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ABSTRACT: Hyperdiploid (HD) B-cell acute lymphoblastic
leukemia (ALL) is widely recognized as the most common
molecular subtype of leukemia, characterized by the presence of
supernumerary chromosomes in the leukemic karyotype. While HD
B-ALL is often associated with a favorable prognosis, an important
subset of patients still experience relapse, reflecting the biological
heterogeneity of this subtype. Current genomic and epigenetic
research has shed light on the molecular complexity of HD B-ALL,
yet rapid methods for capturing both the metabolic state and the
chromosomal content of individual cells remain limited. Here, we
introduce a novel Raman spectroscopy (RS)-based approach for
the single-cell analysis of HD B-ALL. By detecting characteristic
spectroscopic signatures of nucleic acids, proteins, and lipids, RS
not only distinguishes malignant cells from normal B cells, but also discriminates between HD B-ALL and other molecular subtypes,
including TCF3-PBX1, KMT2A-r, BCR-ABL1, and TEL-AML1. Notably, we developed a partial least-squares regression (PLS-R)
model capable of accurately predicting chromosome number from each cell’s Raman spectrum, thereby linking molecular
fingerprints directly to genomic aberrations. This integrative spectroscopic strategy captures disease heterogeneity and informs
therapeutic strategies. Taken together, our proof-of-concept findings highlight RS as a powerful, noninvasive tool for quantifying
chromosomal alterations and metabolic phenotypes, adding crucial insights into the complex biology of HD B-ALL and paving the
way for broader applications in precision medicine.

■ INTRODUCTION
Precursor B-cell acute lymphoblastic leukemia (BCP-ALL) is
hallmarked by chromosomal abnormalities, including rear-
rangements and aneuploidies.1 Among aneuploidies, hyper-
diploidy (HD) is the most prevalent subtype of childhood
acute B-cell leukemia, characterized by the presence of more
than 46 chromosomes in a leukemic karyotype.2−5 Childhood
HD ALL is associated with a favorable prognosis.2,6 HD
leukemias originate from individual immature B-cell precursor
blasts that are transformed at an early stage during fetal
development.7 The median age of children diagnosed with HD
ALL is ∼4 years. Clinical outcome of HD leukemia,5,8,9 to
some extent, depends on the combination of additional
chromosomes, with trisomies of chromosomes 5, 9, 10, and
18 being predictors of relapse, while trisomies of chromosomes
4, 10, and 17 are markers of outstanding prognostic benefit.10

Moreover, the co-occurrence of specific microdeletions, i.e.,
IKZF1, CDKN2A, CDKN2B, or point mutations in genes such
as CREBBP or KRAS, can also affect the prognosis.3,11,12

Primarily, HD was divided into two types: low (47−50
chromosomes) and high (>50 chromosomes).13 However, the

latest studies have provided a more complex classification that
defines five subtypes of HD, i.e., (i) classical, (ii) nonclassical,
(iii) near-triploid, and biclonal types: (iv) biclonal hyper-
haploid and HD, and (v) biclonal hypodiploid and near-
triploid. This reveals the complex nature of the HD form of
ALL. Therefore, the precise mechanism involved in the
generation of HD or its role in leukemogenesis remains
elusive and requires further investigation.12,14 The high-HD
(HHD) karyotype, characterized by 51−65 chromosomes, is
found in ∼30% of BCP-ALL cases, resulting in an overall
favorable prognosis.15 The low-HD karyotype, defined by the
presence of 47−50 chromosomes, is associated with an
intermediate prognosis and worse patient outcomes as
compared to HHD ALL.12,16
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Currently, childhood HD ALL is routinely diagnosed based
on classical and molecular karyotyping, DNA content
measurements, and fluorescence in situ hybridization (FISH)
using centromere probes.17 However, in some cases, ulterior
genetic alterations are undetectable by standard cytogenetic
methods (e.g., FISH or G-banding).12 To overcome these
limitations, a microarray approach has been shown as a
powerful tool providing genome-wide screening for copy
number alterations that elude standard diagnostic protocols.18

However, since 25% of patients experience recurrence of the
disease, a significant challenge in HD management still
concerns a diagnostic approach that allows the identification
of patients with a high predisposition to relapse.2 As the range
of technologies supporting and complementing existing
diagnostic tools constantly evolves, assessing new, detailed
information on genomic peculiarities, improved diagnostics,
and risk stratification seems achievable in perspective. Among
them are techniques based on Raman spectroscopy (RS).

The potential of RS has been presented in the analysis of the
rich biochemical and metabolic tapestry of leukemic cells,19−21

as well as in the diagnosis of leukemia.22−26 By taking
advantage of light-and-matter interactions, specifically Raman
scattering, RS provides detailed insight into the unique
molecular fingerprints of blood cells in a noninvasive and
sensitive manner.23 Currently, subcellular analysis is based
primarily on fluorescence spectroscopy and selected dyes that
bind specifically to the molecules of interest.17 However,
because of the wide emission bands of such fluorescent dyes,
there are limits to the number of fluorescent labels that can be
used simultaneously.27 RS does not have this limitation
because it provides comprehensive information on the
molecular structure of single cells in a label-free manner.
Moreover, RS combined with machine learning-based data
analysis methods is becoming a powerful tool in diagnosing
blood diseases at the cellular and even subcellular level.19−21

Taking into account the emerging need to study unique
metabolic characteristics of specific molecular subtypes of
leukemia, we hypothesize that RS can be used for the
identification of B-ALL cells with HD and their differentiation
from normal B cells and other selected molecular subtypes of
leukemia (hypodiploidy, TCF3-PBX1, KMT2A-r, BCR-ABL1,
ZNF384, and TEL-AML1). Additionally, we investigated how
the molecular composition of leukemic cells is influenced by
chromosome number and explored how Raman spectroscopy
can be used to detect these changes.

■ MATERIALS AND METHODS
Preparation of Clinical Samples. Mononuclear cells were

isolated from bone marrow samples using density gradient
centrifugation with Histopaque-1077 (Sigma-Aldrich, Saint
Louis, MO) and collected at the time of ALL diagnosis from
pediatric patients (n = 16) included in the study. HD ALL
cases were identified based on classical karyotyping of leukemic
cells and using microarray testing. A detailed protocol for
sample preparation was presented elsewhere.28

Microarray Analysis. Gene copy number aberrations
(CNAs) were analyzed using Cytoscan HD microarrays
(Applied Biosystems, Thermo Fisher Scientific, Waltham,
MA) that comprise 2,670,000 markers, including 750,000
single nucleotide polymorphisms (SNP) and 1,900,000
nonpolymorphic copy number variation probes (CNV). An
assay was conducted with the input of 250 ng of genomic DNA
isolated from leukemic cells, which was processed according to

the manufacturer’s current protocol. This protocol involved
digestion with the NspI enzyme, PCR amplification, ligation
with restriction fragment-linked adapters, purification of PCR
products using magnetic beads, fragmentation with DNase I,
and labeling with terminal deoxynucleotidyltransferase (TdT).
The samples were then hybridized overnight (16−18 h) in a
49-format array. After incubation, the arrays were washed and
stained on the GeneChip Fluidics Station 450 and then
scanned with a GeneChip Scanner 3000. The system generated
CEL files containing the signal intensities of the probes, which
were then converted using Chromosome Analysis Suite v 4.5
software (ChAS, Thermo Fisher Scientific, Waltham, MA) to
CYCHP files containing a copy number, loss of heterozygosity
(LOH), and mosaicism information. The analysis utilized a
panel of 1,286 leukemic genes, applying filters for the detection
of copy number alterations (CNAs): 50 probes for
duplications and 20 probes for deletions. The loss of
heterozygosity was reported if the region was covered by a
minimum of 50 probes and exceeded 3000 kb in length.

Raman Imaging of Cells. Raman imaging of single cells
was performed using a confocal Raman microscope (WITec α
300, WITec GmbH, Ulm, Germany) equipped with an air-
cooled 532 nm laser, a CCD detector (Andor Technology Ltd.,
Belfast, Northern Ireland), and a 600 grooves/mm grating
(BLZ = 500 nm) with a spectral resolution of approximately 3
cm−1. The measurement protocol was described in detail in ref
28. A total of 250−500 μL of cell suspension, deposited on
CaF2 windows (Crystran LTD, Poole, U.K.), was measured by
illumination with a 63× water immersion objective (NA = 1,
Zeiss W Plan-Apochromat 63×, Oberkochen, Germany).
Raman imaging was performed by using a sampling density
of 1 μm and an exposure time of 0.5 s per spectrum.
Measurements were conducted at room temperature, with at
least 50 morphologically intact, round cells analyzed per
sample.

Data Preprocessing and Analysis. The initial data
preprocessing was performed using Project FIVE 5.1 Plus
software (WITec GmbH, Ulm, Germany). Spectral preprocess-
ing included the removal of artifacts from cosmic radiation
(cosmic ray removal, filter size: 3, and dynamic factor: 8), the
subtraction of background contributions, and residual auto-
fluorescence (polynomial fitting, third order). The k-means
cluster analysis (KMCA) was performed by using the
Manhattan distance calculation to separate cell spectra,
background spectra, and single organelle spectra for each
measured cell. This approach enabled the grouping of single
Raman spectra into classes based on their spectral similarities,
which are directly related to their biochemical characteristics,
and the extraction of mean spectra of cells and their major
structural components, such as the nucleus and cytoplasm.

Further analysis, such as principal component analysis
(PCA) or orthogonal partial least-squares regression (O-PLS-
R), was carried out on the averaged spectra of single cells using
Solo+Mia 9.1 software (eigenvector Research, Wenatchee,
WA). Spectral analyses were performed in the fingerprint
region (i.e., 1800−500 cm−1). All single-cell averaged spectra
were smoothed using a Savitzky−Golay filter (third-order
polynomial, 13 points) and then subjected to multiplicative
scattering correction and mean centering. Venetian blind cross-
validation was applied to construct the models. Approximately
85% of the data was used to build the regression model, and
the remaining 15% was used to test the model, excluding the
data set used during training. The final data presentation was

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.5c00410
Anal. Chem. 2025, 97, 10319−10327

10320

pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.5c00410?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


obtained using OriginPro 2022 (OriginLab, Northampton,
MA).

■ RESULTS AND DISCUSSION
Differentiation of HD B-ALL Blasts from Normal B

Cells. The first step in the diagnostic algorithm for any disease
is to identify abnormal cells and distinguish them from their
healthy counterparts. In our previous studies, we showed that
leukemic cells representing various subtypes (including T-
ALL19 and B-ALL29 cells with BCR-ABL1, TCF-PBX1, TEL-
AML1,20 and KMT2A-r fusion genes21) can be distinguished
from normal lymphocytes based on (i) the intensity of marker
bands associated with nucleic acids that characterize B
lymphocytes and (ii) bands derived from protein and lipid
vibrations that were specific for leukemic cells. In this study, we
examined the HD ALL subtype, a highly diverse variant linked
to an increased risk of relapse. This prompted us to explore
this subtype using RS, comparing it with other previously
characterized subtypes (TCF3-PBX1, KMT2A-r, BCR-ABL1,
and TEL-AML1), as well as normal blood cells, which may be
challenging due to the high intensity of signals related to
nucleic acids in normal B cells and HD ALL. Here, we
compared the Raman profiles of both cell types using an
unsupervised chemometric method, i.e., PCA. A total of 397
spectra of B lymphocytes from 8 healthy donors and 381
spectra of HD ALL blasts collected from 16 pediatric patients
were used for comparison (Figure 1). The score plot (Figure
1a) shows satisfactory separation between the spectra of
normal B lymphocytes (marked in purple) and the Raman
profiles of HD ALL (marked in aqua). Separation is observed
along the first two principal components (PC-1 and PC-2),
which represent 27 and 11% of the data variability,
respectively. Most of the spectra of HD ALL cells are
positioned on PC-1(+) and B cells on PC-1(−), whereas the
spectra of normal (PC-2(+)) and malignant (PC-2(−)) cells
were mainly separated along PC-2.

Analyzing the PC-2 loading plot (Figure 1b), it can be
concluded that B lymphocytes and HD ALL cells differ, among
others, in the protein composition, as evidenced by the bands
at 1630, 1227, 1045, and 617 cm−1 (normal B cells) and at
1660, 1251, 950, 760, and 695 cm−1 (HD ALL cells).
Furthermore, B cells were characterized by the bands
originating primarily from nucleic acids, i.e., 1685, 1585,
1570, 1380, 1140, 1095, 795, and 745 cm−1. This suggests an
increased proportion of the nucleus relative to the size of the
entire cell or a different degree of chromatin condensation in
healthy B cells compared to HD leukemic cells. This is
somewhat surprising as HD cells have extra chromosomes in
their karyotype. However, our current and previous stud-
ies19−21 confirmed that normal B lymphocytes are hallmarked
by increased intensities of bands assigned to DNA and RNA,30

which is probably related to the morphology of lymphocytes,
which have a large nucleus.31,32 Furthermore, in accordance
with our previous studies, leukemic cells are characterized by
an elevated protein and lipid content, as evidenced by the
higher intensity of the bands at 1445 cm−1 (CH2/CH3 plane
bending) and 1295 cm−1 (CH deformation vibration).
Elevated levels of lipids and proteins in cancer cells may be
associated with higher metabolic activity in malignant cells
compared to normal blood cells.24,33−35 Spectroscopic
characterization of HD cells also includes the band at 1339
cm−1 (CH2/CH3 fan-shaped, bending, twisting) and at 911
cm−1, which may correspond to amino acids such as proline
and ribose in RNA. Again, the Raman bands characteristic of
leukemic cells originate mainly from protein−lipid compo-
nents, and the marker bands for B cells are related to vibrations
that can be assigned to nucleic acids. It appears to be a
universal spectroscopic fingerprint of the metabolism of blood
cells upon neoplastic transformation.

Raman Image of HD B-ALL Cells Compared to Other
Subtypes of B-ALL. Malignant and normal lymphocytes
exhibit expected differences in metabolism, a notion that has

Figure 1. Comparison of the spectra of normal B cells (purple, np = 8, ns = 397) with HD B-ALL lymphoblasts (aqua, np = 16, ns = 381). (a) Score
plot of PCA along the first two PCs (PC-1 and PC-2). (b) Loading plots of PC-1 and PC-2 are presented in a color scale. Only bands for which the
PC-1 and PC-2 had the highest values (PC-1: >0.05 and <−0.05, PC-2: >0.07 and <−0.07) were included. The PC-2 loading values were
multiplied by (−1) to maintain the color scale. PCA analysis was performed in the spectral range of 1800−600 cm−1.
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been repeatedly confirmed by RS using various analytical
approaches.22−26 However, as previously described,19−21

defining differences between genetic subtypes of the same
disease is challenging. The Raman spectra of HD ALL cells
were subjected to PCA in comparison with several other
subtypes of B-ALL (Figure 2). We ensured that the spectral
sets studied were balanced using approximately 100−170 mean
cell spectra of each B-ALL subtype collected from samples
from different patients (the number of patients for each
subtype was indicated as np and the number of spectra for each
subtype by ns): TCF3-PBX1 (light pink, np = 12, n = 175),
KMT2A-r (dark pink, np = 12, ns = 176), BCR-ABL1 (navy, np
= 11, ns = 139), ZNF384 (blue, np = 7, ns = 96), and TEL-
AML1 (light blue, np = 13, ns = 162). On the contrary, 619
mean cell spectra from HD ALL cells were added for
comparison (aqua, np = 13). A satisfactory division was
obtained (Figure 2a). The spectra of HD B-ALL were divided
along PC-2, which describes 11% of the total variability,

substantially less than that in the comparison of HD leukemic
cells and B lymphocytes. This observation indicates a greater
spectral similarity between the different leukemia subtypes
than that for normal lymphocytes. It is worth noting that in
this analysis, three HD samples were excluded from the PCA
because their cell spectra differed the most from those of other
cells within the same subtype. That was motivated by the
desire to capture the general picture of the differences that
characterize most HD lymphoblasts in the background of other
molecular subtypes of B-ALL. Based on the distribution of the
spectra of cells with other genetic abnormalities than HD
(Figure 2a), we see that they are mixed, with one exception for
the KMT2A rearrangement, whose spectral characterization
was described in detail in ref 21. In the case of KMT2A-r, its
most distinguishing spectral characteristics are related to the
different protein conformations compared to those of other
subtypes. As shown in Figure 2b, the spectra of HD are
characterized by bands that can be assigned primarily to

Figure 2. Comparison of spectra of HD lymphoblasts (marked in aqua) and a mixture of other subtypes of B-ALL studied: TCF3-PBX1 (marked in
light pink, np = 12, ns = 175), KMT2A-r (dark pink, np = 12, ns = 176), BCR-ABL1 (navy, np = 11, ns = 139), ZNF384 (blue, np = 7, ns = 96), and
TEL-AML1 (light blue, np = 13, ns = 162). (a) Score plot of principal component factors PC-2 and PC-3. (b) Loading plot for the PC-2 component
presented on a color scale. Only bands for which the PC-2 loading had the highest values (greater than 0.06 and less than −0.06) were included.
PCA analysis was performed in the spectral range of 1800−600 cm−1. (c) Hierarchical cluster analysis of the average spectra of the studied
subtypes.
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Figure 3. O-PLS-R model that examines the relationship between the Raman signal and the number of chromosomes in clinical samples calculated
on the whole-cell spectra. (a) Score plot of latent variables LV-1 and LV-2 for the training data set. In total, six LVs were used. (b) Model
calibration result. (c) Score plot of the latent variables LV-1 and LV-2 for the test data set, which was not included in model training. (d) Prediction
results of the model in test samples. (e) Plot of the regression vector of the model is presented on a color scale. Only bands for which the variable
importance in projection (VIP) scores had the highest values (>1) were included. (f) Plot of the LV-1 loading of the model is presented on a color
scale. Only bands for which the LV-1 loading had the highest values (greater than 0.06 and less than −0.06) were included. O-PLS-R analysis was
performed in the spectral range of 1800−600 cm−1. (g) Graphical representation of the integral intensity ratios of selected characteristic bands of
whole-cell spectra. The samples were colored according to the number of chromosomes designated according to panel legend (a).
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proteins, i.e., at 1700 cm−1 (carbonyl vibrations in amino
acids�Asp, Glu), 1675 cm−1 (amide I), 1600 cm−1 (Phe),
1399 cm−1 (CH2 deformation vibration), and 1337 cm−1

(CH2/CH3 fan, bending, twisting). The band at 1130 cm−1

observed in the spectra of HD B-ALL cells may be a marker for
RNA or proteins, especially porphyrin systems, similar to the
756 cm−1 band. The bands, which can be associated with
vibrations of cytochrome proteins in HD cells, may indicate
higher metabolic activity compared with other subtypes,
including TCF3-PBX1, KMT2A-r, BCR-ABL1, ZNF384, and
TEL-AML1. Additionally, the band at 960 cm−1, observed in
HD cells, can be assigned to the vibrational modes of the
phosphate residues. The remaining ALL subtypes are
characterized by distinct bands, which can also be assigned
to specific proteins, such as the bands at 1630 cm−1 (amide I),
1570 cm−1 (Phe and Trp), 990 cm−1 (one of the β-sheet
marker bands), and 660 cm−1 (Phe and Tyr). Additionally, the
band at 1440 cm−1 (CH2/CH3 plane bending) observed in the
spectra of B-ALL blasts, excluding HD cells, can be attributed
to proteins and lipids. Interestingly, the band related to nucleic
acids at 790 cm−1 appears on the side of the PC-2 loading, not
characterizing the HD B-ALL subtype. This is surprising as
HD cells exhibit an increased number of chromosomes in the
nucleus, which would lead to a higher intensity of Raman
signals from nucleic acids. Furthermore, higher values of the
DNA index (DI) in HD cells (DI between 1.16 and 1.6)
compared to control cells (DI of 1.0) are associated with a
higher content of genetic material in HD ALL, allowing for
efficient stratification of patients and identification of this
subtype.36−39 However, the results showed that RS provides
holistic information on cell metabolism, indicating Raman
features derived from proteins, including cytochromes, and
based on these features, dissects HD from other types of BCP-
ALL. Our findings suggest that HD B-ALL represents a unique
and metabolically distinct group when compared to other
subtypes.10,40,41

Figure 2c presents the results of the hierarchical cluster
analysis performed in the fingerprint range on the mean spectra
of the molecular subtypes of BCP-ALL. Average spectra were
calculated from all available mean cellular spectra of a given
ALL subtype. The colors associated with the individual
subtypes were added to facilitate the analysis. It can be stated
that the most distinctive groups are those harboring
aneuploidy, HD, and hypodiploidy, respectively. Both subtypes
are more similar to each other than the different molecular
entities of ALL. Nevertheless, it can be assumed that
lymphoblasts with increased chromosomes constitute the
most distinct group among the genetic subtypes studied.

The results presented above confirm a distinct biochemical
specificity of HD ALL despite the relatively high heterogeneity
of this subtype, as shown in the PCA score plot in Figure S1.
Evidence of the high biochemical and metabolic variability of
HD ALL cells, at both the single-cell level and the patient level,
is directly evident in the entire Raman profile. One of the
sources of variability in HD ALL cells might also be related to
co-occurring genetic alterations, which directly affect the
biochemical processes within the leukemic cells, reflected in
the positions and intensities of the Raman features.11,12

Molecular Composition of HD B-ALL Cells Depends
on the Number of Chromosomes. As discussed above, the
Raman fingerprint of HD ALL lymphoblasts is not directly
related to the nucleic acid content but primarily to the
protein−lipid composition. However, to some extent, Raman

signals from HD cells depend on the number of chromosomes
in lymphoblasts. To better understand the molecular variability
of HD cells and verify the hypothesis that the spectral profile of
these cells is related to the number of chromosomes, we
developed an O-PLS-R-based regression model, which directly
links the spectral profile of the cells with the total number of
chromosomes in malignant cells (Figure 3).

The PLS-R model was constructed on total ns = 1241 mean
cell spectra collected from np = 16 patients with identified HD.
To extend the calibration range for cells containing standard
46 chromosomes, the training set included spectra from five
samples carrying other B-ALL subtypes, including the
following: TCF3-PBX1 (np = 1, ns = 64) and TEL-AML1 (np
= 2, ns = 104), marked in yellow. The algorithm was also
trained using a set of HD samples with the following
chromosome numbers: 47 (np = 1, ns = 56), 51 (np = 1, ns
= 60), 54 (np = 3, ns = 172), 55 (np = 3, ns = 151), 57 (np = 3,
ns = 199), 61 (np = 2, ns = 98), and 68 (np = 1, ns = 42).
Furthermore, to complete the calibration curve, we added one
hypodiploid sample (with 50 chromosomes) from a patient (np
= 1, and ns = 59). Standard hypodiploidy is diagnosed with a
chromosome number of less than 45. Still, the sample used for
the PLS-R model was unique and contained a largely
duplicated single set of 21 chromosomes.

The distribution of the training data set, which contains HD
cell spectra in the space of latent variables with respect to LV-1
and LV-2, is shown in Figure 3a. In total, six LVs, altogether
describing 69.3% of the variability, were used. Points
representing single-cell spectra were color-coded according to
the number of chromosomes determined by using standard
cytogenetic methods. Regardless of the subtype of leukemia
(HD, hipodiploidy, BCR-ABL1, TCF3-PBX1, and TEL-AML1),
a gradient transition depending on the number of chromo-
somes is observed, highlighted by the color transition from
yellow to green (cells with hipodiploidy, and BCR-ABL1, TCF3-
PBX1, TEL-AML1 mutations, as well as blasts with low HD)
through shades of aqua (spectra of lymphoblasts with
approximately 54 chromosomes) to high-HD blue samples
(with the number of chromosomes exceeding 60). Addition-
ally, the spectra of HD lymphoblasts were separated from those
of cells representing other molecular subtypes, which had a
diploid number of chromosomes (equal to 46). Moreover,
despite their genetic and biochemical distinctiveness, the
spectra of hypodiploid cells were also correctly assigned to the
corresponding numbers of chromosomes. The predictions of
O-PLS-R model are shown in Figure 3b. The x-axis shows the
chromosome numbers determined by classical cytogenetic
analyses. The y-axis indicates the number of chromosomes that
the model estimates for each spectrum. For all samples, the
predicted values are not discrete but within a range centered
around the value determined by the reference method.
However, at this stage, the model cannot recognize the
number of chromosomes in lymphoblasts deterministically, but
it can approximate this value within a certain range. It is visible
that the molecular composition of cells strongly depends on
the number of chromosomes, which is a predictive factor that
allows the identification of leukemia cells, especially those with
HD.

A separate data set (not used in the training) was used to
validate the model’s performance. It included spectra from
three samples with the following chromosome numbers: 46
(sample with the BCR-ABL1 fusion gene, np = 1, ns = 62 and
sample with the TCF3-PBX1 fusion gene, np = 1, ns = 71), and

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.5c00410
Anal. Chem. 2025, 97, 10319−10327

10324

https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.5c00410/suppl_file/ac5c00410_si_001.pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.5c00410?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


HD samples containing 54 (np = 2, ns = 100) (representing
classical HD). The spectra of these samples were classified
using the O-PLS-R model in respective groups, which were
color-coded according to the number of chromosomes
determined by cytogenetic methods. The results were
presented in the space of latent variables (LV-1 and LV-2,
Figure 3c) and as a graph showing the number of
chromosomes predicted by the model (Figure 3d). The PLS-
R model accurately predicted the number of chromosomes,
enabling us to confirm its effectiveness.

In Figure 3e, a regression vector of the O-PLS-R model is
displayed, along with the loading of LV-1, which indicates
Raman features related to the observed biochemical
composition that depends on the number of chromosomes
in cells. The LV-1 loading, describing 9.89% variability,
indicated bands mainly originating from vibrations of nucleic
acids (1594, 1508, 1387, 1345, and 802 cm−1), which
characterized samples with an increasing number of
chromosomes (separated along LV-1 and positioned on the
positive side of LV-1). The regression vector, which accounts
for the overall variability across all LVs, also identified bands
that can be attributed to nucleic acids, including the bands at
1594, 1520, 1490, 1393, 1346, 1282, and 802 cm−1.
Surprisingly, many of the Raman features visible in the
regression vector can be assigned to proteins or lipids, e.g., at
1626, 1447, 1139, 1046, 998, 848, 829, or 657 cm−1. It seems
that along with the change in the number of chromosomes,
differences in the composition of protein and lipid content
related to metabolic alterations are dominant in the Raman
profiles of malignant cells. Our results also show that Raman
signals specific to nucleic acids are directly correlated with the
number of chromosomes, but this is not a dominant source of
variability in leukemic cells. The coefficient of determination
(R2) for model calibration was equal to 0.87; for cross-
validation, it was equal to 0.87; and for prediction, it was 0.86.
The values obtained were satisfactory yet still provided room
for improvement. Adding more samples during the calibration
stage is essential to enhance the model’s performance. This
should involve filling in the gaps for previously unrepresented
chromosome numbers and including a more significant
number of samples from various patients that correspond to
specific chromosome counts (significantly above 60). Such an
approach would minimize the influence of individual variability
and enable a more balanced representation of classes, which is
currently a limitation of the presented model. Additionally,
including spectra of samples containing more chromosomes
(which are currently under-represented) may also increase the
proportion of Raman signals derived from nucleic acids in the
regression vector or LV-1 loading, thereby enhancing their
contribution to the classification of cells with hyperdiploidy.
The performance of the model may be impacted by including
atypical samples, such as hypodiploidy with 50 chromosomes
or triploid leukemia (68 chromosome sample). However, our
objective was to obtain an algorithm as robust as possible and
verify its usefulness in predicting the number of chromosomes
in patient samples, which was successfully presented in this
article. We also performed an analysis on the Raman spectra of
the nuclei extracted using KMC analysis (Figure S2), and the
results were very similar. This is likely due to the fact that the
nucleus occupies the predominant area of the cell and nuclear
signals make a dominant contribution to the cellular spectrum.
As can be seen, the O-PLS-R model correctly estimates the
number of chromosomes but not the leukemia subtype, which

may be considered to be a limitation. To further enhance the
algorithm and make it even more beneficial for the diagnostic
procedure, it is worth considering expanding the data set with
additional samples designated as outliers, which will more
accurately reflect the situations that may occur in daily clinical
practice. Particularly interesting from this point of view could
be ALL cases harboring a biclonal karyotype with the
coexistence of hypodiploid and HD clones that currently can
be captured solely by classical cytogenetic methods. In
contrast, masked hypodiploid leukemias, which show dupli-
cated hypodiploid clones in the karyotype, cannot be
distinguished from high-HD cases by using classical karyotyp-
ing. Still, they can be recognized using microarray testing based
on the presence of regions of a loss of heterozygosity.
However, because hypodiploid ALL cells display distinct
biological features associated with cell metabolism, they could
be identified using RS.2,3

Additionally, to investigate the variability of HD samples, the
analysis of marker bands was performed in selected ranges
corresponding to the vibrations of proteins and nucleic acids
(Figure 3f). The band ratios in the 3030−2800 cm−1 region
were calculated. The x-axis shows the integral intensity values
of the 2870 cm−1 band (limits: 2910−2830 cm−1), which
provides information on the lipid content in the sample. On
the y-axis, the ratio of the integral intensity values of 2970 cm−1

(limits: 3000−2956 cm−1) to the sum of 2970 and 2930 cm−1

(limits: 2956−2910 cm−1) was calculated, referring to the
nucleic acid content. Additionally, the 1130 cm−1 band was
selected in the range of 1150−1118 cm−1 compared to 1008
cm−1 (1025−985 cm−1), thus obtaining information on the
content of hemoproteins relative to all proteins. Lymphoblasts
with high HD (dark blue) seem to have higher contributions
from heme proteins. On the other hand, cells with a lower
number of additional chromosomes (green) fit in the upper
part of the graph.

■ CONCLUSIONS
Using RS combined with machine learning methods, we
demonstrated the unique biological features of the HD subtype
of B-ALL. Based on the Raman profiles of single cells,
malignant B lymphocytes can be distinguished relatively easily
from normal ones. Considering that HD cells exhibit
supernumerary chromosomes in their karyotypes, it was
somewhat surprising to identify bands assigned to nucleic
acids in the spectra of B cells rather than in HD B-ALL cells.
However, this observation demonstrated that Raman features
related to the nuclei are universal markers that differentiate
normal blood cells from their malignant counterparts, as
previously shown in our research.19−21 Additionally, HD cells
were characterized by higher protein−lipid content.

This study aimed to differentiate HD ALL cases from other
molecular subtypes of BCP-ALL using RS. We demonstrated
that HD B-ALL can be distinguished from other leukemic
entities, including TCF3-PBX1, KMT2A-r, BCR-ABL1, and
TEL-AML1, based on their Raman spectra. The results show a
correlation between the number of chromosomes and the
Raman spectra of individual cells, which can potentially be
used for the spectral evaluation of the complement of
chromosomes, not only in clinical samples with HD but also
in the case of other leukemia subtypes. Interestingly, the model
indicated that the variations in the Raman profile were not
solely linked to signals from nucleic acids but primarily related
to the intensity of bands corresponding to proteins, with some
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contribution from lipids. This suggests that RS highlights how
aneuploidy-driven shifts in cellular metabolism and chromatin
organization can be captured through protein, lipid, and other
biochemical signatures, providing a spectral fingerprint directly
related to cell activity. As the next step, a developed regression
model requires further refinement and validation using a larger
sample pool.
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