitating

them in an empty flask. The procedure for testing susceptibility

to live infection was identical, except that the conidia were not

autoclaved before the treatment.

INDUCING HORMESIS THROUGH PATHOGEN

CHALLENGE

We first examined how the dose of pathogen challenge influenced

resistance to heat stress, to determine whether pathogen challenge

fits the inverted “U” (low-level, beneficial) pattern characteristic

to hormesis. Flies of the w1118 (+/+) genotype were collected

from eclosion in a 24-h cohort and were left to mature in mixed-

sex vials in densities of 50 flies/vial for two days. Following

maturation, flies were placed on a 10-day regime where they were

exposed to varying frequencies of pathogen challenge using the

aforementioned method. The regime consisted of five treatments:

0—no pathogen challenge; 1—a single pathogen challenge on day

10; 1 early—a single pathogen challenge on day 2; 3—pathogen

challenges on days 2, 6, and 10; and 5—pathogen challenges on

days 2, 4, 6, 8, and 10. On days when flies on particular regimes

were not exposed to a pathogen challenge, they were conditioned

to sham treatment. This ensured that any responses observed were

the result of the pathogen treatment. At day 12, all flies were

conditioned to heat stress, 38.5°C for 45 min in a water bath, and

survival was assayed 20 h posttreatment.

EFFECTS OF PATHOGEN CHALLENGE ON LONGEVITY

AND FECUNDITY IN THE W1118 BACKGROUND

LINES

We used RNAi and mutant fly lines to assess the influence of

stress and immune genes on the pathogen-induced responses on
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longevity. For each of the nine genotypes, flies were collected over

24-h cohorts, and held in mixed-sex cages. At day 7, following

a randomized experimental design, the flies were either given a

sham treatment or single dose of a pathogen challenge. Survival

was assessed by recording and removing dead flies every two days

post-treatment until all flies perished.

The fecundity of female flies was also assessed in each

line to determine whether hormetic effects on longevity led to

trade-offs with reproduction. Females were collected as virgins

over a 4-h window (immediately subsequent to the original 24-h

cohort) and placed in media vials at 20 flies/vial. After two

days, 20 w1118 +/+ males were added to each media vial to

allow them to mate over a 24-h period. Twenty-four hours after

the males had been discarded, females were given a pathogen

challenge using the aforementioned method, except females were

treated in groups of 20 flies with 6 mg of heat-killed spores. The

females were then transferred to single-female food vials and

subsequently transferred to fresh food vials every two days for

a total of 10 days. Used food vials were held for 18 days after

collection at 25°C and then frozen after which the number of

hatched pupal cases was counted to estimate fecundity.

TRADE-OFFS BETWEEN HORMESIS AND IMMUNITY

IN WILD-TYPE LINES

We used two wild-type outbred fly lines, Oregon-R and Dahomey,

to assess the influence of a single dose of pathogen challenge on

survival, fecundity, and susceptibility to live infection. To assess

survival, flies were collected over a 24-h period and matured for

48 h in mixed-sex cages. Female flies were given a pathogen

challenge on day 4 and dead flies were removed and recorded

every two days post-treatment when fresh media vials were sup-

plied. Fecundity was assessed as above, except that the lines were

provided males of their own strain and fecundity measures were

taken over a total of four days.

To assess the influence of pathogen challenge on immu-

nity, flies were collected over a 24-h period and held for two

days in mixed-sex cages to ensure that they were mature prior

to the challenge. Following maturation, flies were either given a

pathogen challenge or a sham treatment. Two days post-treatment,

all groups were treated with live fungal spores. Dead flies were

recorded and removed daily following infection until all individ-

uals in the vials were dead. Food was replaced daily.

STATISTICAL ANALYSIS

We used chi-squared contingency tests to investigate the influ-

ence of the number of doses of topical treatment with heat-killed

fungus on resistance to heat stress. Initially, the proportion alive

following heat-stress was assessed across all treatment regimes.

Following this, further analyses were completed to compare be-

tween individual treatments.

Cox proportional hazard regressions were used to analyze

the influence of pathogen treatment on survival and to assess

how the treatment responses differed between the genotypes. The

full model included genotype, pathogen treatment, and pathogen

treatment × genotype interaction as predictor variables, with age

at death as the response variable considered with information

on censoring (to account for the small number of flies that es-

caped during the study). ANOVAs were used to test the signifi-

cance of interactions between predictor variables by comparing

Cox regression models incorporating the interactions with mod-

els where they were removed. Separate Cox regressions were

performed for each genotype and additionally for each gene of

interest that only included the relevant knockdown and control

genotypes (e.g., the analysis of TotM included the knockdown,

Act5C-Gal4/UAS-TotM-IR, and the three control lines, Act5C-

Gal4/+, +/UAS-TotM-IR, and +/+). For each gene of interest,

we first estimated the hazard ratios (the change in the probability

of death by the next event in pathogen-challenged animals relative

to uninfected animals) for the knockdown genotype and also for

its combined control genotypes (by pooling raw survival data of

the relevant control genotypes) from the Cox models. Sequential

Bonferroni corrections were completed on the significance values

across the four comparisons. Percentage changes in survival were

calculated by inverting the hazard ratio of the genotype to obtain

the proportional difference in relation to controls. For heuristic

purposes, mean longevity was also estimated for each genotype.

A Pearson’s correlation was used to assess concomitant changes

in fecundity for all genotypes. Additionally, linear models were

undertaken to identify the relationship between the effects on sur-

vival and fecundity for each knockdown/knockout genotype and

their associated controls. The full model included the number of

hatched pupae produced as the response variable and genotype,

pathogen treatment, and pathogen treatment × genotype inter-

action as predictor variables. Sequential Bonferroni corrections

were again completed across the four comparisons.

For the outbred wild-type lines, Cox regressions were

completed for pathogen challenged relative to sham-treated

animals when both infected and uninfected. Linear models were

used to assess the fecundity of these populations with total pupae

production as the response variable and treatment (pathogen

challenged vs. sham treated) as a fixed effect. All analyses

conformed to model assumptions and were performed with

R version 2.15 (R Core Team 2012).

Results
A SINGLE DOSE OF TOPICAL PATHOGEN CHALLENGE

ENHANCES RESISTANCE TO HEAT STRESS

We found that the influence of pathogen challenge on resistance

to heat stress follows the inverted “U” dose–response pattern that

2 2 2 8 EVOLUTION AUGUST 2014



TRADE-OFFS BETWEEN HORMESIS AND IMMUNITY

Figure 1. Percentage of flies surviving 20 h post heat stress fol-

lowing topical exposure to heat-killed fungal pathogens at differ-

ent dose regimes (±SE).

is characteristic of hormesis. The number of doses of topical ex-

posure to heat-killed spores influenced variation in resistance to

heat stress (χ2
4 = 57.4, P < 0.001; Fig. 1). More specifically, flies

that received one dose of pathogen challenge two days before heat

stress had increased resistance to heat stress compared with those

that received zero (χ2
1 = 7.2, P = 0.007), three (χ2

1 = 24.6, P <

0.001), or five (χ2
1 = 29.0, P < 0.001) doses. We also found evi-

dence that the effect of a single dose on resistance to heat stress is

temporary, as animals that received one dose 10 days prior to heat

stress (1 early) had a nonsignificant difference in their heat stress

resistance than that of untreated animals (χ2
1 = 0.3, P = 0.576).

GENOTYPE × PATHOGEN TREATMENT EFFECTS ON

MORTALITY

We found that animals topically challenged with a single dose of

heat-killed fungus generally lived longer. The pathogen challenge

reduced the relative risk of death by 14% across all lines (Figs. 2A,

S1). In the overall model, there was evidence that longevity was

influenced by pathogen treatment, genotype, and the genotype ×
pathogen treatment interaction (T: χ2

1 = 77.6, P < 0.0001; G: χ2
8

= 3099, P < 0.0001; G × T: χ2
8 = 64.4, P < 0.0001; Fig. 2B). It

was evident that the changes in longevity in response to pathogen

challenge were different in the knockdown and knockout

genotypes, as removing these genotypes led to nonsignificant

G × T interactions in the full model (T: χ2
1 = 38.1, P < 0.0001;

G:χ2
4 = 846, P < 0.0001; G × T: χ2

4 = 6.3, P = 0.178; Fig. S2).

The longevity benefits of pathogen challenge in isogenic

(+/+) w1118 animals depend on the expression of immunity and

stress genes. While, Dif and TotM knockdown animals exhibited

greater improvements in longevity in response to pathogen chal-

lenge than their associated control genotypes (G × T: χ2
1 = 9.1,

P = 0.009; χ2
1 = 30.0, P = 0.0004, respectively; Fig. 2B), TotC

knockdown flies showed no variation in survival in response to

pathogen challenge whereas their control counterparts benefited

(G x T:χ2
1 = 6.4, P = 0.024). There was no evidence of variation in

the response to pathogen challenge on longevity in Hsp83 knock-

out animals and their control genotype (χ2
1 = 2.9, P = 0.089).

GENOTYPE × PATHOGEN TREATMENT EFFECTS ON

FECUNDITY

Across all of the lines, we found no evidence that enhanced

longevity in response to pathogen challenge came with reduc-

tions in fecundity (t7 = 2.0, P = 0.092; Fig. S3). There was also

little evidence that changes in fecundity in response to pathogen

challenges were greater in the knockdowns and knockout than

their associated control genotypes (G × T: Dif, F1,323 = 4.3, P =
0.156; TotM, F1,333 = 0.2, P = 0.701; Hsp83, F1,173 = 0.1, P =
0.759; TotC, F1,334 = 2.4, P = 0.126).

TRADE-OFFS BETWEEN HORMESIS AND IMMUNITY

IN OUTBRED LINES

Pathogen challenge can generate trade-offs between survival,

reproduction, and immunity in outbred lines of flies. In the

Dahomey line, we find that, in comparison to untreated animals,

pathogen-challenged animals had higher survival, higher repro-

ductive output, but also higher susceptibility to live infections

(χ2
1 = 12.4, P < 0.001, F1,134 = 12.7, P < 0.001, χ2

1 = 9.0,

P = 0.003, respectively; Fig. 3). Note that the 10% increase in

fecundity resulting from pathogen challenge in the Dahomey line

was confirmed in an independent study (F1,161 = 8.4, P = 0.005).

The responses in the Oregon-R line to a pathogen challenge

were similar for survival, fecundity, and susceptibility to live

infection, although the survival was not significantly different

(χ2
1 = 1.9, P = 0.171; F1,427 = 5.1, P = 0.024; χ2

1 = 6.3, P =
0.012, respectively; see Table S1 for mean values).

Discussion
Based on substantial documentation of hormesis (Calabrese

2005), many contemporary scientists have argued that we may

be able to employ treatments that incur low-level stress as ther-

apies for extending longevity and enhancing health (Gems and

Partridge 2008; Rattan 2008; Kahn and Olsen 2009; Rattan and

Demirovic 2009; Vaiserman 2010; Calabrese et al. 2012). This is

an important issue to address not only for its implications for pub-

lic health, but also for our understanding of life-history evolution

(Forbes 2000; Costantini et al. 2010). Our study shows that there

can be immunological costs for treatments that extend life.
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Figure 2. (A) Mean longevity of each genotype. Black indicates flies treated with a sham treatment (control) and gray indicates pathogen-

challenged flies (±SE). Average life spans were not used in the original analysis as mortality patterns did not meet the assumptions of

ANOVA investigation. (B) The influence of the topical exposure to a heat-killed fungal pathogen on the relative hazard ratio parameters

to untreated flies (dashed line). Cox hazard proportions are shown for knockdown (KD) and knockout (KO) mutants in gray, and their

associated pooled control genotypes (Con) in black (±SE). Values under the dashed line indicate that pathogen-challenged animals have

increased survival; values above indicate that pathogen-challenged animals experience reduced survival.

Although the induction of hormesis by topical challenge with

a dead pathogen may seem unusual, our findings are similar to

other described cases of pathogen-induced improvements in phys-

iology (Polak and Starmer 1998; Chadwick and Little 2005; Leroy

et al. 2012; Papp et al. 2012; Ermolaeva et al. 2013). The 18% av-

erage decrease in the hazard ratio of pathogen-challenged animals

observed across all wild-type and control genotype lines is also

comparable to the beneficial influences of other stress treatments

on longevity in fruit flies, including 5% and 10% from heat stress

(Khazaeli et al. 1997; Hercus et al. 2003), 15% from hypergravity

(Le Bourg and Minois 1997; Le Bourg et al. 2000); 30% from

spermidine (Eisenberg et al. 2009), and 13% and 9% from cold

stress (Le Bourg 2007; Le Bourg 2012).

Most of the previous work on the life-extending properties

of hormesis has focused on phenomenology, that is, how, but

not why, organisms benefit from stress (Forbes 2000; Gems and

Partridge 2008; Rattan 2008; Calabrese et al. 2012, although see

Costantini et al. 2010). Our results are consistent with the idea

that animals shift their life histories in response to environmental

stress (Tatar et al. 2003). We found that topical exposure of dead

fungal spores changes a number of key life-history traits and that

immune and stress gene expression in the host alters the longevity

benefits of the pathogen challenge. We also documented hormetic

responses in both genetically mutant isogenic lines and outbred

laboratory lines, which indicates that hormesis is not simply an

artifact of inbreeding (Liao et al. 2010; Nakagawa et al. 2012).

Our findings provide clear evidence that stress genes facilitate and

immune genes suppress hormesis, which is in line with previous

studies of the genetic basis of hormesis (Kristensen et al. 2003;

Mattson 2010; Calabrese et al. 2012; Le Bourg et al. 2012; Gartner

and Akay 2013).

It is not clear whether mild exposure to stressors enhances

Darwinian fitness or alters one aspect of fitness at a cost to another

(Forbes 2000; Costantini et al. 2010). There are a handful of

studies that indicate that hormetic benefits on longevity are

temporary (Wu et al. 2008) and come with trade-offs in fecundity
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Figure 3. Evidence that pathogen-challenged flies experience in-

creased survival, increased fecundity but increased susceptibility

to infection in outbred lines. Estimated %change in trait values

are reported ±SE. Dahomey line is indicated in black; Oregon-R

line is indicated in gray.

(Maynard Smith 1958; Krebs and Loeschcke 1994; Lane et al.

1996; Markowska 1999; Le Bourg et al. 2000; Sørensen et al.

2007). But, many studies show that mild exposure to stressors can

simultaneously improve survival and fecundity (see Costantini

et al. 2010) and it is often presumed that hormetic benefits are

cost free (Rattan and Demirovic 2009; Calabrese et al. 2012).

Our findings are consistent with the trade-off explanation for

hormesis. We found that hormetic responses to stress were greater

in animals lacking expression of immune genes Dif and TotM,

which we had previously established provide protection against

direct or sexually transmitted fungal infections, respectively

(Zhong et al. 2013). Additionally, we found that although

pathogen challenge simultaneously increases survival and fecun-

dity, it leads to trade-offs with immunity. These results mirror

the finding that the activation of transcription factor SKN-1 in

nematodes enhances resistance to oxidative stress and longevity,

but increases susceptibility to infection (Papp et al. 2012).

Studies of immune priming have reported that both dead and

live pathogen challenges increase, not decrease, susceptibility to

subsequent infections (Lawniczak et al. 2007; Pham et al. 2007;

Roth et al. 2009). Although our findings seem to be at odds with

this result, it might be plausible that immune priming and horme-

sis might represent divergent strategies for fighting off infections.

When they are infected with a lethal pathogen, it is known

that animals adopt a myriad of life-history strategies, including

fecundity reduction, a long-term strategy that reduces reproduc-

tive output and increases resistance (Hurd 2001), and fecundity

compensation, a terminal strategy that temporarily increases

reproductive output and decreases immune function (Velando et

al. 2006; Weil et al. 2006). It is interesting to note that the dietary

and temperature conditions in which we carried the current study

are identical to those that lead to a terminal, fecundity compensa-

tion strategy in flies infected with a live fungus (V. L. Hunt et al.,

unpubl. ms.). Thus, it seems plausible that pathogen-induced

hormesis might have occurred in our study because flies are

mounting a terminal strategy to an infection that never comes.

An alternative explanation for our findings is that hormesis is

an artifact of domestication and/or laboratory adaptation (Naka-

gawa et al. 2012). As we only employed laboratory-selected lines

and strains based on isogenic laboratory stocks, our study was not

designed to test this question; however, whether hormesis only oc-

curs in domesticated animals does not detract from our findings.

The key point is that, when it occurs, hormesis leads to trade-offs

with other fitness traits.

Our findings do not necessarily imply that we should ban

low-level stress treatments as therapies for human health. It seems

quite plausible that in healthy patients, we could employ our natu-

ral life-history responses to environmental cues to further improve

their health. However, the consequences of hormetic treatments

for infected patients could be dire. It is clear that the immunolog-

ical trade-offs of hormesis need to be identified, acknowledged,

and explicitly tested, as others have stated (Gems and Partridge

2008; Rattan and Demirovic 2009; Vaiserman 2010; Calabrese

et al. 2012). Further studies of hormesis in humans and model

systems could eventually help us identify the selective forces and

molecular mechanisms that underlie life-history constraints.
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