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Abstract

The brain exhibits capabilities of fast incremental learning from few noisy examples, as well

as the ability to associate similar memories in autonomously-created categories and to com-

bine contextual hints with sensory perceptions. Together with sleep, these mechanisms are

thought to be key components of many high-level cognitive functions. Yet, little is known

about the underlying processes and the specific roles of different brain states. In this work,

we exploited the combination of context and perception in a thalamo-cortical model based

on a soft winner-take-all circuit of excitatory and inhibitory spiking neurons. After calibrating

this model to express awake and deep-sleep states with features comparable with biological

measures, we demonstrate the model capability of fast incremental learning from few exam-

ples, its resilience when proposed with noisy perceptions and contextual signals, and an

improvement in visual classification after sleep due to induced synaptic homeostasis and

association of similar memories.

Author summary

We created a thalamo-cortical spiking model (ThaCo) with the purpose of demonstrating

a link among two phenomena that we believe to be essential for the brain capability of effi-

cient incremental learning from few examples in noisy environments. Grounded in two

experimental observations—the first about the effects of deep-sleep on pre- and post-sleep

firing rate distributions, the second about the combination of perceptual and contextual

information in pyramidal neurons—our model joins these two ingredients. ThaCo alter-

nates phases of incremental learning, classification and deep-sleep. Memories of hand-

written digit examples are learned through thalamo-cortical and cortico-cortical plastic

synapses. In absence of noise, the combination of contextual information with perception

enables fast incremental learning. Deep-sleep becomes crucial when noisy inputs are con-

sidered. We observed in ThaCo both homeostatic and associative processes: deep-sleep
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fights noise in perceptual and internal knowledge and it supports the categorical associa-

tion of examples belonging to the same digit class, through reinforcement of class-specific

cortico-cortical synapses. The distributions of pre-sleep and post-sleep firing rates during

classification change in a manner similar to those of experimental observation. These

changes promote energetic efficiency during recall of memories, better representation of

individual memories and categories and higher classification performances.

1 Introduction

Increasing experimental evidence is mounting for both the role played by the combination of

bottom-up (perceptual) and top-down/lateral (contextual) signals [1] and for the beneficial

effects of sleep as key components of many high-level cognitive functions in the brain. In the

following, we give an overview of some aspects, driven from experimental observations, that

we have taken as fundamental building blocks for the construction of the model we present.

It is known that the cortex follows a hierarchical structure [2]; starting from this, Larkum

et al. [1] propose an associative mechanism built-in at a cellular level into the pyramidal neu-

ron (see Fig 1B), exploiting the cortical architectural organization (see Fig 1C). Long-range

connectivity in the cortex follows the basic rule that sensory input (i.e., the feed-forward

stream) terminates in the middle cortical layers, whereas information from other parts of the

cortex (i.e., the feedback stream) mainly projects to the outer layers. This also applies to projec-

tions from the thalamus, a structure that serves as both a gateway for feed-forward sensory

information to the cortex and a hub for feedback interactions between cortical regions. Indeed,

only 10% of the synaptic feedback inputs to the apical tuft come from nearby neurons, and the

missing 90% arise from long-range feedback connections. This feedback information stream is

vitally important for cognition and conscious perception: this picture leads to the suggestion

that the cortex operates via an interaction between feed-forward and feedback information.

Larkum et al. [1] highlight that, counter-intuitively, distal feedback input to the tuft dendrite

could dominate the input/output function of the cell: short high-frequency bursts would be

produced on a combination of distal and basal input. As a consequence, although small

(under-threshold) signals contribute only to their respective spike initiation zones, the fact

that input has reached the threshold in one zone is quickly signalled to other zones. This pro-

vides the possibility for a contextual prediction: the activity in the apical tuft of the cell can

lower the activity threshold driven by the basal region, the target of the specific nuclei in the

thalamus that projects there the perceptual and feed-forward streams. In summary, this mech-

anism is ideally suited to associating feed-forward and feedback cortical pathways. Thus, they

propose a conceptual interpretation of these biological pieces of evidence: the feedback signal

aims at predicting whether a particular pyramidal neuron could or should be firing. Moreover,

any neuron can fire only if it receives enough feed-forward input. Resulting from this interpre-

tation, the internal representation of the world by the brain can be matched at every level with

ongoing external evidence via a cellular mechanism, allowing the cortex to perform the same

operation with massively parallel processing power.

Soft Winner-Take-All (WTA) plays an important role in many high-level cognitive func-

tions such as decision making [3–5] classification and pattern recognition [6, 7]. Under a

rough simplification, this mechanism can be realized through the competition among groups

of excitatory neurons connected towards the same population of inhibitory neurons, which in

turn is connected towards the excitatory groups it arbitrates [8–11]. Within appropriate condi-

tions, the inhibitory signal will be sufficiently high to suppress the signal of all the low-firing
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Fig 1. Thalamo-cortical spiking model (ThaCo). Panels B and C to compare the architecture of our model with the biological principles described in [1]. A) Scheme

of the Thalamo-cortical spiking model (ThaCo). Input images, passed through a filter (HOG) are projected (blue arrow) to thalamic excitatory neurons (tc), mimicking

the mechanism of the retinal visual stimulus. Thalamic neurons stimulate cortical excitatory neurons (cx) with a perceptual feedforward excitation (blue). Cortico-

cortical and cortico-thalamic are considered as top-down prediction connections (red). (Red arrows—context/prediction) Currents coding for higher abstraction

features incoming from other cortical areas. Cortical inhibitory neurons (in) arbitrate competition among cortical groups in a soft Winner-Take-All mechanism

(WTA). Inhibitory reticular neurons (re) control the thalamic firing rate. The cortical layer is in turn connected to readout neurons (ro) B) A cellular mechanism for

associating feed-forward and feedback signals. Low-level features are encoded in primary sensory regions and this signal propagates up the visual hierarchy (e.g. striate

cortex (V1) sensitive to orientation, V4 sensitive to colour, V5 sensitive to motion, and inferior temporal (IT) cortex sensitive to shapes and objects). Higher-level areas

provide feedback information (context or expectation) to lower areas. The ThaCo model presented in this paper is a single area model and the contextual signal is

assumed to collect during training the knowledge carried by all other areas in the hierarchy (see red arrows in panel A). C) Conceptual representation of the back-

propagation activated calcium (BAC) firing hypothesis supporting efficient binding of features and recognition. Pyramidal neurons receiving predominantly feed-

forward information are likely to fire steadily at low rates, whereas the simultaneous presence of contextual and perceptual streams changes the mode of firing to bursts

(BAC firing). This coincidence mechanism is mimicked in our ThaCo model. D) During training (left), the injection of contextual signal, plays the role of internal

prediction and increases the perceptual threshold of a subset of cortical neurons. The simultaneous presence of perceptual and contextual promotes a high firing rate in

such neurons, mimicking the BAC mechanism. Also, the simulataneous presence of the signal from the cortical layer and of the contextual signal promotes a high
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excitatory groups of neurons whereas the high-firing ones survive. Such conditions can be

achieved thanks to synaptic plasticity, which strengthens the connections among neurons of

the same group and weakens those among competing groups, coupled with homeostatic mech-

anisms [12, 13].

Spike-timing-dependent plasticity (STDP) has been proposed as one of the essential learn-

ing ingredients in the cortex [14–18]. According to this plasticity rule, if the postsynaptic neu-

ron fires an action potential just after a presynaptic spike, the synaptic weight will increase,

whereas in the opposite case it will decrease. Through this mechanism, the synapses connect-

ing neurons correlated by a principle of causality are metabolically rewarded. Chen et al. [19]

have shown that networks of excitatory and inhibitory spiking neurons with either STDP or

short-term plasticity can generate dynamically-stable WTA behaviour under certain condi-

tions on initial synaptic weights.

Another key aspect that we consider in this study is the role of sleep during learning. Sleep

is essential in all animal species, and it is believed to play a crucial role in memory consolida-

tion [20, 21], in the creation of novel associations, as well as in the preparation of tasks

expected during the next awake periods. Indeed, young humans pass the majority of time

sleeping, and the youngest are the subjects that have to learn at faster rates. In adults, sleep

deprivation is detrimental for cognition [22] and it is one of the worst tortures that can be

inflicted. Among the multiple effects of sleep on the brain and body, we focus here on the con-

solidation of learned information [23]. Homeostatic processes could normalize the representa-

tion of memories and optimize the energetic working point of the system by recalibrating

synaptic weights [24] and firing rates [25]. Specifically, Watson et al. [25] show that fast-firing

pyramidal neurons decrease their firing rates over sleep, whereas slow-firing neurons increase

their rates, resulting in a narrower population firing rate distribution after sleep. Also, sleep

should be able to select memories for association, promoting higher performance during the

next awake phases [26]. Indeed, Capone et al. [27] demonstrate the beneficial effects of sleep-

wake phases involving homeostatic and associative processes in a visual classification task.

Indeed, in [27], some of us illustrated how to assemble a simplified thalamo-cortical spiking

model that can both express deep-sleep-like oscillations (in the form of an emergent, self-

induced network phenomenon) and enter an awake-like asynchronous regime. This dynam-

ical behaviour has been obtained by changing a few parameters in the equation that describes

the dynamics of excitatory neurons in the spiking model, and thus exploiting a well established

modelling principle that represents a few prominent features of brain-state acetylcholine-

mediated neuromodulation, able to induce in the model the transition between awake-like

asynchronous and deep-sleep-like oscillatory regimes [28]. However, this neuromodulation

modelling principle has neither been previously applied to the study of the deep-sleep cogni-

tive effects nor to simulations of learning-sleep cycles (such as in our previous work [27] and

in this study). Specifically, the spiking model we propose is trained on a set of training patterns

(here, on images of handwritten digits) and then exposed to never-seen examples to be classi-

fied (here, among human-assigned digit classes). Also, the model structure proposed in [27]

and adopted in this work, is able to perform an asynchronous awake-like state of the network,

by acting on the neural dynamics parameters. When the prescribed changes in the neural

parameters induce the network to express deep-sleep-like oscillations, STDP is observed to

produce in the model the spontaneous emergence of a differential homeostatic process. First, a

down-regulation emerges of the stronger synapses created by the STDP during the training,

firing rate in readout neurons. In the classification phase (centre) the contextual signal is turned off. In the sleeping phase (right), the sensory pathways are turned off,

and all the activity is generated spontaneously.

https://doi.org/10.1371/journal.pcbi.1009045.g001
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those synapses that connect the best-tuned neurons during the training phase on each training

example. At the same time, we observe that STDP increases the strength of synapses among

neurons tuned on patterns belonging to the same class. Such hierarchical, spontaneous reorga-

nization promotes better post-sleep classification performances. In short, the underlying

mechanism is based on the similarity among thalamic coding of training examples belonging

to the same class. During deep-sleep oscillations, such similarity supports the preferential acti-

vation of thalamo-cortico-thalamic connection paths among neural groups tuned to training

examples belonging to the same class, and the consequent coactivation and unsupervised

strengthening of class-specific synapses. This point has been illustrated in [27].

Combining the above-described set of cortical principles, we aimed at creating a simplified,

yet biologically-plausible, thalamo-cortical spiking model (ThaCo, see Fig 1A). ThaCo exploits

the combination of contextual and perceptual signals to construct a soft Winner-Take-All

mechanism (WTA) capable of fast learning from few examples [29] in a synaptic matrix

shaped by spike-timing-dependent plasticity (STDP). ThaCo has been calibrated to express

deep-sleep-like activity and to induce modifications to the distributions of pre- and post-sleep

firing rates comparable to biological measures like those carried out by Watson et al. [25] for

an investigation of the deep-sleep effects on learning and classification (another beneficial

aspect, the recovery and restoration of bio-chemical optimality, is not considered at this level

of abstraction). In the context of machine learning, a distinction is made between instance-

incremental methods, which learn from each training example as it arrives, and batch-incre-

mental methods, in which the training data are organized in groups of examples, called

batches, and the model is trained only on complete batches [30]. Depending on how different

classes are represented by the examples in the batches, there are three training schemes [31]:

new instances (NI), in which each new batch contains different instances of the same classes

represented in previous batches, new classes (NC) in which examples belonging to novel clas-

ses become available in subsequent batches, and new instances and classes (NIC) in which sub-

sequent training batches contain examples from both known and new classes. However, it

should be noted that when it is necessary to constantly evaluate the performance of incremen-

tal learning, for reasons of computational efficiency the training set is divided into batches

even for models capable of instance-incremental learning. Shimizu et al. [32] propose a train-

ing method based on balanced mini-batches, which reduces the effect of imbalanced data in

supervised training. Our work is focused on instance incremental learning, and the training

scheme is based on balanced mini-batches. Specifically, with ThaCo we investigated several

brain aspects and learning capabilities: 1- incremental learning from few examples; 2- resil-

ience to noise when trained over degraded-quality examples and asked to classify corrupted

images; 3- comparison with the performances of knn algorithms; 4- the ability to fight noise

in the contextual signal thanks to the introduction of a biologically-plausible deep-sleep-like

state, inducing beneficial homeostatic and associative synaptic effects.

2 Results

In this work we test the capability of the implemented thalamo-cortical network model

(ThaCo) of expressing incremental learning when trained to learn and recall images (from the

MNIST dataset), and we investigated the role and the mechanisms of the occurrence of biolog-

ical-like deep-sleep dynamics. First, we present a comparison of the ThaCo model behaviour

with the biological observations made by Watson et al. [25] on the changes of firing rate distri-

butions in awake, sleep and post-sleep phases (see Fig 2). Indeed, since one of the goals of this

work is to implement a biologically-plausible model capable to display different “cognitive

states”, the comparison with experimental outcomes is important to question its plausibility.
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Fig 2. Sleep-like features. A) State-wise differences of average firing rate, to be compared with Fig 2A by Watson et al. [25]. Cumulative

distribution of the firing rates of individual cortical neurons (log scale); note the brain-state dependent differences (colour). Vertical lines separate

neurons sorted by AWAKE firing rates into six subgroups (sextiles) with an equal number of elements. B) Firing rate changes across sleep in each

of the six groups defined by the awake firing rates, to be compared with Fig 3B by Watson et al. [25]. High firing rate neurons show decreasing

activity; low firing rate neurons do not increase their activity over sleep. C) Opposite modulation of neurons of different firing rates, to be
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After the validation obtained against experimental results, we demonstrate the capability of the

model to learn incrementally, i.e. to continuously extend its knowledge by learning from new

training examples while retaining most of the previously acquired memories. The learning

ability of the model was assessed using an approach that alternates incremental training with

tests meant to evaluate the pre-sleep and post-sleep classification performance. During the

training phase, samples are randomly extracted from the training set of the MNIST database;

they are given in input to the system together with example-specific contextual signals that

reach the cortical neurons, and a digit-class-specific contextual signal that reaches only the

read-out neurons. Notably, to stress out the difference with respect to the training phase, dur-

ing the classification phase no contextual signal is transmitted: the response of the network is

recorded, based on the firing rates of the excitatory neurons of the cortex. It should be empha-

sized that the proposed model is not an engineering solution to the problem of incremental

learning in pattern classification, but a simplified model of the low-level processes that sup-

ports and emulates the ability to learn incrementally in the biological brain. Indeed, the size of

the training set is relatively small compared to those often used in machine learning, and some

issues that are of primary importance for both artificial and biological incremental learning,

such as catastrophic forgetting, go beyond the aims of this paper. Then, We measure the

model incremental classification performance and we compare it to that expressed by the

K-Nearest neighbour family of artificial incremental learning algorithms (specifically Knn-1,

Knn-3, Knn-5). Knn is an extensively used classification algorithm, which has been succesfully

applied to a wide range of problems in different fields. Furthermore, unlike many other classi-

fication systems used in machine learning, the Knn family is suitable for incremental learning

and also it works relatively well even with few training examples and, for large enough training

sets, the Knn algorithm is guaranteed to yield an error rate no worse than twice the Bayes error

rate, which is the minimum achievable given the distribution of the data [33]. For these rea-

sons, the Knn classifier has been chosen as reference for the evaluation of the classification

ability of the proposed system. We show that—even without the beneficial contribution of

sleep—this model shows higher resilience to noisy inputs than Knn. Finally, we demonstrate

the beneficial effects of deep-sleep-like cortical slow oscillations on the post-sleep classification

accuracy of MNIST characters when a noisy contextual signal is injected during the awake

training (a situation that could be interpreted both as the case of different levels of prior

knowledge about the correct classification label of the current example during the training,

and as related to the largely stochastic nature of cortical organisation and of the activity of

other cortical areas).

2.1 ThaCo model pre- and post-sleep firing rates and comparison with the

experiments

We compare the network behaviour of the ThaCo model during three simulated phases (pre-

sleep awake-like, deep-sleep-like and post-sleep awake-like, see Fig 2) with those observed in

rats by Watson et al. in [25]. When approaching the design of the ThaCo spiking model, an

improvement of what some of us presented in [27], we relied on the well-established frame-

work of Mean-Field theories [34], [35] to construct a network capable of spontaneously

compared with Fig 3D by Watson et al. in [25]. Comparison of individual neuron firing rates during the first and last packet of sleep. The

regression line is significantly different from unity, showing that high and low firing rate neurons are oppositely modulated over sleep. D) Cortical

neuron population mean firing rate changes across sleep, to be compared with Fig 3B by Watson et al. in [25]. E) Awake firing rate distribution of

cortical neurons pre-sleep (upper plot) and plot-sleep (lower plot). Solid lines depict descriptive statistics parameters: Q1, 25% quartile; Q2, 50%

quartile (median); Q3, 75% quartile. Middle plot: boxplots of the distributions. The central mark indicates the median, and the bottom and top

edges of the box indicate the 25th and 75th percentiles, respectively.

https://doi.org/10.1371/journal.pcbi.1009045.g002
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displaying two different dynamical regimes. This is obtained by acting on some parameters of

the excitatory neurons (specifically, the spike frequency adaptation (SFA) and the excitatory

synaptic conductance), to model acetylcholine-mediated neuromodulation on neural dynam-

ics that supports the transitions between awake-like asynchronous activity and deep-sleep-like

slow oscillations [28]. Specifically, in Fig 3A we show the incoming current to each cortical

neuron versus its adaptation current during different network stages (pre- and post-sleep clas-

sification, beginning and end of the sleeping phase). In particular, sleep states are characterized

by high levels of spike frequency adaptation currents (obtained through a modulation of the

SFA parameter), inducing oscillations. Moreover, late sleep and after-sleep classification have

low levels of input currents, due to a sleep-mediated synaptic depression leading to a reduction

in the current circulating in the network. When set in the deep-sleep state, a non-specific stim-

ulus, administered at a low steady firing rate to cortical neurons, is sufficient to elicit the emer-

gence of cortically-generated Up-states and of thalamo-cortical Slow Oscillations (SO). As

shown in top lines of Fig 3B and 3C, in the SO regime, the thalamo-cortical spiking network

displays a firing rate oscillation frequency between 0.25Hz and 1.0Hz and durations of Up-

states (a few hundreds of ms) comparable with experimental observations in deep-sleep

recordings. During the initial stages of SO, Up-states are independently sustained by neuron

populations tuned to specific images memorized during the training phase, and tend to reacti-

vate thalamic neuron coding for the memorized images. Then, thanks to the similarity among

training instances, the recruitment of other neural groups in the cortex is promoted. This cre-

ates preferential cortico-talamo-cortical excitatory pathways, inducing an STDP-mediated

association of cortical neurons previously tuned to training instances that expressed similar

thalamic representation (see Fig 3B and 3C). We name top-down prediction such cortico-tha-

lamic activation that spontaneously occurs during SO. During the sleep period, thanks to cor-

tico-cortical plasticity, the coactivation of neurons originally tuned to training instances of the

same class becomes a typical feature of each Up-state: the WTA mechanism cooperates in

selecting different neuron codings for different classes during each Up-State. Another key

aspect is the generalized homeostatic depression, which is known to happen during deep-sleep

and serves as a protection, to prevent Up-state-mediated associations that could drive towards

a fully associated network. This effect is modelled thanks to the Non-Linear Temporal Asym-

metric Hebbian (NLTAH) learning rule of the STDP we used [36], which reduces the strength

among the most frequently coactivated neurons, leading to a progressive reduction of mean

firing rates and frequency of the Up-States (see Fig 3B and 3C, top rows) which is consistent

with experimental observations, in particular for what concerns the decrease of SO frequency

during the night course [37]. The first noteworthy result presented in this paper is that this

new calibration of the model greatly enhances the match with experimental data, as detailed in

the following. Indeed, while the model [27] was already able to express the transition between

states [38] such as sleep-like slow oscillations activity and awake-like classification, the refine-

ments of its parameters here introduced make ThaCo more biologically plausible, leveraging

as calibration tool the accurate comparison with experimental observations of differential

changes in firing rates. In their work, Watson et al. [25] used large-scale recordings to examine

the activity of neurons in the frontal cortex of rats and observe the distributions of pyramidal

cell firing rates in different brain states: Awake, REM, nonREM and Microarousals. They

found that periods of nonREM sleep reduced the post-sleep awake activity of neurons with

high pre-sleep firing rate while up-regulating the firing of slow-firing neurons. Moreover, in

their experiments, the neuronal firing rate varied with the brain state and, across all states, the

distribution of per-cell mean firing rates was strongly positively-skewed, with a lognormal tail

towards higher frequencies and a supra-lognormal tail towards lower frequencies. We set out

the model parameters to reproduce these measures. In Fig 2A we present the cumulative
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Fig 3. Incremental learning with alternation of awake training and sleep in ThaCo. A) Dots: incoming current to each cortical neuron versus its

adaptation current during different network stages of the activity presented in B. Pre-sleep classification phase (represented in blue, number 1), early sleep-

like phase (in red, number 2), late sleep-like phase (in orange, number 3) and post-sleep classification phase (in green, number 4). Ellipses: Areas in the plot

associated with different network stages, estimated from data through a Gaussian Mixture Model with a full covariance matrix. During sleep, the total input

current to the cortical neurons decreases due to the sleep-induced homeostatic effect, that reduces recurrent connections weights in the cortical layer (see the

transition from number 2 to number 3 in the diagram), notwithstanding the constant external aspecific stimulus. Sleep-like activity, on the other hand, affects

the network status during the following awake classification phase 4: the effect of STDP during sleep is a general reduction and homogenization of input

current distribution, as shown in a comparison between the pre-sleep stage 1 and post-sleep stage 4 in the diagram. B and C) Spiking cortical and thalamic

activity produced during training (10 examples, one per digit class), classification (20 images) and sleeping phase for two consecutive sets respectively. First

row: mean firing rate of the cortical neurons trained over a set of 10 examples (each set is used to independently train 200 cortical neurons, 20 per digit

example); during the sleeping phase, the slow oscillation frequency trend in time is also depicted. Second row: raster plot of the first 400 cortical neurons.

Third row: mean firing rates of thalamic neurons. Once recruited in the training phases, the cortical neurons participate in classification and sleeping phases.

https://doi.org/10.1371/journal.pcbi.1009045.g003

PLOS COMPUTATIONAL BIOLOGY Thalamo-cortical spiking model of incremental learning/sleep cycles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009045 June 28, 2021 9 / 26

https://doi.org/10.1371/journal.pcbi.1009045.g003
https://doi.org/10.1371/journal.pcbi.1009045


distribution of neuronal mean firing rates for both awake and nonREM states of our model, to

be compared with Fig 2A of Watson et al. [25] (REM not included in ThaCo). Median rates (±
SD) of excitatory cortical neurons in ThaCo in each state are: awake, 1.2 ± 1.1Hz and nonREM,

0.6 ± 0.3Hz.

An interesting feature is that lognormal distributions spontaneously emerge from our sim-

ulations. This result is coherent with experimental observations and with theoretical consider-

ations showing that the lognormal distribution of activities in randomly connected recurrent

networks is a natural consequence of the non-linearity of the input-output gain function [39].

In agreement with Watson et al. [25], we also found that the arithmetic mean of the population

firing rates declined throughout sleep, as visible using a test of correlation of spike rate versus

time (see Fig 2D to be compared with Fig 3B by [25], the slope of the rate change within time-

normalized sleep from all cx neurons in all recordings is R = −0.10, p = 10−3). In order to dem-

onstrate that sleep brings varying differential effects across the rate spectrum, we compared

mean firing rates in the first and the last 100s of sleep. As depicted in Fig 2C, fast-firing neu-

rons decreased their rates over sleep, whereas slow-firing neurons increased their rates (to be

compared with Fig 3D by [25]). To quantify this observation, we assessed spike rates of the

same neurons in the first versus the last nonREM 100s of sleep and found the slope of this cor-

relation significantly departed from unity (slope, 95% confidence interval 0.6015 − 0.6130).

Furthermore, following [25], we divided ThaCo excitatory cortical neurons into six sextile

groups sorted by their awake firing rates (Fig 2A). As shown in Fig 2B, the sextile with the

highest firing rates significantly decreased its activity over sleep, in accordance with results

obtained by Watson et al. [25] (see Fig 3B of their work). Finally, we evaluated the impact of

sleep on the cortical firing rates distribution during awake states. In Fig 2E, we compare firing

rates distribution pre- and post-sleep depicting the homeostatization effect of sleep.

2.2 The ThaCo network model and the training protocol

The proposed ThaCo circuit is organized into three layers, as shown in Fig 1A: an input layer,

the thalamus, which consists of an excitatory population (tc) whose firing rate is under the

control of a reticular inhibitory fully-connected population (re); the cortex, consisting of an

excitatory population (cx) and an inhibitory population (in), both fully connected as well; a

readout (ro) layer, to which the cortex is also fully connected, composed of subgroups of neu-

rons of neurons associated to each class. The learning protocol is organized in alternation of

training phases—when the internal structure of the network is shaped according to the learnt

examples—and testing phases—when the classification performance of the network is evalu-

ated (see Section 4.1). In both training and classification phases, the network is provided with

sample images drawn from the MNIST dataset. The sample images are pre-processed to pro-

duce stimulus signals that are transmitted to the excitatory neurons of the thalamus (see para-

graphs “The datasets of handwritten characters” and “Thalamic coding of visual stimuli” in S1

Text for more details). During the training phase, simultaneously with the input sensory-like

stimulus, contextual signals are transmitted to the excitatory neurons of the cortex and to the

readout neurons. The observed bursting behaviour of the neurons is a consequence of the tem-

poral coincidence between impinging perceptual and contextual signals. Specifically, for each

example to learn, an example-specific group of excitatory neurons in cx is facilitated through

the presentation of a contextual signal. This induces a higher activity in these neurons causing

a strengthening of both thalamo-cortical synapses and recurrent synapses. This example-spe-

cific tuning involves each neuron with a single training example only, whose category defines

(in an unsupervised manner) a natural category for which the neuron is better tuned. Mean-

while, a subgroup of readout neurons (ro) is stimulated by a digit-class specific contextual
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signal, leading to an enhancement of connections between the cortical neurons trained over

the presented example and the subgroup of readout neurons associated with the correct class.

The simultaneous stimulation by perceptual signals and contextual signals emulates the orga-

nizing principle of the cerebral cortex as described by Larkum et al. [1], approximating the

effects of the dendritic apical amplification mechanism at the cellular level. It is worth noting

that this is the only phase when a category-specific (rather than an example-specific) signal is

given to the network: protocols concerning this ro layer are supervised training protocols,

whereas those for the other layers can be referred as unsupervised training protocols. During

the classification phase, signals resulting from preprocessed images are again transmitted to

the thalamus analogously to the training phase, however, no contextual signal is transmitted to

either cortical and readout neurons. During this stage, the neuronal activation results from the

combination of the current injected by perceptual signals and the one injected by recurrent

interconnections strengthened by the synaptic STDP dynamics during the training and modi-

fied by STDP during sleep cycles. We infer the network answer to the classification task in two

different ways: first, unsupervised, taking the class of the example over which the most active

subgroup of cortical neurons has been trained; second, supervised, taking the class associated

to the most active subgroup of readout neurons. Specifically, the readout layer performs the

integration of signals coming from the subgroups of cortical neurons trained over different

examples belonging to the same class (see Section 4.1 for a more detailed representation of the

learning process). The activity produced by the cortical neurons during training, classification

and sleeping phases is depicted in Fig 3B and 3C.

We set the network parameters in an under threshold regime that enables the training above

described through the selected STDP model on the single-compartment standard Adaptive

Exponential (AdEx) integrate-and-fire neuron that would not otherwise distinguish among

basal and apical stimuli. See details about the model construction, the presentation of visual

stimuli and the addition of noise in the Material and Methods, Section 4 and in S1 Text.

2.3 Incremental learning: Performances

We trained the proposed network over an incremental number of training examples and eval-

uated its classification performances on a set of images never shown. We also compared the

average accuracy of our thalamo-cortical spiking model with that obtained using standard

Knn-x classification systems for different numbers of training examples per digit category. See

Fig 4 and Table 1. The model presented in this work enables instance-incremental as well as

class-incremental learning. The training protocol we adopted for the results presented here

was based on the balanced-mini-batches scheme proposed by [32]. More specifically, the train-

ing set of hand-written digits was divided into mini-batches of 10 examples each, in which

each class was represented by just one example. In S1 Text, we include a comparison of perfor-

mance obtained using different training protocols.

MNIST images have been presented to the ThaCo th layer using the improved pre-process-

ing protocol described in paragraph Thalamic coding of visual stimuli of the S1 Text. The

accuracy has been evaluated over classification trials, each one including 500 images, and the

classification accuracy has been averaged over 20 trials. Fig 4A shows the accuracy for incre-

mental learning as a function of the number of training examples per class. Fig 4B and 4C, on

the other hand, depict the average accuracy of the compared training algorithms for the last 10

to 20 and the first 1 to 5 training examples per class respectively, to better show their different

behaviour at different stages of the learning process. For the MNIST dataset, higher-order Knn

algorithms surpass the performance of Knn-1 only when the training set includes more than

10 examples per digit class. It is worth noting that the soft WTA mechanism of ThaCo can
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learn incrementally and has comparable performances to the best Knn-n algorithm for a given

number of training examples. Specifically, the supervised ThaCo is proven to be able to per-

form the integration of signals coming from subgroups of cortical neurons trained over differ-

ent examples belonging to the same class and its performances are comparable to higher-order

Fig 4. Comparison of the average accuracy of the proposed thalamo-cortical spiking model compared to artificial K-nearest-neighbour incremental algorithms

in absence of noise (solid lines) and with noisy inputs(dotted lines). A) We infer the network answer to the classification task in two different ways: 1) Digit-Class

Readout, as the class associated to the most active subgroup of readout neurons in ThaCo (supervised approach); 2) Example-Specific Group, by mapping the class

over which the most active subgroup of cortical neurons has been trained (unsupervised approach). Solid lines depict accuracy in absence of noise, dotted lines depict

accuracy with “Salt and Pepper” noise (density = 0.2) injected into the unprocessed MNIST images for both training and classification phases. Accuracy is assessed on

an independent test set, consisting of 500 examples; the average and standard error of the mean (SEM) are evaluated on 20 different trials using independent training

sets in each. B), C) represent the same plots shown in A) on different scales, for visualization purposes and for highlighting selected features. Specifically, B) ThaCo

behaves like Knn-k1 for a small number of examples; C) as the number of training examples increases, ThaCo Digit-Class-Readout exhibits performances that are

comparable with higher-order Knn algorithms.

https://doi.org/10.1371/journal.pcbi.1009045.g004
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Knns, whereas the unsupervised ThaCo performances are proven to be comparable with Knn-

1 performances when few examples are presented.

2.4 Classification of noisy input

We evaluated the network behaviour within a noisy input environment and compared it to the

Knn performances. For this, we injected a ‘Salt and Pepper’ noise [40] (density = 0.2) into the

unprocessed MNIST images. Noisy images are then pre-processed (see 1) and presented to the

network in both training and classification phases. Fig 4A depicts the average accuracy of the

network trained incrementally over a total number of 20 noisy examples per class and com-

pares it to performances of Knn-n algorithms (as in section 2.3, both Knn and ThaCo algo-

rithms are trained incrementally). It is worth noting that in this scenario the ThaCo algorithm

has better performances than the Knn-n algorithms.

2.5 Beneficial effect of deep-sleep in compensating the impact of noisy

contextual labels

For the aim of introducing more biologically-plausible elements regarding the combination of

contextual and perceptual signals, we slightly modify the ThaCo training protocol: the magni-

tude of the contextual signal given to both the cortex and the readout layer trained over a new

learning example is now randomly extracted from a Gaussian distribution. As a consequence,

some of the presented examples are better represented than others, resembling a more realistic

situation in the cortex in which both the degree of knowledge projected by other areas and the

number and strength of apical synapses carrying the contextual information and raising the

perceptual thresholds during learning are not exactly equal for all the presented examples and

all the neurons in the selected group.

We introduce the deep-sleep state in our training protocol, as follows: after each training

phase, we disconnect ThaCo from external inputs and induce deep-sleep-like oscillations, fol-

lowing the method described in [27] and here described in Section 2.1 and in S1 Text, para-

graph Sleep-like oscillatory dynamics. As expected, noise in the contextual signal leads to a

drop in performance, compared to the idealized situation presented in the previous section

(i.e. the careful equalization of contextual signal), but such drop can be reduced by sleep, as

shown in Fig 5A.

At the synaptic level, it is possible to observe how deep-sleep-like slow oscillations induce in

the current ThaCo model both a regularisation of the strength of the memories of individual

learned examples through homeostasis and an association between groups of neurons trained

over different examples of the same class. Figs 5B and 6 report such sleep-induced optimiza-

tion of the synaptic representation of memories. Specifically, within neurons belonging to the

Table 1. Accuracy achieved by the different learning algorithms over a different number of training examples. The accuracy has been computed over a test set of 500

examples, and the average is done over 20 trials.

Accuracy (%)

Training examples per class

Algorithm 1 2 3 5 10 20

Knn, k = 1 68.0 ± 1.0 76.1 ± 1.0 80.6 ± 0.8 84.5 ± 0.4 88.3 ± 0.4 90.4 ± 0.3

Knn, k = 3 37.2 ± 1.3 66.0 ± 1.1 75.4 ± 0.9 82.7 ± 0.4 88.3 ± 0.3 91.0 ± 0.3

Knn, k = 5 23.9 ± 1.5 62.0 ± 1.3 72.2 ± 0.9 81.9 ± 0.4 88.2 ± 0.3 91.2 ± 0.3

ThaCo—Digit class readout 65.7 ± 1.0 74.8 ± 0.8 80.4 ± 0.7 84.8 ± 0.6 88.6 ± 0.5 91.1 ± 0.3

ThaCo—Example specific group 65.7 ± 0.9 73.6 ± 0.9 78.1 ± 0.6 82.7 ± 0.4 86.4 ± 0.4 88.6 ± 0.4

https://doi.org/10.1371/journal.pcbi.1009045.t001
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Fig 5. A) Sleep mitigates the effects of noisy contextual signals on the classification performances of ThaCo Classification performances evaluated over

the Readout layer (supervised learning protocol, left) and Cortical layer (unsupervised learning protocol, right). Comparison among the network trained

over non noisy examples (blue), the network trained over noisy examples without any deep-sleep like phase (violet), and the network trained over noisy

examples interposing a deep-sleep-like activity between the training and the classification phases (green). The contextual signal provided in the training

phase is corrupted by noise (i.e. some examples are associated with stronger synapses), leading to a drop in performances (comparison between blue and

violet line). Still, the interposition deep-sleep-like phases between noisy-training and classification phases recovers the performances of the network trained

with a non-noisy protocol. B) Sleep-induced homeostatic and associative effects on cortico-cortical synaptic-weight distributions. Pre-sleep (violet),

post-sleep (green). Solid lines: mean and standard deviation. a) Intra-group connections: weight distributions of synapses connecting neurons trained over

the same example (i.e. that during the training stage were triggered by the same contextual stimulus, thus activated simultaneously during a specific training

example); b) Intra-class connections: weight distributions of synapses connecting neurons trained over different examples belonging to the same class (i.e.

that have not been simultaneously triggered by the contextual stimulus in the training phase, but still have been triggered by a sensorial thalamic signal

associated to images belonging to the same class) c) Inter-class connections: Connections among groups trained over different classes (i.e. triggered by the

contextual stimulus together with a sensorial thalamic signal associated to images belonging to different classes). We note the homeostatic effect of sleep (in

A) leading to a general reduction of weights associated to example-specific synapses and a reinforcement of the intra-class connections (in B). Synapses
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same example-specific group, the synaptic weights distribution decreases its mean and coeffi-

cient of variation (from μ = 74, μ/σ = 0.3, skewness 0.55 pre-sleep to μ = 60, μ/σ = 0.2, skewness

−0.26 post-sleep) whereas within neurons belonging to different example-specific group but

coding for the same class, the synaptic weights distribution increases its mean and coefficient

connecting groups trained on different examples, on the other hand, are much less affected by sleep. The inset, showing part of the same plot in a lin-lin

scale, is added to illustrate the shape of the pre-sleep distribution, and the difference in the mean values before and after sleep.

https://doi.org/10.1371/journal.pcbi.1009045.g005

Fig 6. Effects of sleep on intra-class and example-specific synapses after training with a noisy contextual signal. Comparison of synaptic-weight matrices,

pre-sleep (Left) vs post-sleep (Right). Training over 5 examples per class (20 neurons per example). A) and B) depict all cortico-cortical synaptic weights

connecting the full set of trained neurons (colour bar, logarithm scale), black lines separate neurons solicited by contextual signal together with thalamic

sensorial signal pointing to images belonging to the same digit class in the training phase; C) and D) focus on the synaptic weights connecting groups of

cortical neurons simultaneously solicited by a contextual signal in the training phase (thus stimulated over the same sensorial signal identifying images

belonging to the same class) (colour bar, linear scale), vertical black lines separate neurons trained over different categories, horizontal black lines separate

cortical groups of neurons solicited during the presentation of the same 10 examples (one per digit class). The post-sleep intra-class cooperation is evident in B

and in agreement with Fig 5B.b, while the homeostatic effect over example-specific synapses is manifest in D as already suggested by Fig 5B.a. The strong,

example-specific differences in synaptic weights (e.g. third example of class 4) are due to the noisy training protocol that introduces randomness in the

magnitude of the contextual signal that reaches the example-specific group.

https://doi.org/10.1371/journal.pcbi.1009045.g006
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of variation (from μ = 0.005, μ/σ = 0.001, skewness 0.003 pre-sleep to μ = 0.5, μ/σ = 1.6, skew-

ness −2.9 post-sleep).

Specifically, the homeostatic effect of deep-sleep-like SOs can be identified comparing Fig

6C and 6D: the distribution of synaptic weights sharpens (i.e. it exhibits smaller post-sleep σ
and μ) and presents a general depression of synaptic weights. These two variations combine

to produce beneficial effects. First, this leads to a lowering of the heterogeneity of representa-

tion of learned examples, a reduction of the energetic cost of memory recall (reduced synap-

tic strength is associated with a lower metabolic cost of synaptic activity) and lower post-

sleep spiking rates (see section 2.1). Moreover, deep-sleep-like oscillations affects categorical

association and is depicted in Fig 5B.b: synapse weights connecting groups of neurons

trained over different examples but belonging to the same digit class increase from a nearly

zero pre-sleep value, while synapses connecting representations of memories belonging to

different classes are much less affected. This effect is also visible comparing Fig 6A and 6B,

where synapses connecting representations of memories belonging to the same digit class

light up (big squares along the diagonal). Asymmetric STDP induces, on one hand, the

depression of strong synapses, on the other the association among neuronal groups coding

for the same class (i.e. trained over similar stimuli), through a mechanism of resemblance in

their thalamic representation.

3 Discussion

We propose a simplified thalamo-cortical spiking model (ThaCo) that exploits the combina-

tion of context and perception to build a soft-WTA circuit, and that is able to express sleep-

like slow oscillations. In order to be compliant with biological rhythms, we first verified that

the proposed network is able to reproduce the experimental measures of neuronal firing rates

during awake and deep-sleep states performed by Watson et al [25]. The agreement with the

experiments has been achieved by further developing the thalamo-cortical spiking model pro-

posed in [27] and by setting the model parameters to better fit the experimental recordings.

The model we propose is capable of fast incremental learning from few examples (its perfor-

mances are comparable to those expressed by Knn, of rank increasing with the number of

examples) and of alternating several learning-sleep phases; moreover, it demonstrates resil-

ience when subjected to noisy perceptions with better performances than Knn algorithms;

these three facts constitute significant extensions to the previous study [27].

In recent years, there has been growing interest in the development of artificial neural net-

works (ANNs) or deep neural networks inspired by features found in biology, yet still using

mechanisms for learning and inference which are fundamentally different from what is actu-

ally observed in biology. On the other hand, there is also a plenty of computational models

aiming at reproducing biological proprieties in an exact way. Many models have been pro-

posed for pattern recognition tasks that use biologically-plausible mechanisms, combining

spiking networks and STDP plasticity [41–43]. The ThaCo model has been developed in line

with this philosophy, delivering a spiking neural network which relies on a combination of

biologically plausible mechanisms. It uses conductance-based AdEx neurons, STDP and lateral

inhibition. A crucial ingredient, which mostly differentiates our approach from previous

works, is the introduction of a contextual signal which drives the training procedure, making

it similar to a target-based approach [44, 45] and enabling huge advantages in terms of training

velocity and precision. Such mechanism was inspired by the work done by Larkum [1] sug-

gesting that the activity of a neuron is amplified when it receives a coincidence of signals from

both lower and higher levels of abstraction. This allows the recruitment of new neurons to

learn novel examples through the incremental building of a soft-WTA mechanism.
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We stress that, even though we showed to be successful in reproducing specific experimen-

tal observations, the aim of this work is not to exactly reproduce a biological network (for

instance, the emulation of metabolic processes goes beyond the scope of this work), but to

develop a simplified task-specific spiking neural network able to express biological features,

and receive an indication on how even an approximated emulation of deep-sleep and of the

combination of contextual and perceptual information can positively affect the network per-

formances. Specifically, without any pretence to be biologically realistic, the neuron model

used in these simulations is a point-like AdEx (see section The neuron model), yet we are able

to emulate a compartment neuron behaviour (described in [1]) without introducing more

complex morphological units in the network. For this, we approximated the coincidence

mechanism by setting both the contextual and sensory inputs impinging on cortical neurons

in a subthreshold point (see 4.1).

Another major aspect of our work is the effect of sleep on the network and on the memories

stored in it. The role played by sleep in memory consolidation has been widely studied from

an experimental point of view [46, 47], but only recently it has become the object of theoretical

and computational modelizations [27, 48–50]. In our work, we investigated computationally

the effect of slow oscillations on the structure and the performances of the network when the

STDP plasticity is turned on. We proved that deep-sleep-like slow oscillations can be beneficial

to equalize the memories stored in a cortico-thalamic structure when learned in noisy condi-

tions. Indeed, slow oscillations can compensate for the contextual noise through homeostasis,

equalizing synaptic weights and creating beneficial associations that improve classification

performance.

The predictions of our model are also a first step toward the reconciliation of recent experi-

mental observations about both an average synaptic down-scaling effect (synaptic homeostatic

hypothesis—SHY [51]) and a differential modulation of firing rates [25] induced by deep-

sleep, which is believed to be a default state mode for the cortex [52].

As mentioned above, we focused on the role of NREM-sleep for memory consolidation.

The simulation of a complete sleep cycle that includes REM and micro-arousal phases goes

beyond the scope of this paper and is currently under investigation. One more limitation of

this work is that it does not take into account the role of synchronization among different

brain regions. Actually, assuming a typical neural density in the range of 5 � 104 neurons per

mm2 of the cortex, and considering that the maximum size of the proposed model rises up to

5000 cortical neurons, such a number is equivalent to a small cortical area with a dimension of

about 300μm, that is well below the size of a single cortical area. To overcome this limitation,

we are extending the model to multi-layers and multi-area descriptions.

Finally, this work represents an additional contribution in understanding sleep mechanisms

and functions, in line with the efforts we are carrying out in data analysis [53, 54] and in large-

scale simulations [55], aimed at bridging different elements in a multi-disciplinar approach.

In particular, it hints to a careful balance between architectural abstraction and experimental

observations as a valid methodology for the description of brain mechanisms and of their links

with cognitive functions.

4 Materials and methods

The results of the ThaCo model (Section 2) have been obtained thanks to fine implementations

of several features. Such fine-tuning is presented in this Section and in the S1 Text. In particu-

lar, Section 4.1 addresses the crucial point of the model calibration, aimed at inducing a soft-

WTA mechanism by combining context and perception, achieved by setting the network

parameters in what we call an under-threshold regime, that enables a training through the
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selected STDP model on single-compartment standard Adaptive Exponential integrate-and-

fire neuron (AdEx) that would not otherwise distinguish among basal and apical stimuli (see

S1 Text). MNIST characters are coded by the thalamus according to the scheme presented in

S1 Text that preserves a notion of distance among visual features.

Simulation reported were executed on dual-socket servers with eight-core Intel(R) Xeon(R)

E5–2620 v4 CPU per socket. The cores are clocked at 2.10GHz with HyperThreading enabled,

so that each core can run 2 processes, for a total of 32 processes per server. The ThaCo model

has been implemented using the NEST 2.12.0 [56] simulation engine.

4.1 Winner-take-all mechanisms by combining context and perception

We set the network parameters to induce the creation of WTA mechanisms by emulating the

organizing principle of the cortex described by Larkum et al. [1].

During the training, the network is set in a hard-WTA regime (firing rate different from

zero only on a selected example-specific sub-set of neurons), while during classification it

works in a soft-WTA regime (i.e. the firing rate can be different from zero in multiple groups

of neurons, and the winner group is assumed to be the one firing at the higher rate). Specifi-

cally, during the training, we set our parameters to be so that the thalamic signal alone is not

sufficient to make neurons spike. This is reported in Fig 7C that represents the mean firing

rate and the membrane potential over time for a group of cortical neurons stimulated to

encode for a training example in three different contextual scenarios: Fig 7C-center shows the

network behaviour in the absence of a thalamic signal; Fig 7C-left shows the network response

without the contextual signal; Fig 7C-right shows the network behaviour with both the contex-

tual and the thalamic signal. The cortical activity in the absence of contextual signal is null and

it is really low when only the stimulation of the contextual signal is present. The combined

action of the two, on the other hand, yields a higher spiking activity. We can therefore con-

clude that we put the network in what we named an under-threshold regime. Moreover, to bet-

ter show the implemented soft Winner-take-all dynamics, we present the mean firing rate of

three subgroups of cortical neurons trained over different examples belonging to different cat-

egories during both retrieval (i.e. training examples are presented again to the network without

any contextual signal) and classification phases. The implementation of WTA dynamics is

depicted in Fig 7D.

4.1.1 Simple mathematical model of soft-WTA creation. In this section, we discuss the

capability of our model to learn over a few examples through soft-WTA mechanisms. First, we

demonstrate how the network is surely endowed with the capability to behave like a Knn clas-

sifier. In the first training step, the network is exposed to one example for each of ten digit

class (L = 10). Let D(l) = {1 + (l − 1)K, . . ., lK} be the set of indices of the K excitatory cortical

neurons that are induced to fire by the simultaneous presence of the contextual stimulation

and the thalamic input, carried by T thalamic neurons (see Fig 7C) when presented with one

of the training examples l 2 {1, ‥, L}. Also, starting from an initial value wth!cx
0

, let wth!cx
eq be

the final average weight induced by STDP on the connections between the thalamic excitatory

neurons that are active during the learning of the training example l and the K excitatory corti-

cal neurons that are induced to activity. Finally, let xðlÞth be the binary feature vector of the train-

ing example l. The average weight at equilibrium of the connections between the thalamic

neurons activated by the example l and the excitatory cortical neurons can be written as:

wth!cx
nj ¼ ðwth!cx

eq � wth!cx
0
ÞxðlÞth;j þ wth!cx

0
j 2 f1; ::;Tg;

n 2 DðlÞ ¼ f1þ ðl � 1ÞK; ::; lKg; l 2 f1; . . . ; Lg
ð1Þ
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Fig 7. Training and classification phases. A) Training Phase: the sensorial perception (blue arrow) is encoded into the thalamic excitatory neurons. A time-specific
contextual signal is delivered to a subset of cortical excitatory neurons (red arrow), raising their perceptual threshold on the example-specific thalamic activity and

inducing in such group of neurons a high firing rate during training (represented with red flames drawing). STDP induces group-specific connectivity in the subset of

facilitated cortical neurons, and the thalamic pattern is sculptured into synapses that connect the thalamus with the example-specific group. The readout layer, made of

as many groups of cortical neurons as the number of classification classes, is also trained through the simultaneous administration of a class-specific contextual signal
addressing the subset associated to the correct class label (red arrow). B) Classification Phase: no contextual signal is given to the cortex. One or more subgroups of

excitatory cortical neurons reach a high (red flames), intermediate (yellow flames) or low (no flames) level of activity, depending on the similarity between the

stimulating thalamic pattern and the training set. Here, the WTA mechanism is essential to decide the classification answer; the network decision can be evaluated

measuring the activation level of the groups, either in the cortex or in the readout layer. C) Combination of contextual and perceptual signals to create one group of

cortical neurons sensible to a specific example in a soft winner-take-all mechanism. Three examples are presented to three cortical groups for 2s (start and stop

presentation time marked by green and red dashed lines). High firing rate is induced only when the example-specific cortical group is reached by both the thalamic

(perceptual) stimulus and the contextual (example-specific) signal. Upper row: mean firing rates of a cortical subgroup of cortical neurons; lower row: mean

membrane potentials (the black dotted line depicts the firing threshold potential). Left column: Neuron activity when stimulated by the thalamic signal only

(perception): null firing rate and under-threshold membrane potential. Central column: Neuron activity when stimulated by contextual signal only (internal

prediction): a moderate firing rate is induced. Right column: Simultaneous perceptual and contextual signals induce a high firing rate in the example-specific group.

D) Soft Winner-take-all dynamics among example-specific groups of cortical neurons during retrieval and classification phases. Mean firing rates of three groups

trained to be sensitive to three different examples. D-Rows) Firing rates of the firs (blue), second(orange), third (green) neural group. D-Retrieval phase column)

Exactly the three learnt examples (belonging to three different digit classes) are re-presented to the network without any contextual signal, resulting in an almost hard-

WTA dynamics among the three groups. D-Classification phase column) Three novel images, for which the network has not been trained, are presented to the

network without any hint from the contextual signal; a soft-WTA dynamics is emerging, rewarding for each presentation the neuron group with the highest firing rate

and still allowing all the other groups to fire with non-zero probability. Here read-out neurons are not represented and the figure demonstrates how it is possible to

extract a classification answer looking at the cortical layer only.

https://doi.org/10.1371/journal.pcbi.1009045.g007
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After the training on the first set of L examples, a total of C = kL cortical neurons will have

been exposed to the combination of contextual and thalamic stimulation (see Fig 3A). During

the classification phase, represented in Fig 3B, when a never seen stimulus (the image S to be

classified) is presented to the network, the average signal from the thalamic layer (composed of

T neurons) to the excitatory cortical neurons (in all the L trained cortical groups) is:

�g ðSÞn;th!cx ¼
X

j¼1;T

wth!cx
nj rthxðSÞth;j j 2 f1; ::;Tg n 2 DðlÞ; l 2 f1; . . . ; Lg ð2Þ

where ρth is the rate of the active thalamic neurons, and xðSÞth is the binary thalamic feature vec-

tor of the novel image S to be classified. Assuming w0 to be much smaller than weq, the average

signal from thalamic neurons to each cortical neuron belonging to D(l) group can thus be writ-

ten as:

�g ðSÞn;th!cx ’
X

j¼1;T

wth!cx
eq rthxðlÞth;jx

ðSÞ
th;j ¼ wth!cx

eq rthx
ðlÞ
th � x

ðSÞ
th for n 2 DðlÞ ð3Þ

where S is the novel stimulus presented during the classification phase and l is the learning

example over which the set of neurons D(l) have been trained. The vectors of thalamic features

can be normalized (u = x/N(x), using their Euclidean norm (NðxÞ ¼ kxk2 ¼ ð
P

ix
2
i Þ

1
2). The

Euclidean distance among each training example (l) and the images (S) to be classified can be

written as dl,S = ku(l) − u(S)k2. It follows that d2
l;S ¼ 2 � 2uðlÞ � uðSÞ, where we used the normali-

zation condition for both u(l) and u(S). In this way Eq 3 can be rewritten as:

�g ðSÞðlÞ;th!cx ’ wth!cx
eq rthNðlÞNðSÞuðlÞ � uðSÞ ¼ wth!cx

eq rthNðlÞNðSÞð1 �
1

2
d2

l;SÞ ð4Þ

Eq 4 tells us that the thalamic signal is a decreasing function of the distance dl,S, if all training

examples are equally normalized(kx(i)k2 = kx(j)k28i, j 2 1, ‥L) and neglecting for a while the

possible changes in the thalamic rate ρth, that in our model can be mediated by the existing

cortico-thalamic feedback path. Under the approximation of constant ρth we can immediately

show that, after having being exposed to the first set of training examples, the soft-WTA

ThaCo excitatory network is at least endowed with the capability to behave as a nearest neigh-

bour classifier of the first order (Knn-1 classifier). The winning candidate K among the L com-

peting cortical groups is initially suggested to the network as the one reached by the strongest

thalamic stimulus when presented with the never seen image S:

initial candidate KðSÞ ¼ argl max½�g ðSÞðlÞ;th!cx� ¼ argl min½dl;S� for l 2 1; ::; L ð5Þ

Indeed, under the assumption that the neuron activity depends on the incoming signal (both

excitatory and inhibitory) through a transfer function FðgÞmonotonically increasing over the

total incoming current g, we will now show that: 1) the role of inhibition will be to help the

computation of (a soft) argmax; 2) the recurrent intra-group cortical excitation provides an

additional boost to the selection of the winner. To confirm this, we shall now consider explic-

itly the contribution of both recurrent and inhibitory contributions. The total average input

signal to each cortical neuron depends on the group l the neuron belongs to and on the the

stimulus S to be classified:

�g ðSÞðlÞ;tot ¼ �g ðSÞðlÞ;th!cx þ �g ðSÞcx!cxðlÞ þ �g inh!cxðlÞ ð6Þ

Under the approximation of constant ρth, the first term in Eq 6 is provided by Eq 3.
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Concerning the second term, the training protocol illustrated by Fig 7 creates cortico-corti-

cal synapses of strength wcx!cx
eq only among neurons belonging to the same group l, i.e among

neurons trained on the same example, while connections among neurons selective for different

training examples are left to the initial value wcx!cx
0

. Assuming that wcx!cx
0
� wcx!cx

eq , after learn-

ing we have:

wcx!cx
l1 ;l2
¼ wcx!cx

eq dl1 ;l2
þ wcx!cx

0
ð1 � dl1 ;l2

Þ � wcx!cx
eq dl1 ;l2

l1; l2 2 1; ::; L ð7Þ

Under the assumption that the activities of the K neurons belonging to the same subgroup

(l) are similar to each other, the second term in Eq 6 reduces to the recurrent intra-group excit-

atory contribution:

�g ðSÞcx!cxðlÞ � �g ðSÞcxðlÞ!cxðlÞ ¼ ðk � 1Þ � wcx!cx
eq �r

ðSÞ
ðlÞ ð8Þ

where �r
ðSÞ
ðlÞ is the average firing rate reached by the cortical group l when activated by the novel

stimulus S.

In our simplified mode, all wcx!inh and winh!cx synapses are non-plastic and set to an iden-

tical value. Therefore, the third term, the input signal from cortico-cortical inhibition, is in our

architecture equal to:

�g ðSÞinh!cxðlÞ ¼ �g ðSÞinh!cx ¼ Ninh � winh!cx�r
ðSÞ
inh ð9Þ

where Ninh is the number of cortical inhibitory neurons and ρinh is the inhibitory neurons

activity.

In summary, Eq 6, i.e. the total current stimulating each of the L groups of cortical neurons

responding to the thalamic stimulus S can be reformulated:

�g ðSÞðlÞ;tot � �g ðSÞðlÞ;th!cx þ �g ðSÞcxðlÞ!cxðlÞ þ �g ðSÞinh!cx ¼

¼ wth!cx
eq rthNðlÞNðSÞð1 �

1

2
d2

l;SÞ þ ðk � 1Þ � wcx!cx
eq �r

ðSÞ
ðlÞ þ Ninh � w

inh!cx �r
ðSÞ
inh

ð10Þ

When the average rate is well below saturation, its relationship to the total input signal is well

described by a threshold-linear function:

�r
ðSÞ
ðlÞ ¼ að�g

ðSÞ
ðlÞ;tot � gthreshÞHð�g

ðSÞ
ðlÞ;tot � gthreshÞ ð11Þ

where α is a constant coefficient, H is the Heaviside function and gthresh is the firing threshold.

Therefore, assuming that the input signal is above threshold (�g ðSÞðlÞ;tot > gthresh), we have that

�g ðSÞðlÞ;tot ¼
wth!cx

eq rthNðlÞNðSÞð1 � 1

2
d2

l;SÞ þ Ninh � winh!cx �r
ðSÞ
inh � aðk � 1Þ � wcx!cx

eq gthresh
1 � aðk � 1Þ � wcx!cx

eq

ð12Þ

we also require that aðk � 1Þ � wcx!cx
eq < 1, i.e. self feedback should be smaller than one, other-

wise the system would become unstable.

Considering that the inhibitory signal is equal for all L groups under the provisional

assumption of constant ρth, i.e. no cortico-thalamic feedback), Eq 12 tells us that the final

choice of the network would confirm the initial guess of Eq 5:

winning KðSÞ ¼ argl max½�g ðSÞðlÞ;tot� ¼ argl min½dl;S� l 2 1; ::; L ð13Þ

i.e. the network tends to a stationary condition in which the L groups of K neurons can be

set at different firing rates that decrease with the distance dl,S. Moreover, the readout layer
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combines signal coming from groups of cortical neurons trained over different examples yet

belonging to the same class: thus, the network expresses a behaviour similar to that of a a

higher-order Knn—n,.

5 Supporting information

S1 Text. Mechanisms and implementation details. The reader can find in this section details

about the mechanisms in action in ThaCo during the Training and Classification phases (see

the ‘Training and classification phases’ and ‘Balanced mini-batch training’ paragraphs, specifi-

cally Fig A providing a comparison of incremental learning protocols) and details concerning

the implementation and effects of deep sleep dynamics (see ‘Sleep-like oscillatory dynamics’).

The specific form of STDP plasticity is described in paragraph ‘Spike-Timing-Dependent Plas-

ticity’ (and depicted in Fig B showing the effects of deep-sleep on network performances) and

the neuronal model in ‘The neuron model’. Details about the handwritten digits datatsets are

presented in the ‘The datasets of handwritten characters’ paragraph, while paragraph ‘Tha-

lamic coding of visual stimuli’ describes the fuzzy-logic-inspired pre-processing algorithm,

adopted for a tuning of thalamic activity that preserves a notion of distance among visual fea-

tures. The ‘Salt-and-pepper noise’ paragraph is about the method used to add noise to images

during training and classification. Finally, the set of parameters needed to configure the spik-

ing model is provided in Table A, paragraph ‘Parameters of the spiking model’.

(PDF)
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