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Abstract. Several immune checkpoint inhibitors (ICIs) 
have already been introduced into clinical practice or are in 
advanced phases of clinical experimentation. Extensive efforts 
are being made to identify robust biomarkers to select patients 
who may benefit from treatment with ICIs. Tumor mutation 
burden (TMB) may be a relevant biomarker of response to 
ICIs in different tumor types; however, its clinical use is chal‑
lenged by the analytical methods required for its evaluation. 
The possibility of using targeted next‑generation sequencing 
panels has been investigated as an alternative to the standard 
whole exome sequencing approach. However, no standard‑
ization exists in terms of genes covered, types of mutations 
included in the estimation of TMB, bioinformatics pipelines 
for data analysis, and cut‑offs used to discriminate samples 
with high, intermediate or low TMB. Bioinformatics serve a 
relevant role in the analysis of targeted sequencing data and its 
standardization is essential to deliver a reliable test in clinical 
practice. In the present study, cultured and formalin‑fixed, 
paraffin‑embedded cell lines were analyzed using a commer‑
cial panel for TMB testing; the results were compared with 
data from the literature and public databases, demonstrating 
a good correlation. Additionally, the correlation between high 
tumor mutation burden and microsatellite instability was 
confirmed. The bioinformatics analyses were conducted using 

two different pipelines to highlight the challenges associated 
with the development of an appropriate analytical workflow.

Introduction

Immune‑oncology therapeutics represent a novel approach 
to cancer therapy that has been demonstrated to significantly 
improve outcomes and quality of life of patients with different 
types of cancer. Several immune checkpoint inhibitors (ICIs) 
have already been approved for clinical practice or are in 
advanced phases of clinical experimentation; however, only 
a small proportion of patients achieve a long‑lasting response 
to treatment with ICIs (1‑3). Therefore, numerous efforts are 
being made to identify robust biomarkers to correctly select 
patients who may benefit from this therapy in order to decrease 
side effects and cost.

At present, the expression levels of PD‑L1 and microsat‑
ellite instability (MSI) are the only predictive biomarkers 
approved for patient selection, but responses are also registered 
in certain patients with low PD‑L1 expression or microsatel‑
lite stability (MSS) (4‑6). Results from several studies have 
suggested that tumor mutation burden (TMB) may be an 
additional biomarker of response to ICIs in different tumor 
types (6‑15).

TMB is defined as the total number of somatic mutations 
per coding area of a tumor genome. The rationale of its use as a 
biomarker is based on the fact that somatic mutations may lead 
to the formation of tumor‑specific neoantigens, which are able 
to trigger T‑cell activation against tumor cells (16‑19). There 
is a large variability in mutation burden among and within 
tumor types, ranging from just a few to thousands of muta‑
tions (20‑22). Results from several studies have demonstrated 
that subsets of patients with high TMB exist across almost all 
cancer types (12,14).

TMB and PD‑L1 expression only partially overlap. 
Therefore, TMB may be complementary to PD‑L1. Notably, the 
co‑expression of the two biomarkers (high TMB/PD‑L1 >50%) 
has previously been used to identify a subgroup of patients 
with the highest response rate (8,23). Similarly, patients with 
high TMB and high expression levels of genes associated with 
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a T‑cell inflamed state have been reported to exhibit the best 
outcome when treated with ICIs (24). Notably, TMB is also 
emerging as a prognostic marker that may aid in better strati‑
fying patients with colon or lung cancer (25,26).

In this scenario, the possible use of TMB as a predictive 
and/or prognostic biomarker is challenged by the methods 
required for its evaluation. Whole‑exome sequencing (WES) is 
the standard for TMB measurement, since it is able to identify 
all the possible somatic mutations in the entire tumor genome 
that may lead to the expression of neoantigens. However, this 
approach is clearly difficult to be translated into clinical prac‑
tice, due to cost, amount of material required, complexity of 
output data and turnaround time. Therefore, the possible use 
of targeted next‑generation sequencing (NGS) panels has been 
investigated as an alternative to WES. Panels that cover just a 
few hundred genes and at least ~1 megabase (Mb) of the human 
coding genome have been reported to correlate efficiently with 
TMB calculated by WES, in terms of TMB values and clinical 
responses observed in patients (11,27‑30). Nevertheless, the 
panels used in these previous studies, as well as the assays that 
will enter the market in the future, may vary substantially in 
terms of genes covered, cut‑offs used to discriminate samples 
with high or low TMB, and bioinformatics pipelines used for 
data analysis. Standardization and harmonization of these 
approaches are needed in order to provide a robust and repro‑
ducible biomarker.

Bioinformatics serve a relevant role in the analysis of 
targeted sequencing data and its standardization is essential 
in order to deliver a reliable test for use in clinical practice. In 
addition, the definition of TMB and, in particular, of the type 
of mutations (both synonymous and non‑synonymous versus 
only non‑synonymous) that should be included in the estima‑
tion of TMB have changed over the time. In this respect, the 
aim of the present study was to describe the results obtained 
with the first commercially available panel for TMB measure‑
ment, i.e. the Oncomine™ Tumor Mutational Load (OTML) 
assay, and the work undertaken to develop an appropriate 
bioinformatics analytical pipeline.

Materials and methods

Samples and DNA extraction. Cultured cell lines and 
formalin‑fixed paraffin‑embedded (FFPE) samples were 
obtained from two different sources. The following human 
tumor cell lines were obtained from American Type Culture 
Collection: Colorectal carcinoma Colo320, RKO, LoVo, 
HCT116, HT29, SW1116 and LS174T cell lines, and the lung 
carcinoma NCI‑H1650 and NCI‑H1975 cell lines. Cultured 
cell lines were maintained in a humidified atmosphere at 
37˚C and 5% CO2. Colo320, NCI‑H1650 and NCI‑H1975 cells 
were grown in RPMI 1640 medium with GlutaMAX supple‑
mented with 10% fetal bovine serum (FBS) (all from Thermo 
Fisher Scientific, Inc.). RKO and LS174T cells were cultured 
in Eagle's Minimum Essential Medium with GlutaMAX 
(Gibco; Thermo Fisher Scientific, Inc.) and 10% FBS. Lovo 
cells were maintained in F‑12K medium with GlutaMAX 
(Gibco; Thermo Fisher Scientific, Inc.) and 10% FBS. HCT116 
and HT29 cells were grown in McCoy's 5a medium (Gibco; 
Thermo Fisher Scientific, Inc.) modified plus GlutaMAX and 
10% FBS. SW1116 cells were cultured in Leibovitz's L‑15 

medium with GlutaMAX (Gibco; Thermo Fisher Scientific, 
Inc.) containing 10% FBS.

The following cell lines were provided as FFPE samples 
from AccuRef Diagnostics: Lung carcinoma A549 and H2228 
cell lines, the colorectal carcinoma HCC2998 cell line, the 
melanoma SK‑MEL‑2 cell line, and the breast cancer MCF7 
and T47D cell lines. Genomic DNA (gDNA) was isolated 
from the cultured cell lines using the DNeasy Blood & Tissue 
kit (Qiagen) and from FFPE cell lines using the RecoverAll 
Total Nucleic Acid Isolation kit (Invitrogen; Thermo Fisher 
Scientific, Inc.), according to the manufacturers' protocols. 
The gDNA was quantified using the dsDNA HS assay kit on 
the Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Inc.). 
The MSI status and POLE/POLD1 mutational status for the 
15 cell lines, as derived from public data (31,32) are reported 
in Table I.

OTML assay. The OTML assay (Thermo Fisher Scientific, 
Inc.) is a targeted NGS panel that covers 409 genes with 
known cancer associations. Libraries were prepared using 
Ion AmpliSeq library kit plus (Thermo Fisher Scientific, 
Inc.) starting from 10 ng gDNA for each pool. Each library 
(50 pmol) was multiplexed and then clonally amplified by 
emulsion PCR and enriched on the Ion Chef instrument for 
automated template preparation using the Ion 540™ Chef 
kit, according to the manufacturer's protocol (Thermo Fisher 
Scientific, Inc.). Finally, the template was loaded on an Ion 
540™ chip and sequenced on an Ion S5XL sequencer (Thermo 
Fisher Scientific, Inc.) according to the manufacturer's proto‑
cols (each sequenced chip contained eight samples).

TMB data analysis. The NGS results were analyzed using 
the default setting of two versions of the integrated pipelines, 
OTML v1.2 DNA Single Sample on Ion Reporter soft‑
ware v.5.6 and OTML v2.0 DNA Single Sample, available on 
the Ion Reporter software v.5.10 (Thermo Fisher Scientific, 
Inc.), which will be referred to as version A and B, respectively.

In both versions of the analysis workflow, the sequenced 
reads are aligned to human reference genome hg19 and the 
resulting BAM files are transferred to Ion Reporter software 
for variant calling. Several parameters of NGS analysis were 
used to consider a sample suitable for the inclusion in the 
comparison analysis with the two pipelines: Number of mapped 
reads, >5,000,000x; mean read depth, >300x; percentage of 
reads on target, >90%; target base coverage at 100x, >95%; 
uniformity, >80%. TMB calculation does not require matched 
normal samples. After the variant calling, a filter chain was 
applied to remove germline variants using population databases 
(1000 Genome Project, https://www.internationalgenome.
org/data/; NHLBI GO Exome Sequencing Project https://esp.
gs.washington.edu/drupal/node/1; and ExAC, https://bigd.big.
ac.cn/databasecommons/database/id/3774), and to select 
somatic variants which have a minimum depth of base coverage 
above 60x to be used for TMB calculation without generating 
noise. In version A, TMB is calculated by counting synony‑
mous and non‑synonymous somatic single‑base substitutions 
(SNVs), at or above 5% allelic frequency (AF), from the full 
panel, which is 1.2 Mb exonic and 0.45 Mb intronic. In version 
B, only the non‑synonymous SNVs and short insertion‑deletion 
mutations (InDels) with ≥5% AF are considered, derived from 
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the 1.2‑Mb exonic region. The number of mutations counted 
is divided by the number of bases with sufficient coverage, to 
normalize the TMB values. The variant calling in version A 
is optimized only for the TMB calculation and not for variant 
detection, whereas the workflow in version B is also able to call 
clinically relevant variants in a specific predefined set of genes 
with a limit of detection (LOD) of 5% AF. Finally, following 
application of the filter chain, workflow B applies calibration to 
bring the TMB values closer to WES‑based TMB. The calibration 
factor was calculated through linear modelling on The Cancer 
Genome Atlas database (https://www.cancer.gov/about‑nci/orga‑
nization/ccg/research/structural‑genomics/tcga). Workflow A 
does not apply calibration.

At the end of each analysis, a report was provided that 
included the normalized mutation load, defined as the number 
of somatic mutations per Mb of genome with an average 
coverage not less than 300x. In addition, the report summarized 
other information on the samples, including coverage, variants 
called, mutation signatures of the somatic variants, mutations 
consistent with deamination, UV and tobacco smoke damage.

Statistical analysis. Pearson's correlation test was used 
to evaluate the correlation between the mutation load/Mb 
obtained with workflow A and workflow B on 13/15 cell lines 
and the mutation count obtained with the massively parallel 
sequencing available on cBioPortal (https://www.cbioportal.
org/). The correlation between TMB scores and the MSI status 
was assessed in 14 out of the 15 cell lines included in the present 
study. Mann‑Whitney ranked sum test was used for subgroup 
comparisons (MSS vs. MSI groups). The Kruskal‑Wallis test 
was used to compare the mean TMB value of the two work‑
flows in all types of cell lines and in the selected MSS‑ and 
MSI‑colorectal cell lines. Dunn's multiple comparison test 
was used as post‑hoc analysis. All the statistical analyses were 
performed using the GraphPad PRISM version 5 for windows 

(GraphPad Software, Inc.). P<0.05 was considered to indicate 
a statistically significant difference.

Results

Targeted sequencing analysis with OTML assay on cultured 
and FFPE cell lines. A total of 15 tumor cell lines, including 
nine cultured and six FFPE cell lines, were analyzed using 
the OTML assay. The panel included five MSI‑high cell 
lines, nine MSS cell lines and one MSS/POLE mutated cell 
line (Table I), as defined according to the literature and public 
databases (31‑33). The raw data underwent bioinformatics 
analysis with the integrated workflows. The obtained results 
were compared with each other and to the expected data from 
the literature and public databases (31‑33).

To begin with, the obtained results on the entire cohort 
of cell lines were comprehensively analyzed using the 
bioinformatics workflows A and B, as aforementioned. The 
median TMB values were 15.87 (range, 4.98‑179.2) and 8.38 
(range, 2.56‑176.5) with version A and B, respectively. The 
MSS cell line, HCC2998, which carries the POLE p.P286R 
(c.857C>G) mutation, had the highest TMB score among all 
the analyzed samples, with a TMB of 179.2 with workflow A 
and 176.5 with workflow B (Table II).

The bioinformatics pipeline is also able to identify muta‑
tions consistent with hydrolytic deamination of cytosine that 
generates uracil, a mechanism that is generally caused by 
formalin fixation. This phenomenon results in sequencing 
artifacts, which may cause an overestimation of TMB values. 
In particular, the workflows of analysis report as probable 
deamination mutations all the C:G>T:A variants detected 
below an AF of 15%. Since the parameters for variant calling 
are less stringent in workflow B, in order to improve sensi‑
tivity to call the variants, more deamination variants may 
be included in TMB calculation. In fact, when comparing 

Table I. List of cell lines.

 MSI status/other
Cell line relevant alteration Tumor location, histology Type of sample

Colo320 MSS Large intestine, carcinoma, adenocarcinoma Cultured cells
H1650 MSS Lung carcinoma, non‑small cell carcinoma Cultured cells
H1975 MSS Lung, carcinoma, adenocarcinoma Cultured cells
HT29 MSS Large intestine, carcinoma, NS Cultured cells
SW1116 MSS Large intestine, carcinoma, adenocarcinoma Cultured cells
HCT116 MSI Large intestine, carcinoma, NS Cultured cells
LoVo MSI/POLD1 Large intestine, carcinoma, adenocarcinoma Cultured cells
LS174T MSI Large intestine, carcinoma, adenocarcinoma Cultured cells
RKO MSI Large intestine, carcinoma, NS Cultured cells
A549 MSS Lung, carcinoma, NS FFPE cells
H2228 MSS Lung, carcinoma, non‑small cell carcinoma FFPE cells
HCC2998 MSS/POLE Large intestine, carcinoma, adenocarcinoma FFPE cells
MCF7 MSS Breast, carcinoma, NS FFPE cells
T47D MSS Breast, carcinoma, ductal carcinoma FFPE cells
SK‑MEL‑2 MSI Skin, malignant melanoma, NS FFPE cells

FFPE, formalin‑fixed paraffin‑embedded; MSI, microsatellite instability; MSS, microsatellite stability; NS, not specified.
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the results obtained with the two workflows, it was revealed 
that the number of variants compatible with deamination 
increased with version B, irrespective of the type of sample 
analyzed (Table II). In particular, the estimated number of 
possible deamination mutations ranged between 0 and 4 with 
version B, with the exception of the LoVo cell line, which had 
13 mutations consistent with deamination. The LoVo cell line 
was also the only sample in which a deamination event was 
identified with version A. Notably, the TMB value in this 
specific sample was not affected by the presence of deami‑
nation mutations (Table II), possibly because workflow B 
considers only non‑synonymous alterations, thereby including 
only a fraction of deamination mutations for TMB calculation.

Correlation of TMB data. In order to investigate the ability 
of this targeted panel to infer TMB, the TMB values were 
compared with the parallel sequencing data from >1,600 genes 
for the same cell lines available on cBioPortal and described 
in a study by Barretina et al (34). This analysis was performed 
on 13 out of 15 cell lines. The LS174T and HCC2998 cell 
lines were excluded, since both cell lines were not sequenced 
by Barretina et al (34). A significant correlation was observed 
between the results of the OTML assay and the mutations 
detected by wide genetic profiling (version A: P<0.0001 and 
r=0.9883; version B: P<0.0001 and r=0.9969; Fig. 1), with 
workflow B resulting in a stronger correlation. When the type 
of material used (FFPE vs. cultured) was taken into consider‑
ation, the correlation in FFPE samples was slightly lower than 
in cultured samples (data not shown). These data suggested that, 
despite the deamination mutation, the TMB may be robustly 
calculated using the OTML panel, both on cultured and FFPE 

cell lines. Finally, the bioinformatics pipeline called all the 
genetic alterations reported in Cellosaurus for the HT‑29 cell 
line (https://web.expasy.org/cellosaurus/CVCL_0320), apart 
from the PIK3CA mutation p.(Pro449Thr), which is not covered 
by the amplicons included in the panel (data not shown).

The TMB scores were compared with the MSI status, to 
observe whether an association was present between these 
two biomarkers, as expected. Since a mechanism of mutation 
accumulation independent from the MSI status is known to 
be present in the HCC2998 cell line (i.e. a POLE mutation), 
this sample was excluded from the comparisons. The median 
TMB value was revealed to be significantly increased in MSI‑ 
versus MSS‑cell lines with the two workflows (Mann Whitney 
test, P=0.0010; Fig. 2), confirming an association between 
high mutation burden and MSI. The mean values of the MSS 
and MSI groups of the two workflows were comprehensively 
compared, revealing a significant difference in the observed 
means (Kruskal‑Wallis test, P=0.0002) (data not shown). 
Post‑hoc analysis with Dunn's multiple comparison test 
highlighted a significant association (P<0.05) in the following 
subgroups: MSS vs. MSI‑H in both versions A and B; 
MSS v.B vs. MSI‑H v.A was also significantly different (data 
not shown). Additionally, a significant difference was observed 
when the TMB values in the MSS‑ and MSI‑colorectal cell 
lines only were compared (13.85 vs. 76.82 version A, P=0.0027; 
8.39 vs. 74.56 version B, P=0.0024) (data not shown).

Discussion

Although TMB is emerging as a relevant biomarker for ICI 
treatment in different tumor types, the optimal method for 

Table II. TMB results with version A and B of the Oncomine™ Tumor Mutation Load bioinformatics pipeline. Cell lines are 
listed from the highest TMB value to the lowest according to version A.

    Estimated SNP Estimated SNP
 Mutation load Mutation load proportion consistent proportion consistent
 per MB, per MB, with deamination, with deamination, Mutation
Cell line version A version B version A version B counta

HCC2998 179.17 176.5 0 3 NA
RKO 100.77 102.45 0 4 382
LoVo 77.61 74.27 1 13 267
HCT116 74.62 63.35 0 2 227
LS174T 54.26 58.19 0 1 NA
SK‑MEL‑2 33.83 18.72 0 4   90
HT29 15.89 10.9 0 2   64
SW1116 15.87 8.38 0 1   40
H1975 10.37 6.69 0 1   54
Colo320 9.78 5.88 0 1   23
H2228 8.69 6.81 0 1   37
H1650 6.74 5.04 0 2   25
A549 6.25 7.57 0 1   34
MCF7 6.16 3.39 0 0   19
T47D 4.98 2.56 0 2   21

The formalin‑fixed paraffin‑embedded cell lines are underlined. aMutation count included nucleotide substitutions (synonymous and non‑synony‑
mous) and short insertion and deletion mutations (31). TMB, tumor mutation burden; SNP, single nucleotide polymorphism; NA, not applicable.
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its calculation remains to be established. The use of targeted 
panels has demonstrated its efficacy in TMB measurement 
within clinical trials (13,23). However, the use of panels poses 
different considerations, starting from the coverage of the 
exome that should be ≥1 Mb (27), to the bioinformatics pipe‑
lines that are used to select the alterations to be counted for the 
TMB estimation (19,35). There is no consensus on the most 
appropriate approach for its calculation since the definitions of 
TMB are multiple and based on different assumptions (19,35). 
This lack of harmonization leads to TMB values that change 
depending on the panels used and thus are difficult to compare.

The panel used within the present study covers 1.7 Mb of 
genomic area and 1.2 Mb of exome area, and it has been demon‑
strated to be sufficient to estimate TMB accurately (36,37). 
However, within the same panel, adjustments to the analysis 
workflow have been done since its launch on the market and 
some of them substantially changed the way TMB is measured. 
Version A included only single‑base substitutions, considering 
both synonymous and non‑synonymous variants. Version B, 
despite including only non‑synonymous alterations, also counts 
short InDels together with SNVs. The latter workflow is based 
on the correct assumption that only non‑synonymous alterations 
may lead to the expression of neoantigens, which are responsible 

for the antitumor immune response. However, the presence of 
random alterations is anyway suggestive of a tumor that may 
accumulate a high number of mutations, thus having a higher 
probability of presenting neoantigens. As the genomic region 
from which the TMB value is inferred is generally limited 
when using gene panels, the inclusion of non‑coding regions 
and non‑synonymous alterations may aid in the estimate of 
the TMB. Another aspect to consider is the different impact of 
SNVs and InDels on the potential generation of immunogenic 
antigens. Indeed, InDels alterations that cause a frameshift 
may produce neoantigenic peptides highly different from self, 
leading to a higher activation of T cells and an increased immune 
response (38,39). In this regard, the presence of frameshift 
InDels was significantly associated with response to checkpoint 
inhibitors in datasets of patients with melanoma (38). In another 
recent paper, an increased progression‑free survival was associ‑
ated with the presence of frameshift InDel burden in patients 
treated with ICIs (40). In addition, significantly different overall 
response rates and disease control rates were observed between 
patients with and without frameshift InDels (40). However, the 
data available on the role of InDels and the different possible 
impact on response to ICI are limited and further evaluation is 
required. At present, the identification of the most appropriate 

Figure 1. Correlation between Oncomine™ TML results and mutation count from parallel sequencing data of >1,600 genes. (A) Correlation between workflow A 
and mutation count; (B) correlation between workflow B and mutation count. TML, Tumor Mutational Load; MB, megabase.

Figure 2. Comparison of TMB values according to MSI status. (A) Association of TMB, as calculated by workflow A, with MSI status; (B) association of TMB, 
as calculated by workflow B, with MSI status. TMB, tumor mutation burden; MSI, microsatellite instability‑high; MSS, microsatellite stability; MB, megabase.
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TMB calculation remains controversial and thus opened to 
different interpretations.

Another issue is associated with the material used. 
FFPE‑derived DNA may be difficult to use within NGS 
approaches due to possible artifacts. Analysis pipelines should 
take into consideration this problem and should provide infor‑
mation on the quality of the DNA tested. The Ion Reporter 
analysis workflow provides an estimation of the DNA quality, 
reporting the number of possible deamination artifacts. In 
the event of a case with a high number of artifacts, the data 
analysis with a LOD set at 10% could be able to cut out the 
variants consistent with deamination, which generally are 
present below 10‑15% AF. This workflow, however, may cause 
the loss of information on TMB, since certain alterations that 
are present below 10% AF may be excluded from the TMB 
calculation.

In the present study, the TMB panel used was able to infer 
the TMB values as deducted from massive parallel sequencing 
analyses of a higher number of genes compared with the OTML 
panel (>1,600 vs. 409 genes), independently from the type of 
material used, thus suggesting that it is a robust method for TMB 
evaluation. However, there are certain limitations to the present 
study. For example, it is focused on a small cohort of cell lines 
and thus it is based on the use of artificial samples. On the other 
hand, the use of standardized samples has several advantages 
when describing the differences between two different bioinfor‑
matics pipelines. In particular, the use of a well‑characterized 
set of samples, including cell lines, allows the comparison of 
these results with data from literature and public databases, and 
may be used to set the most suitable analysis approach to be 
transferred later in clinical samples. Therefore, the present study 
is a preliminary evaluation of the challenges and difficulties in 
harmonizing TMB data. In addition, to the best of our knowl‑
edge, the present study was the first to address the influence of 
the different bioinformatics pipelines on the TMB value. Given 
the lack of standardization of TMB testing and the recent FDA 
approval of TMB as a diagnostic biomarker for solid tumors, 
the results of the present study may be of high interest for the 
scientific community. However, further analyses are required to 
collect information on FFPE samples from patients, and also to 
retrieve clinical data from patients treated with immunotherapy, 
to confirm the consistency of the results.

In conclusion, the present data suggest that the two bioin‑
formatics pipelines used in the present study for data analysis 
are able to correctly infer the TMB. Nevertheless, version B 
exhibited a slightly better correlation with TMB assessed by 
wide genomic profiling and it reflects the current definition of 
TMB, which includes only non‑synonymous variants. As the 
present study was limited to cell lines, additional validation 
of the bioinformatics pipelines in clinical samples is required.
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