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Abstract: Non-invasive photoplethysmography (PPG) technology was developed to track heart
rate during physical activity under free-living conditions. Automated analysis of PPG has made it
useful in both clinical and non-clinical applications. Because of their generalization capabilities, deep
learning methods can be a major direction in the search for a heart rate estimation solution based on
signals from wearable devices. A novel multi-headed convolutional neural network model enriched
with long short-term memory cells (MH Conv-LSTM DeepPPG) was proposed for the estimation of
heart rate based on signals measured by a wrist-worn wearable device, such as PPG and acceleration
signals. For the PPG-DaLiA dataset, the proposed solution improves the performance of previously
proposed methods. An experimental approach was used to develop the final network architecture.
The average mean absolute error (MAE) of the final solution was 6.28 bpm and Pearson’s correlation
coefficient between the estimated and true heart rate values was 0.85.
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1. Introduction

Current changes in human lifestyle have resulted in a lack of physical activity, which
is one of the leading risk factors for non-communicable diseases and deaths [1]. Research
demonstrates that an adequate amount of physical activity can significantly contribute to
the prevention and control of diseases such as cardiovascular disease, cancer, and diabetes.
Awareness of the positive aspects of physical activity, along with progress in the field
of microcontrollers, has contributed to the development of many wearable devices that
allow for continuous physical activity monitoring. Wearables have become a part of many
people’s lives, which has led them to pay more attention to their health by monitoring
physical activity [2-5].

A common feature of many such devices is the ability to monitor continuous heart
rate (HR). In most wearables, the measurement is based on photoplethysmography (PPG)
signals. PPG signals are obtained through the emitting of light (using a light-emitting
diode, LED) on the skin and measuring (using a photodiode) the variations in reflected or
transmitted light intensity. The periodicity of measured light corresponds to the cardiac
rhythm, which is used for HR estimation [6]. However, this method has one major draw-
back: during intense physical activity, the PPG signal is very susceptible to interference [7].
Reducing the influence of motion artifacts is currently a leading research direction in HR
estimation. The ideal HR estimation method should be able to predict HR under free-living
conditions without the need for individual calibration during daily life activities such as
sitting, standing, and walking, or while participating in sports activities [3]. Researchers
usually solve the described problem through advanced PPG signal processing or by en-
riching the developed methods with accelerometer signals that directly inform about the
movement aspects of the device [9]. In particular, many new methods have been developed
based on two IEEE Signal Processing Cup 2015 (ISPC) datasets [10].
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Promising classical solutions such as SpaMa [11] and Schaeck2017 [12] achieve very
high accuracy for ISPC datasets, with an accuracy of 1-4 beats per minute (bpm), using
mean absolute error (MAE) as a metric. During tests on more complex datasets, the
versatility of these approaches proved to be limited [13]. Good results were achieved only
with session optimization of the used solutions, which makes it impossible to quickly
apply these methods to other data. These algorithms have in common the inclusion of
several adjustable parameters, the tuning of which, for each dataset-session specifically, has
been reported as typically having very low MAE results. Leave-one-session-out (LOSO)
cross-validation is considered a universal solution; methods prepared in this way can
be applied to current data from everyday life situations. Furthermore, the data used to
develop these methods only contain less than one measurement hour and a few physical
activities, and were performed under laboratory conditions. Such a small amount of data
and conditions that do not correspond to daily life result in very limited possibilities for
developed solutions from which to generalize [14].

To overcome this problem, a novel dataset (PPG-DaLiA [13]) was acquired for the
HR estimation problem. Classical methods for LOSO cross-validation using the PPG-
DaLiA dataset give MAE values of about 15.56 bpm (SpaMa algorithm) and 20.45 bpm
(Schaeck2017 algorithm) [13]. A large amount of data in the dataset makes it possible to
develop methods using deep learning, such as the Deep PPG solution [13]. The model
is based on data from a single PPG channel and a 3-axis accelerometer signal. The data
were divided into 8 s time windows with a shift of 2 s. The next step was to apply a fast
Fourier transform (FFT) on each time series window. Then, each of the obtained spectra
was filtered, leaving only a range from 0—4 Hz. The final preprocessing step was to apply
z-score standardization for each channel of the spectrum in an 8 s window. The Deep PPG
network has the following configuration for HR prediction:

e 2D convolutional layer,

¢ 1D convolutional layer followed by max-pooling layer,

e seven 1D convolutional layers, each one followed by a max-pooling layer,
. 1D convolutional layer,

¢ flattening layer,

e  fully connected layer followed by dropout layer,

¢  fully connected layer.

The goal of the Deep PPG network was to solve the regression task and determine
the heart rate value for an 8 s time window. It is possible to treat the time-frequency
spectrum as a two-dimensional image, which, after the first 2D convolutional layer, is
further treated as a typical time series, and is then processed using 1D convolutional layers.
For each training session of the network, for a given set of test data, average values from
7 repetitions are saved, which together form one model. The test results of Deep PPG have
demonstrated potential inaccuracy in ensemble prediction.

Another promising solution is also based on deep learning, in which HR estimation
was obtained from reflectance PPG with an acceleration power spectrum and acceleration
intensity value [15]. The data used included multi-channel PPG and signals from a 3-axis
accelerometer. The data were prepared in 8 s windows with a shift of 2 s and were filtered
by a fourth-order Butterworth bandpass filter with cutoff frequencies in the range 0.4—4 Hz.
Then the signal was standardized using a z-score and downsampled to 25 Hz. After
downsampling, a power spectrum was created using an FFT. Each 8 s window went into
the model as a time-frequency spectrum and was again standardized using a z-score. The
proposed network architecture in this approach consisted of a total of eight layers [15]:

¢ 2D convolutional layer followed by max-pooling layer and dropout layer,

* 1D convolutional layer followed by max-pooling layer and dropout layer,

e flattening layer,

*  concatenation layer,

¢ fully connected layer,

* two long short-term memory (LSTM) layers, each one followed by dropout layer,
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e fully connected layer followed by softmax layer.

The HR estimation is treated as a multi-class classification problem, and based on this
fact the softmax layer provides probabilities corresponding to each estimated frequency
bin value, covering a true HR value for an 8 s window. In this solution, of particular
interest is the use of LSTM cells that capture the temporal dependencies in the feature maps
created by the convolutional layers. This solution showed an average absolute error of
less than 1.5 bpm. In addition, the study demonstrated that the obtained model estimates
HR for even high-intensity exercise. Unfortunately, the solution has only been tested on
data acquired under laboratory conditions, which may indicate overly optimistic results.
However, the good results for high-intensity exercise obtained by the solution and the
concept of using LSTM cells were additional reasons for the further development shown in
this work.

Based on the solutions described above and others that were reviewed [9,16], it can be
seen that deep learning, because of its generalization capabilities, can be a major direction
in the search for an ideal solution for the HR estimation problem.

This work aimed to propose a novel neural network architecture, multi-headed con-
volutional neural network model enriched with long short-term memory cells (named
MH Conv-LSTM DeepPPG), for HR estimation treated as a regression task. The novel
deep learning approach was compared to the Deep PPG solution [13], by performing an
evaluation using the PPG-DaLiA dataset. To achieve this goal, an experimental approach
was used to develop the final network architecture. Apart from proposing a new network
model for HR estimation, the novelty of the presented work is the use of signals in the
time domain directly, and not the frequency domain. This feature eliminates the need for
additional prepossessing of the input signals.

2. Materials and Methods
2.1. Evaluation

The standard unit for measuring heart rate is beats per minute (bpm). In the heart
rate estimation problem, the most frequently repeated metric is mean absolute error
(MAE) [9,13,15,16], which was also used in this work (1), with N being the number of
windows in the measurement time series and bpml denoting the estimated and bpm refer-
ence heart rate value.

/ 1Y /
MAE(bpm ,bpm) = N Y [bpm; — bpm;| 1)
i=1

2.2. Dataset

The dataset used in this work is the previously mentioned PPG-DaLiA [13] dataset.
This abbreviation stands for PPG dataset for motion compensation and heart rate estimation in
daily life activities (https:/ /ubicomp.eti.uni-siegen.de/home/datasets/sensors19/, accessed
on 31 July 2021). The proposed dataset has the following characteristics that determine
its usefulness:

*  public access to all survey data,

* large amount of data, a total of 36 hours of data with high sampling rates for 15 study
participants performing 8 different types of physical activities (work, walking, lunch,
driving, cycling, playing football, stairs, sitting),

* sensor data were obtained from commercially available devices,

*  activities were carried out in equivalent conditions to everyday life,

* physical diversity among survey participants,

* areference in the form of heart rate obtained from electrocardiography (ECG), which
is considered the gold standard for HR measurement.
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One of the devices used to prepare the dataset was the wrist-worn Empatica E4. The
wrist is the most common placement for wearable devices; hence, data from this device are
further suitable for use in this work.

2.3. Dataset Preparation

An important element that an ideal estimation method must satisfy is its universality.
To ensure this condition, the models proposed in this work were trained and tested using
cross-validation. Since the dataset consists of 15 complete sessions for different participants,
a variation of cross-validation was used that was split into training and validation, and
the test sets refer to the individual sessions of the participants. The variation used is
called leave-one-out cross-validation (LOOCYV), and for the available data, each fold in
LOOCYV consisted of 12 participants making up the training data set, 2 participants being
the validation data set, and 1 participant being the test set. On this participant, the
performance of the presented solutions was evaluated. Smaller pieces of research related
to building the network architecture were evaluated in 5 folds, while the final solution was
evaluated in 15 folds.

The most promising solutions process data in the form of a time-frequency spectrum.
In the prestudy, we compared the performance of the Deep PPG model using both frequency
and time domain data. Based on this study, we found that for some of the participant’s
data in the test set, the time domain was preferable, while for others the frequency domain
was better. Therefore, our solution uses data in the time domain, for which preprocessing
is reduced to the bare minimum. In this work, the final solution used PPG and 3-axis
accelerometer signals. Signals measured by the Empatica E4 device were recorded at
different frequencies: 32 Hz for 3 signals from the accelerometer and 64 Hz for the PPG
signal. Our final model combined these 4 features. After the dataset was divided into each
fold, further processing was performed in 3 simple steps:

1.  In the first step, the resolution of the PPG signal was reduced using decimation to
32 Hz.

2. Inthe second step, standardization was performed using a z-score by removing the
mean and scaling the features to unit variance. Standardization according to the
generally accepted principle was performed using statistics obtained only for the
training set. Then, mean and standard deviation from the training set were used to
standardize the validation and test sets.

3. In the third step, for all three sets, the features were processed using the sliding
window method. The window size and shift were adapted from most previous works
on the HR problem.

Therefore, a single window was 8 s long, which corresponds to one feature of datasets
of 256 data points (sampling the 32 Hz signal). The next window was created by a shift
of 2s, making 6 s of feature overlap. Finally, the training data corresponding to the
individual subjects were fed into the network. The length of the training sets for each fold
slightly varied according to the duration of the entire data collection protocol.

2.4. Design of Network Architecture

The basic assumption of the neural network architecture being built for this work was
to eliminate, as much as possible, the influence of motion artifacts on the obtained results.
Therefore, the entire network architecture design process was only concerned with data
from the wrist-worn accelerometer. The idea was simple: if the network could successfully
estimate HR from the accelerometer alone, it would be more capable of solving the HR
problem using data from the accelerometer and additional features.

In the prestudy, hyperparameters related to the training of networks were selected
using a validation set. The selected parameters performed best on early versions of the
network architecture, which was the reason for their use. All experiments used the same
set of hyperparameters as shown in Table 1.
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Table 1. Hyperparameters related to training.

Hyperparameter Value/Type
Batch size 128
Learning rate 0.001
Optimizer Adam
Epochs 100
Loss Mean squared error

The 5-fold LOOCV was responsible for the versatility of the results of each experiment
performed in building the network. The participants constituting the test sets for each
fold were also selected to ensure that the tests provided as much information as possible.
Therefore, in addition to the results for the participants for which HR did not deviate
significantly from the mean (S3, S9, S15), the experiments will also provided information
on how the proposed solutions performed for the user with the highest mean HR (S5) and
the lowest (512). Each network considered in this work solves a regression problem by
estimating a single HR value for an 8 s window. In determining the final architecture, we
tested the impact of various network elements on the performance metric score.

The first experiment conducted tested the number of filters in the first two convolu-
tional layers in the basic network architecture. It was assumed that in the first convolutional
layer, there would be # filters, while in the second layer it would be equal to 2n. Increasing
the number of filters in the subsequent layers of the convolutional neural network (CNN,
Conv) is an often repeated procedure that allows the layers to capture more patterns in
data. The experiment conducted tested four different sizes of n (24, 48, 96, 128) with the
same kernel size (k = 3). To reduce the dimensionality of the resulting feature maps,
each convolution operation was followed by a max-pooling operation. Then, the resulting
feature maps were flattened by a flattening layer, from which they were processed by a
fully connected layer. The rectified linear unit was used as a default activation function
across the network and to avoid overfitting the dropout layer. The network configuration
used in this experiment was as follows:

* 1D convolutional layer (number of filters = n, kernel size = k, strides = 1),
e max-pooling layer (pool size = 3, strides = 3),
o 1D convolutional layer (number of filters = 2n, kernel size = k, strides = 1),
*  max-pooling layer (pool size = 3, strides = 3),
e flattening layer,
. fully connected layer (number of neurons = 128),
e dropout layer (size = 0.5),
e  fully connected layer (number of neurons = 1).
In total, the network was trained 20 times in this experiment, each time changing the
training fold or the number of filters in the first two convolutional layers. The resulting
mean MAE scores for all test participants are shown in Table 2.

Table 2. Results for different numbers of filters with small kernel size (k = 3).

Number of Filters n=24 n=148 n==64 n=96
Average MAE (bpm) 2093 +1445 2098 +14.11 20.36 +14.55 2043 +14.18

The obtained results obtained varied slightly depending on the number of filters used.
For 64 filters in the first layer and 128 filters in the second layer, the best results were
achieved, with an average MAE of 20.36 bpm. The parameters obtained from the test could
be used as the basis for further development of the network architecture. However, we
assumed that a kernel size adjusted from the vast majority of image recognition works
may not be sufficient for time-dependent accelerometer signals, which are the basis for the
next experiment.
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Small kernel size combined with the max pooling operation resulted in more localized
feature extraction from the available signals. In the case of signal representation in the
form of a time—frequency spectrum, such a solution may be appropriate, because the
spectrum can be treated as a two-dimensional image. However, in the case of a one-
dimensional signal, a simpler solution was to use a larger kernel size for the convolution
operation, which in turn allows the features to be considered in a wider context. In a second
experiment on determining the appropriate network architecture, a test was conducted
to determine the effect of a larger kernel size (k = 12). The same network architecture
was used for the experiment, except that the convolutional layers used a kernel size of
12. Again, the network was trained for individual varying numbers of filters and training
folds. The results of the experiment are presented in Table 3.

Table 3. Results for different numbers of filters with large kernel size (k = 12).

Number of Filters n=24 n=48 n=64 n=96
Average MAE (bpm) 20.13+£13.52 20.13+13.24 20.10+13.64 19.32+13.93

Based on these results, the best number of filters was 96 in the first layer and 192 in
the second layer, as this configuration obtained the best results, with an average MAE of
19.32 bpm. For the larger kernel, a performance improvement is evident for each number
of filters tested and, consequently, the best configuration of the first two layers was found,
which was used for further experiments.

Increasing the depth of a neural network is a popular procedure that is often used
in state-of-the-art solutions in many fields [9,17]. Deeper neural networks allow for the
network to learn more complex nonlinear relationships. For the network architecture under
development, another test was performed to check the impact of adding more convolu-
tional layers to the network. The tests involved adding 1 to 3 additional convolutional
layers, giving a maximum of 5 layers in total, given the existing 2 layers in the already
existing architecture. Adding more convolutional layers was impossible because the spatial
dimension shrinks to 1 with 3 additional layers. The configuration of the additional layers
was as follows:

e  First additional convolutional layer:

- 1D convolutional layer (number of filters = 128, kernel size = 3, strides = 1),
- max-pooling layer (pool size = 2, strides = 2),
- dropout layer (size = 0.1).

¢  Second additional convolutional layers:

— 1D convolutional layer (number of filters = 192, kernel size = 3, strides = 1),
- max-pooling layer (pool size = 2, strides = 2),
—  dropout layer (size = 0.1),
- 1D convolutional layer (number of filters = 128, kernel size = 3, strides = 1),
- max-pooling layer (pool size = 2, strides = 2),
- dropout layer (size = 0.1).

®  Third additional convolutional layers:

— 1D convolutional layer (number of filters = 192, kernel size = 3, strides = 1),
- max-pooling layer (pool size = 2, strides = 2),

- dropout layer (size = 0.1),

- 1D convolutional layer (number of filters = 128, kernel size = 3, strides = 1),
- max-pooling layer (pool size = 2, strides = 2),

- dropout layer (size = 0.1),

- 1D convolutional layer (number of filters = 64, kernel size = 3, strides = 1),
- max-pooling layer (pool size = 2, strides = 2),

- dropout layer (size = 0.1).
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Subsequent convolutional layers already used a kernel size of 3 because their task was
to extract more local signal dependencies. For each network configuration, the rest of the
network was analogous to the first two experiments:

¢ flattening layer,

e fully connected layer (number of neurons = 128),
e dropout (size = 0.5),

e fully connected layer (number of neurons = 1).

The first two experiments conducted showed that convolutional layers with larger
kernels achieve better results. However, for some test participants, a small kernel size
was found to be better. To apply simultaneous feature extraction with convolutions using
different kernel sizes, a multi-headed architecture was used. The proposed architecture
is a combination of the best number of filters obtained for a smaller and a larger kernel.
One part of the model extracts features using two convolutional layers (96 and 192 filters)
using a kernel size equal to 12, while the other part of the model performs exactly the same
operation using another two convolutional layers (64 and 128 filters) but using a kernel
size equal to 3. The resulting network from this concept consists of the following layers:

. head 1

- 1D convolutional layer (number of filters = 64, kernel size = 3, strides = 1),
- max-pooling (pool size = 3, strides = 3),
— 1D convolutional layer (number of filters = 128, kernel size = 3, strides = 1),
- max-pooling (pool size = 3, strides = 3),
- flattening layer,

e head2

— 1D convolutional layer (number of filters = 96, kernel size = 12, strides = 1),
- max pooling (pool size = 3, strides = 3),

- 1D convolutional layer (number of filters = 192, kernel size = 12, strides = 1),
- max-pooling (pool size = 3, strides = 3),

- flattening layer,

®  concatenate layer (merging two model heads),

e fully connected layer (number of neurons = 128),
*  dropout (size = 0.5),

e fully connected layer (number of neurons = 1).

Each parallel part of the network creates its own map of features, which are then
combined in the concatenate layer. The resulting features are then further processed by
a fully connected layer with 128 neurons, half of which are switched off in the dropout
layer. This is achieved by applying the created different combinations of convolutional
neural network (CNN) architectures to the available data. In this case, the following
results were obtained and are shown in Table 4. L corresponds to the number of additional
convolutional layers used.

Table 4. Results for different CNN architectures.

CNN Architecture L=1 L=2 L=3 Multi-Headed
Average MAE (bpm) 20.19 +14.04 19.17 +£14.13 1940+ 1432 1897 +14.86

The results obtained in this experiment indicate that deepening the network architec-
ture used did not have the intended effect. For the additional convolutional layers, the
differences in the results obtained were minimal, indicating that the subsequent feature
maps did not add any new information to the network. Surprisingly, the multi-headed
model gave the best results for most participants.

Next, improvements were possible by increasing the complexity of the network through the
use of recurrent layers. The use of long short-term memory (LSTM) cells can enable the capture
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of temporal dependencies in the changing signals from accelerometers [18,19]. To enable this,
the most promising multi-headed CNN model enriched with LSTM cells (MH Conv-LSTM
DeepPPG) was proposed. The LSTM cells were added directly after the convolutional
layers. This addition allowed the LSTM cells to process the feature maps obtained using the
two convolutional layers for each model head. This experiment investigated 3 upgrades
to the existing architecture using LSTM cells. The first two architectures only add a
single LSTM cell or stacked LSTM cells per head, while the third architecture uses a
time-distributed LSTM layer.

In the architecture using single LSTM layers, each head used layers with 128 cells.
Signal outputs from two parallel heads were combined in the concatenation layer, and
from there there they moved to a fully connected layer of 256, which corresponded to the
size of the combined features. For architecture using stacked LSTM layers, subsequent
LSTM layers had 256 units each. This assumption was intended to allow for a broader
map of features for combination from the two heads. The resulting features were then
processed by a fully connected layer of size 512, with the number of neurons in this layer
corresponding to the output size of the concatenation layer. Both tested architectures used
a dropout layer with a dropout size of 0.5 to regulate the network.

The use of a time-distributed LSTM layer in the last architecture in this test allowed
individual convolutional layers to be applied to each temporal slice of the input data. To
make this possible, each time window of length 256 data points was further divided into
8 steps of 32 data points for each accelerometer channel. Thus, the convolutional layers did
not extract features from the 256 data points of the channel as a whole, but separately for
each of the 8 steps of the time window used. By training the network for each fold and
architecture considered, the following results were obtained as shown in Table 5.

Table 5. Results for different MH Conv-LSTM DeepPPG architectures.

MH Conv-LSTM DeepPPG Single Stacked Single Time Distributed
Average MAE (bpm) 17.73 £13.11 18.73 +12.98 20.44 £ 13.03

The biggest disappointment of the experiment was that the model using the time-
distributed LSTM layer performed even worse than architectures without LSTM cells. The
reason for this may be the lack of significant time dependencies in the single seconds of
the window, which explains the use of 8 s windows in other existing solutions to the HR
estimation problem. Nevertheless, the experiment was successful, and further research
will use the multi-headed model using the best performing single LSTM layers.

The last experiment in the network architecture design process concerned the size of
the last fully connected layer. Four different numbers of neurons S (128, 256, 512, 1024)
were considered. The task of the fully connected layer was to process the final high-level
time-dependent features obtained from the LSTM cells. Selecting the right number of
neurons in this layer enabled the network to efficiently learn nonlinear combinations of
these features. The network architecture used in this experiment was the same as the best
MH Conv-LSTM DeepPPG architecture, only the number of neurons in the fully connected
layer was changed between tests. Evaluation results of this experiment are shown in
Table 6.

Table 6. Results for different fully connected layer sizes.

MH Conv-LSTM DeepPPG S=128 S =256 S =512 S =1024
Average MAE (bpm) 17.99 £12.03 18.13 £11.98 16.88 +10.43 19.19 + 13.31

For 512 neurons in the fully connected layer, the results for all participants in the
experiment were noticeably higher, which prompted the use of this configuration. The
size of the fully connected layer was the last experiment conducted to determine the final
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network architecture. The resulting network architecture determined from numerous
experiments was used for the final solution for HR estimation:

. head 1

- 1D convolutional layer (number of filters = 64, kernel size = 3, strides = 1),
- max pooling layer (pool size = 3, strides = 3),

— 1D convolutional layer (number of filters = 128, kernel size = 3, strides = 1),
- max-pooling layer (pool size = 3, strides = 3),

- LSTM layer (number of cells = 128),

- flattening layer,

e head2

- 1D convolutional layer (number of filters = 96, kernel size = 12, strides = 1),
- max pooling layer (pool size = 3, strides = 3),

- 1D convolutional layer (number of filters = 192, kernel size = 12, strides = 1),
- max-pooling layer (pool size = 3, strides = 3),

- LSTM layer (number of cells = 128),

- flattening layer,

*  concatenate layer (merging two model heads),

e fully connected layer (number of neurons = 512),
e dropout (size = 0.5),

¢ fully connected layer (number of neurons = 1).

2.5. Implementation

All neural network architectures presented in this paper were developed using Tensor-
Flow (version 2.5.0), the deep learning library that is currently most popular. In addition,
the following libraries were used: Python 3.7.10, Pandas 1.1.5, Numpy 1.19.5, Sklearn
0.22.2.post1, Keras 2.5.0.

Calculations were performed using the Google Colaboratory (Colab, https:/ /colab.
research.google.com/, accessed on 31 July 2021) environment, a cloud service available
free of charge. Colab allows writing and execution of arbitrary Python code through the
browser, and is especially well suited to machine learning data analysis.

The best solution presented in this paper can be replicated by downloading the
notebook that was used in this work. A link to the framework notebook repository is
available on request.

3. Results
3.1. Final MH Conv-LSTM DeepPPG Network Performance

To objectively evaluate the final solution’s performance, the model was trained a total
of 15 times, changing each time the participant constituting the test set. For a full evaluation
of the proposed architecture, a PPG signal and a 3-axis accelerometer signal measured by
a wrist-worn device were used. The HR predictions obtained for each participant were
subjected to performance metrics and thus, for the entire collection protocol, individual
participants obtained the following scores as shown in Table 7. The lowest errors are
apparent for physical activities that do not require increased intensive movement, such
as sitting, driving, lunch, or work. For these activities, the model obtains sufficiently
good results that do not require significant improvements. Worse results are noticeable
for all activities requiring dynamic movement. The most difficult activities for which the
model had to predict HR were climbing stairs, table soccer, cycling, and walking. The
movement aspects of these activities significantly worsen the readings from the sensors
mounted in the wristband. Despite this, for a large number of participants, the predictions
for these activities were not a problem for the network used. An example of these are
participants 513, S14, and 515, for whom accurate predicted HR results were acquired for
almost every activity. The negative movement aspect is most evident for participant S5, as
his results for the low movement activities are comparable to the rest of the participants.
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However, when the model was tasked with predicting HR for this participant during more
intensive activities, his performance worsened significantly. In the case of this participant,
the disturbed sensor readings were further compounded by tachycardia.

Table 7. MAE (bpm) scores for particular physical activities.

Participant Sitting Stairs Table soccer Cycling Driving Lunch Walking Working
S1 4.44 15.05 9.21 4.06 3.32 4.02 5.87 1.83
S2 3.66 17.58 8.01 9.60 451 4.50 7.43 4.03
S3 1.94 11.62 4.67 3.81 3.03 3.42 2.84 2.57
S4 2.54 17.42 7.41 9.68 4.70 4.81 8.00 3.85
S5 1.16 66.42 21.40 59.67 2.66 3.87 23.20 3.18
56 2.34 20.54 16.90 8.40 4.46 - - -
S7 1.60 11.25 3.71 2.90 2.12 2.37 2.34 2.03
S8 5.18 17.51 8.05 10.76 8.82 797 13.80 5.00
59 3.74 20.99 5.58 793 5.66 5.70 16.19 7.56
510 1.74 11.21 5.88 5.42 1.72 2.23 2.70 1.99
S11 1.58 19.13 10.54 3.10 3.14 4.77 12.76 1.91
S12 5.77 18.56 13.79 5.52 5.73 523 19.17 4.30
513 2.55 6.87 5.10 5.62 2.54 2.76 4.59 1.61
S14 0.90 4.09 441 5.53 447 3.96 16.42 3.13
S15 1.54 14.15 4.82 4.90 3.70 2.28 4.65 2.49

Average 2.71+1.50 1816 +14.23 863 +£5.11 9.79+14.02 4.04+179 3.86+157 933+6.84 3.03+1.63

An example of a detailed prediction obtained with the proposed model is shown for
participant S7 in Figure 1. Figure 2 presents a Bland—Altman analysis for all participants
from the PPG-DaLiA dataset. Pearson’s correlation coefficient is 0.85 (Figure 3) and the
p-value is <0.05.

"y
M
T Wbk |

Heart Rate [bpm]

~ .,

Time [s]

Figure 1. Participant S7 true and predicted HR using proposed MH Conv-LSTM DeepPPG.
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Bland-Altman plot (Test participants)

True HR - Estimated HR [bpm]

Average of True HR and Estimated HR [bpm]

Figure 2. Bland-Altman plot for all participants from PPG-DaLiA dataset. Analysis for all 64,697 HR
estimated values, with 3544 (5.48%) points outside the limits of agreement.

Pearson Correlation (Test participants)

I~
3

Estimated HR [bpm]
5
38

True HR [bpm]
Figure 3. Pearson correlation between estimated and true HR values.

3.2. Comparison to Deep PPG Solution

The final results obtained were promising, and therefore were compared them with the
best solution for the PPG-DaLiA dataset. Both approaches use the same training set size and
cross-validation type, so they can be objectively compared. The most significant differences
between them, which translate into predictions, are the method of data preparation and the
architecture of the network used. Table 8 shows the comparison of the MAE values for each
participant between the approach described in this work MH Conv-LSTM DeepPPG and
the best model Deep PPG presented in the publication [13]. The solution described in the
publication also used ensemble learning to obtain results based on the mean value model
weights of 7 repetitions. In the proposed solution, the obtained results were obtained only
from a single network training, yet the average MAE score was improved for each test
participant. Moreover, the results were obtained after training MH Conv-LSTM DeepPPG
for only 100 iterations, with a callback that returns the network weights for which validation
loss was the least. There is a colossal difference in favor of the proposed solution when
comparing to the Deep PPG that was trained for 15,000 iterations.
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Table 8. Comparison of model performance, MAE (bpm). Performance of Deep PPG taken from [13],
Table 10.

Participant Deep PPG MH Conv-LSTM DeepPPG
51 7.73 5.13
52 6.74 4.78
53 4.03 3.65
54 5.90 5.61
S5 18.51 16.81
56 12.88 7.19
57 3.91 2.88
S8 10.87 9.00
59 8.79 8.13
510 4.03 3.99
S11 9.22 6.21
512 9.35 9.07
513 4.29 3.45
514 4.37 4.30
515 417 413
Average 7.65 + 4.15 6.28 + 3.53

In the presented solution, the average errors have been improved for the vast majority
of activities. The only activities with worse MAE values were climbing stairs and walk-
ing. For activities with more dynamic movement, particular improvement is evident for
table soccer and cycling, which improved errors by 3.53 bpm and 2.69 bpm, respectively.
However, considering the overall model performance, the solution proposed in this work
achieves better results (Figure 4).

25

2
0 16.98 18.16

12.16 12.48
10 i63 979 9.21 933
493 4.96 5.22
5 Lz'n .4.04 -3.86 3.84 303
. B

Sitting Stairs Table Cycling Driving Lunch Walking Working
soccer

MAE[bpm]

Physical activity

m Deep PPG = MH Conv-LSTM

Figure 4. Comparison of the average activity scores for Deep PPG and MH Conv-LSTM DeepPPG.
Performance of Deep PPG taken from [13], Table 11.

3.3. Results of HR Estimation Using Signals in Frequency Domain

In general, most state-of-the-art solutions to the problem under consideration process
data in the form of a time—frequency spectrum. Therefore, the resulting model was tested to
see how it handles data in this domain. For this purpose, 3-axis wrist-worn accelerometer
signals and a PPG signal were used that were prepared for network training differently
than in the other experiments. The two first steps were the same as those used for the other
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experiments. Firstly, the PPG was downsampled to 32 Hz, and this frequency is the same
as that for accelerometer data. Then the signals were processed with a sliding window
method with a window size of 8 s and a shift of 2 s. For each time window obtained, an
FFT with 2048 points was applied. In the next step, the resulting spectra were truncated,
leaving only a 0.4-4 Hz frequency interval. The final step of data preparation was to apply
a z-score standardization for each of the windows. The data thus prepared was used to
train the model a total of 5 times, each time for a different participant. In this way, the
model obtained the following performance metric scores for each tested participant as
shown in Table 9.

Table 9. Metric scores for frequency domain data, MAE (bpm).

Participant MAE [bmp]
S3 4.52
S5 16.12
59 9.78
512 13.42
515 6.20
Average 10.01

The model was only tested for participants S3, S5, 59, 512, and 515, and the results for
these participants show that using the frequency domain gives worse results. Despite this,
Figure 5 shows the average MAE results for given participants performing each protocol
activity. The frequency domain was found to be better for climbing stairs by 5.93 bpm,
cycling by 7.44 bpm, and for work by 5.87 bpm. The results obtained partially explain the
comparison with the Deep PPG solution (Figure 5), as the authors also used data in the
frequency domain, and as in the Deep PPG solution, climbing stairs is better predicted
for this domain in this comparison. The reason for this may be that the time—frequency
spectrum focuses on the periodicity of the signals, especially during climbing stairs.

26.35

20.42

20.00
17.49 1637

‘g
o
%15.00 12 rros— 132t
10.05
§ 10.00
5.86
- ‘ F
0.00

Sitting Stairs Table Cycling Driving Lunch Walking Working
soccer

Physical activity

m Time domain  ® Frequency domain

Figure 5. Comparison of average activity scores for different methods of data preparation.

3.4. Number of Parameters and Computational Complexity

The proposed model MH Conv-LSTM DeepPPG has about 680K parameters and
requires 38M computations for single heart-rate estimation while obtaining lower MAE
(6.28 £ 3.53 bpm) values than the model Deep PPG model (named CNN ensemble in [13]
and achieving MAE value 7.65 & 4.15 bpm), which is very large and computationally



Sensors 2021, 21, 5212 14 of 15

expensive. The model has about 60M parameters and requires 240M computations for
single heart-rate estimation. The memory complexity and the number of operations are
crucial aspects for the practical realization, especially when it comes to implementation for
embedded systems.

In the Colab environment, scripts were running using the following hardware specifi-
cations: GPU Tesla K80, 12 GB GDDR5 VRAM,; Intel Xeon CPU 2.30 GHz, 13 GB RAM. For
HR estimation the GPU utilization was 3% with about 7.14 GB GPU memory and 2.99 GB
RAM memory usage.

4. Conclusions

The presented results considered a novel neural network model MH Conv-LSTM
DeepPPG to estimate HR using data from wearable devices (PPG and 3-axis acceleration
signals) and processed directly in the time domain. A detailed analysis of existing solutions
allowed the definition of a set of key requirements for the solved problem.

The resulting final architecture, the MH Conv-LSTM DeepPPG network model, was
subjected to further evaluation. The HR estimation results obtained have an MAE score
equal to 6.28 bpm, which was an improvement over the Deep PPG solution on the PPG-
DaLiA dataset by 1.37 bpm (17.9%). The overall results obtained were better for all test
participants, but individual predicted activities such as climbing stairs and walking were
more favorable for the previous Deep PPG solution. For such activities, an estimation using
data in the frequency domain gives better results. Further work is planned to combine
estimations based on input signals in the time and frequency domains depending on the
parameters of the activity, which may improve the results.
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