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Abstract

The number of co-infections of a pathogen (multiplicity of infection or MOI) is a relevant parameter in epidemiology as it
relates to transmission intensity. Notably, such quantities can be built into a metric in the context of disease control and
prevention. Having applications to malaria in mind, we develop here a maximum-likelihood (ML) framework to estimate the
quantities of interest at low computational and no additional costs to study designs or data collection. We show how the
ML estimate for the quantities of interest and corresponding confidence-regions are obtained from multiple genetic loci.
Assuming specifically that infections are rare and independent events, the number of infections per host follows a
conditional Poisson distribution. Under this assumption, we show that a unique ML estimate for the parameter (1)
describing MOI exists which is found by a simple recursion. Moreover, we provide explicit formulas for asymptotic
confidence intervals, and show that profile-likelihood-based confidence intervals exist, which are found by a simple two-
dimensional recursion. Based on the confidence intervals we provide alternative statistical tests for the MOI parameter.
Finally, we illustrate the methods on three malaria data sets. The statistical framework however is not limited to malaria.
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Introduction

Infections are ubiquitous and ecologically complex processes.
Indeed the chain of events conducing to the colonization and
replication of parasites within a host involves many environmental,
physiological, and genetic factors both in the host and the
infectious agent. A common observation in many host-parasite
interactions is that there are multiple genetically distinct lineages of
the pathogen infecting the same individual host [1-3]. Whereas in
some diseases such as malaria, this is considered an important
parameter, in others it is still somehow a neglected aspect that is
just starting to be considered [2].

The observation of multiple genetic variants or multiplicity of
infection (MOI) is indicative of the transmission dynamics since it
allows for the co-transmission of different parasite variants or the
overlap of several genetic variants due to multiple infectious
contacts. Thus, the incidence of MOI or superparasitism per se is
an important metric of exposure [2,4-7]. In addition to its
epidemiological importance, as many other ecological processes
involving genetically distinct individuals, MOI leads to several
outcomes derived from the interactions among lineages. This
process is usually referred to as the intra-host dynamics [3].

During the last two decades, the outcomes of intra-host
dynamics have been the subject of several theoretical and
experimental investigations exploring a broad spectrum of
scenarios. Usually, such studies focus on major effects that
different interconnected factors have in terms of parasite
dispersion (parasite fitness) and/or the elicited manifestations of
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disease that may lead to an effect on the host’s fitness [3,8-11].
Furthermore, intra-host dynamics also affect the spread of parasite
lineages with adaptive mutations conferring resistance to antimi-
crobial agents or that allow the evasion of immune and/or
vaccine-mediated protection [12,13]. Under all these circumstanc-
es, following or measuring MOI as a parameter is essential
whenever epidemiological inferences or models involving intra-
host dynamics are formulated.

Although it is possible to control or measure the number of
distinctive parasite lineages in models and experimental settings
(c.g.[14]), a totally different scenario is the one faced by those
studying naturally occurring infections in the context of ecological
and epidemiological investigations [4-6,15,16]. Under such
circumstances, MOI is usually measured by ad hoc metrics that
rely on a set of genetic markers or the observed polymorphism in
one or several genes [2]. The need for an experimental definition
of MOI has generated approaches based on phylogenetic
frameworks (e.g. many viruses) or some form of multi-locus
genotyping [2,17]. Whereas such approximations have been
useful, there is still need for a formal statistical framework that
allows the estimation of the actual number of lineages and other
approximations to MOI that facilitates and/or considers con-
founding factors.

Given the broad spectrum of genetic architectures observed in
parasitic organisms, it is not possible to define a universal
framework of MOI. E.g. HIV accumulates mutations at a rate
that allows for the use of phylogenetic base methods [17]. On the
other hand, eukaryotic parasites such as Plasmodium, Trypanosoma,
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Toxoplasma, and Schistosoma [18,19] and bacteria such as Myco-
bacterium [16] evolve at a rate at which it is possible to determine
a stable number of genetically distinct lineages during the course of
an infection given a set of genetic markers. In this investigation, we
describe a formal statistical framework to estimate MOI that
allows, among other aspects, building formal tests for comparing
groups, e.g., before or after deploying an intervention such as a
vaccine, complicated versus non-complicated cases, populations
with different exposures, among other possibilities.

More specifically, we further develop the maximum-likelihood
framework introduced by [20], which allows to estimate MOI and
prevalences of pathogen lineages from a single genetic marker,
e.g., microsatellite loci. We establish how to compute ML
estimates and confidence intervals (or regions) for all involved
parameters. Based on these, we show how statistical tests can be
constructed to test the parameters. Although, the framework is - in
principle - not restricted to a particular disease or species, we
applied it to malaria by comparing data sets from three endemic
regions with different levels of endemicity.

The philosophy behind the method section’s structure is the
following. We first establish the general methods and then refine
them assuming that the number of co-infections follows a
conditional Poisson distribution. This structure embraces a better
understanding of how to derive particular results for alternative
choices to the Poisson distribution. Moreover, rigorous mathe-
matical proofs are shifted to the appendix. Readers less interested
in these technical details should feel free to skip them.

Methods

We adapt the maximum-likelihood method of [20] to estimate
the average MOI. This approach is fully compatible with the
model of [12,21] which describes the hitchhiking effect associated
with drug resistance in Malaria, for which MOI is a fundamental
quantity. Being able to estimate MOI, the model can be ‘reverse
engineered’ to reconstruct the evolutionary process underlying
drug resistance. By doing so, a formal means is provided to identify
those among the many compounding factors, which can be
influenced to slow-down or prevent the spread of drug resistance
in the course of public health initiatives.

1 Model background

Assume n different ‘lineages’ Ay, ...,4, of a pathogen, e.g., n
alleles at a marker locus (or haplotypes in a non-recombining
region), circulate in a given population. Particularly, we have
neutral markers in mind characterizing linages, so that their
frequencies do not change too rapidly, e.g., due to selection. The n
lineages considered are those that contribute to infection, not new
variants that are generated by mutation inside hosts, but ‘fail’ to
participate in transmission.

Because we identify a pathogen with the allele at the considered
locus, we will use the terms ‘lineage’ and ‘allele’ synonymously.
(We refrain from using the term strain, as we refer here to a
genotypic characterization and the term strain may have different
meanings across pathogens.)

In vector notation, the lineages’ relative frequencies are
=1, ...,pn). An individual (host) is infected by m (not necessarily
different) lineages of the pathogen with probability x,,,. The m lineages
are sampled randomly from the pathogen population. Hence, within
an infection, the combination of pathogen linages follows a
multinomial distribution with parameters m and pj, ... ,p,. Conse-
quently, the probability that 71 of the infecting linages carry allele Ay

mi+...+m,=m) is given by P(mlm)=<:z>p’”, where
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m m! . N .
m=(my,...,m,) : = ————— is a multinomial coefficient
bl ' ' el
m miyi...my!

and p™ : =p{" ... pi"". Clearly, m summarizes the pathogen config-
uration infecting a host.

In practice, m is unknown for a given host. It is possible to
detect which alleles (or lineages) are present in a clinical sample,
but it is difficult to reliably reconstruct m without using next
generation sequencing, a technology that is not practical to use in
many settings. For instance, if only a single allele, say A1, is found
in a clinical sample, the patient might have been infected by just
one parasite lineages (m=1), or co-infected by several lineages
(m=273,...), all of which carry allele 4. Hence, it is convenient
to represent an infection (lineages detected in a patient) by a vector
of zeros and ones of length n, referring to the detected alleles
(lineages). Hence, a clinical sample is represented by a vector
i=(,...,i)e{0,1}""\{0}, where ix=1 if Ay is found in the
infection, and otherwise iy =0. In mathematical terms
i=sign m=(sign my, . ..,sign m,). (Remember sign 0=0 and
sign x=1 for x>0). Note that the vector =(0,...,0) is excluded,
which corresponds to no infection. In the following, m will always
denote a vector of nonnegative integers and # a vector of zeros and
ones.

Let m be the multiplicity of infection (MOI) with distribution
K. Because Ky, is unknown in practice, we aim to estimate it from
clinical samples - or rather some summary statistics characterizing
K.

Assume a total of N clinical samples, taken from different hosts
roughly at the same time. We assume that the 7 lineages A4y, ... 4,
detected in the samples are all lineages circulating in the
population. (There is no knowledge of undetectable lineages.)
Each clinical sample contains one or more of the n lineages
(alleles). (We assume that lineages that infected the host have not
vanished due to intra-host dynamics, e.g., drug treatments, and
that new lineages have not emerged inside the host, e.g. by
mutation, recombination etc.) A clinical specimen with allelic (or
lineage) configuration i could descend from an infection with
pathogen configuration m as long as sign m=i. Let Q; denote the
expected frequency of clinical specimen with allelic configuration
i. Then,

where the first sum runs over all integers larger than or equal to
l{] : =i1+ ... 41y, as this obviously is the minimum number of
parasite lineages that could have caused the infection. The second
sum runs over all possible configurations m of exactly m parasites
that lead to the allelic configuration i (i.e. sign m=i), and hence
could have potentially infected the host.

It follows, that for a given allele-frequency distribution p, Q; is
determined by the distribution k,,. If infections with the pathogen
are rare, a natural assumption is that the number of pathogens
infecting a host is Poisson distributed, or more precisely follows a
conditional Poisson distribution (CPD), 1.e.,

|

Ky =

Of note, this conditions on the fact that each host is infected by
at least one pathogen. The mean value of this distribution is
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Assuming the CPD (2), Q; can explicitly be derived. In Analysis
(subsection 4.1) it is shown that

U T A
k — 1)k
1kl:[1(e 1)k

o —

0i=

2 Maximum likelihood
Consider a total of N samples or clinical specimen, #; of which
have allelic configuration i. Hence, N = Zn;, where the sum
l
runs over all zero-one vectors of length n, i.c,. i€{0,1}"\{0} (the
case of no infection i.e., i=0=(0,...,0) is excluded).
Since the (natural) likelihood for observing these samples is

I1 0, the log-likelihood is given by
1

L=log H Q= Zni log 0. (3)

Assuming the CPD for the number of lineages infecting a host, it
is shown in Analysis (subsection 4.2) that the log-likelihood
becomes

L=L(.p)=—Nlog(¢'=1)+ > Nilog(e?k —1), (4)
k=1

where Ny = Z n;= Z irn; 1s the number of samples that
ie{0,1}"
contain allele A;. The prevalence of allele k is then Ni/N.

it =1

n
Notably, Z Nj. =N with equality if and only if exclusively single-
k=1

lineage infections occur. This is one of two special cases that need
to be treated separately. In the other special case all lineages are
found in every infection. These cases are somewhat non-generic.
We shall therefore formulate the following generic assumption.

Assumption 1 Assume that the sum over the alleles’ prevalences is larger
than one, but not all alleles are 100% prevalent. In other words, more than one

n
lineage 1s found in at least one infection, t.e., Z N> N and not all lineages
k=1
are_found in every infection, i.e., Ny #N for at least one k.

Results

In the following A will refer to the parameter of the CPD, or in
the general case, to the parameter (or parameter vector)
summarizing the distribution k. In the latter case A=0 has to
be interpreted as k) =1.

We shall start by deriving the maximum likelihood (ML)
estimates for the parameters of interest. Before we do so, we shall
start by a rather intuitive observation.

Not surprisingly 4=0 can never be an ML estimate if multiple
alleles are found in at least one sample, as A=0 implies single
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infections only. We summarize this in the following remark which
1s proved in Analysis (subsection 4.3).

Remark 1 If at least one sample contains more than one allele, v.e.,
n

N =N, A=0 is not the maximum likelihood estimate.
k=1
To obtain the ML estimate for 8= (4,py, . .. ,p,), (4) needs to be
maximized on the simplex, either using the method of Lagrange
multiplies or by eliminating one of the redundant variables, i.e., by
n—1
setting e.g., p,=1— Z pi. When using Lagrange multipliers we
i=1
need to find the zeros of the derivatives of

AO.B=LO)—B(1—>_p). (5)
i=1

O0A OA O0A OA
73 py" 3y OB
the conditional Poisson distribution are derived in Analysis
(subsection 4.4). The equations VA(8,$)=0 can be straightfor-
wardly solved by a Newton method, i.e., by iterating

ie., VA=( )=0. The derivatives based on

(0t+ 1 >ﬁt+ 1) = (gtaﬁr) + (Aﬂ,,Aﬁ[) 5
(6a)

where (A#;, Af,) is the solution of the system of linear equations

—VA(H,,[)’,)zH(H[,[i,)(AH,,A[f,) (6b)

and (6},f,) is any initial choice of @ and f8. Here, H(8,,f3,) denotes
the (transposed) Hessian matrix evaluated at (6;,5,), i.e.,

2A 2 2A 2A

2 plok ccc dpnoi  0PoA
2A P2 P2A 2A

020py @p% Tt dpndpy 0Bopy

HO.p=| o N N

A _2A 2a 0 2A
0%.0pn Op1dpn ap% 0Popn
P2A 2A 32A 2A

al0B T opndB o2

If, in the general case, 4 is a parameter vector, the derivatives
above have to be interpreted accordingly.

In the case of the conditional Poisson distribution (2) the entries
of the Hessian matrix are derived in Analysis (subsection 4.4).

Clearly, instead of (6) also Or+1.8,.1)=00.8,)—
(H(8,,8,))"""VA(8,,p,) can be iterated, which, however, is
numerically less recommendable. Alternative approaches would
be using an iterative least-square algorithm or the EM algorithm
(cf. e.g.[22]).

Of note, in general, an ML estimate does neither necessarily
exist, nor is it unique, not to mention that closed formulas typically
do not exist. Unfortunately, assuming the CPD (2), the ML
estimate indeed cannot be calculated explicitly. However, the
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estimate exists and is unique. Furthermore, although it can be
straightforwardly derived by the above methods, the complexity of
whole procedure can be greatly simplified.

Result 1 Assume the conditional Poisson disiribution (2) for Ky,. Under
Assumption 1 there is a umique maximum  likelthood
O=(0p1s. .. pn). The first component ) is the unique positive solution of
the equation.

estimate

R N, 1
A+ )y log(l——(1—e"%))=0. 8
k; gl—r(1=e™) 8)
1t is_found by iterating

& Ny _
A+ kgllog(l——/(l—e )
}~t+1—j-t_ —

—— o
1— _
];Ne'lt — Ni(e#t—1)

which converges monotonically and at quadratic rate from any nitial value
A= j.

The maximum likelihood estimales of the allele frequencies are given by
. 1 N i
=—=log(l——(1—e™")). 10
pe=—>log(1=Sr (1 =) (10)

The result is proven in Analysis (subsection 5.1).

For the sake of completeness we shall also consider the instances
in which Assumption 1 is violated. In the first situation, only one
pathogen lineage is found in each infection, ie., there is no
indication whatsoever of co-infections. The results are summarized
in the following remark which is proven in Analysis (subsection
5.1).

Remark 2 Assume that each sample contains only one allele, t.e.,

n
N N,
Z Ni=N. Then the ML estimates are 2.=0 and pj. = Wk

k=1

In the other non-generic case that all alleles are found in every
sample an ML estimate does not exist, more precisely, it is 00,
implying that — with probability one — all alleles are in every
sample independently of the allele-frequency distribution.

Remark 3 Assume N=Ny jfor all k. Then the ML estimate is
D=+ Jor every allelic distribution.

A proof can be found in Analysis (subsection 5.1).

Of note, the maximum likelihood has an intuitive interpreta-
tion. We summarize this as the following result which is proven in
Analysis (subsection 5.1).

Remark 4 The maximum likelihood estimate @=(A.p\, . . . py) is the
set of parameters for which the observed number of samples containing allele Ay
equals 1ts expectations, t.e.,

1—e %k

Niy=EN=N—.
k k | —e—r

Hence, the maximum lkelihood maximizes the expectation of the log-

likelihood.
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1 Confidence intervals from the profile-likelihood

Let 6= (j.,j)l, ...,pn) denote the ML estimate. Confidence
mntervals can be derived from the profile-likelihood for each
parameter.

We are interested in finding a confidence interval (CI) for 4. For
a fixed value of 4, the profile likelihood is defined as

L¥ : = max L(#) = max L(4,p)
r r

ie., as the maximum likelihood taken over the remaining
parameters while keeping the parameter of interest fixed.
Moreover, denote the maximum likelihood by L (clearly
L= m)aXL(D). Suppose 2 is the true parameter and L% the

corresponding profile likelihood. Then

2AL— L)~ 7, (11)

i.e. twice the difference of the maximum likelihood minus the
profile likelihood assuming the true parameter is > distributed
with one degree of freedom (cf. e.g. [23], chapter 4). This can be
used to construct confidence intervals for the true parameter Ao.
To construct a CI at the (1—o) level, we need to find all 4
satisfying

AL—LP)<cr-s,

find A<2Z satisfying 2(L—L¥Y)=
Z(i—L(}‘))=C1,1,x, where ¢, denotes o-quantile of the ¥
distribution with 7 degrees of freedom. In other words, the
equation 15 —L+c1,1,a/2=0 needs to be solved. By definition
of LW, this means that L(A.p)—L+c1)_,/2=0 needs to be
solved with respect to (4,p), while simultaneously maximizing
L(4,p) with respect to p. The latter is done using the method of
Lagrange multipliers for fixed 4, iL.e.,

ire., we need to

]\).(paﬂ) = A()aps[))) :L(/“ap) _.B(l - sz) 5
i=1

s maximized. This leads to the equations
< oA 0N OA

VA, (p.f)=(—,...,—,—=5)=0. Therefore, following [24
D=5 5 g (24

the bound of the confidence intervals are found by solving the
following system of equations

LOp)—1I*
IA(Lp.B)
B2

f(}"’p’ﬁ) L= : =05 (12)

IA(p.p)
opn
AGp.B)
ap

where I"=L—c¢j1_4
Clearly, f(4,p,f)=0 can be straightforwardly solved by a
Newton method, i.e., by iterating
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(;»r+lapt+1>ﬂt+1):(;Ltapnﬁt)+(A}~raApnAﬁr)a (13a)
where (A4;, Ap,, Af,) is the solution of the system of linear

equations

—f G B) =V Cp 1 B,) (A2 Ap,, AB))

and (41, p;,f;) is any initial choice of 4, p and f. The derivative
V(s P> P,) 1s identical to (7) except for the first line, which needs
to be replaced by

(13b)

0L 0L 0L 0L
asa,--'>a’7>%' (14)

The derivatives of L are given by (39). Hence, VE(4,,p,.,) is given
by

oA on o

02 i Opa

PN PA PN A
VfCepoB)=| : L : (15)

PN A PN PA

0i0py Oprdps T 2 oPapa

PN A PN PA

0208 opop T opadp  op?

where all derivatives are given by (39) and (40).

Again, alternatively (Air1:Prs 1B 1) =Ctsp s B)—(Vf
(AespisB))~ ! f(A,p;,P;) can be iterated, which however requires to
invert the matrix Vf(4,p,,f,) in every iteration step. The
alternatives to the Newton method are again the EM algorithm
or an iterated least-mean-square algorithm.

To obtain the confidence bounds A and 7 it is necessary to
iterate (13) from two different initial values. Of note, obtaining one
bound for the confidence interval is numerically only as
demanding as obtain the ML estimate.

Confidence intervals for the allele frequencies p; are obtained
similarly by iterating (13) with obvious changes. Namely, the first
OA(2p.P)

oA
and the (i+ 1)-th component by L(4,p)—1I", i.e., f is the gradient
of A with the derivative with respect to p; replaced by L(A,p)—I*.
Consequently Vf is identical to (7) with the (i+ 1)-th component
replaced by (14).

Importantly, existence and uniqueness of the confidence bounds
J and / can be proved under the assumption of the CPD (2).
Moreover, it is possible to significantly reduce the complexity of
the Newton method (13) to find the CI's bounds. We obtain the
following result, which is proven in Analysis (subsection 5.2).

Result 2 Suppose Assumption 1 holds. If 1, is given by the conditional
Poisson distribution (2), the confidence interval for y) (based on the profile
likelihood) is uniquely defined.

The bounds of the confidence interval (3. and 1) for 2 are obtained by

iterating

component of the function f needs to be replaced by
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Al+]=it(] Iﬁ e/xr—l)((L—[*)‘Fg/‘.tﬁr) (163.)

(g2, — DM — 1)+ Nieh

A N = Dy, — ) g, (Vi — AB (e~ 1)
e ﬁ’c * AN+ (@ — (g, — D) ) -(160)

Nk;bt

where
1 & 1
A=ACiB)=5> 5
“’k:lm—
1 & NiA
gh=gi,<ﬂ,>=1+;—210g(1— g) (16d)
=1 t
and
n
L=L(s.B)=—Nlog(e* —1)— Y Ny log( by —1).  (16e)

k=1

There are exactly two possible solutions (2,) and (A,B). The algorithm is
converging quadratically for any nitial values (A1,[,) sufficiently close to the
one of the solutions.

The proof is found in Analysis (subsection 5.2).

Formally, the above result holds true in the non-generic
n

cases

Ni >N and Ni=N. If all samples contain just one
k=1

n
lineage, i.e., ZNk >N, the ML estimate is A=0 and the
k=1

confidence interval has the form [0,7]. If all samples contain all
lineages, i.e., Ny=N the maximum likelithood estimate is
A= 00 and the confidence interval has the form [4,+ c0), hence
it is infinitely large. Although, formally the result still holds, the
asymptotic (11) 1s no longer true, as discussed in Analysis
(subsection 6), rendering the result inapplicable if Assumption
1 is violated.

2 Asymptotic confidence intervals

As an alternative to the profile likelihood, one can use the
asymptotic normality of the maximum likelihood to construct
confidence intervals. Asymptotically the difference of the
maximum likelihood (Hz(i,ﬁ)) and the true parameter
(00 =(A0.py)) is normally distributed. However, it is important
to notice that - unless one eliminates one of the redundant
allele frequencies - the Lagrange multiplier ff needs to be
treated like a regular parameter. The corresponding likelihood
function is of course given by (5). Hence, the actual parameters
involved are $=(0.f). The difference of the maximum
likelihood (:9) and the true parameter (:90) is asymptotically
distributed according to

(3—80)~N(0.15 ' (%)), (17a)
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or

(B—80)~N(O.J;'(3), (17b)
N P L , e .
where Iy($)=— [E(W)Lg:& is the expected Fisher information
a FL
and Jy(§) = — Fr |g_ g is the observed Fisher information (based

2

on sample size N). The matrix —Wb:@ is the transposed

Hessian matrix given by (7).

The expression (:9—.90) ~./\/(0,l,\71(-9)) is the convenient,
although imprecise notation, for (/, N(.ﬁ)ﬁ(.@ —30)~N(0,I), where
I is the (n+2)-dimensional identity matrix and (/, N(:Q))% the
symmetric square root of the Fisher information. Namely, any
positive semi-definite, symmetric matrix A (as it is the case of any
covariance matrix, and particularly the Fisher information) has a
spectral decomposition 4= 0DOT, where O is orthogonal and D
is the diagonal matrix that contains all eigenvalues. These are real
and nonnegative, and the diagonal matrix that contains the square
roots of the eigenvalues is denoted by D, Hence, by setting
A2=0D:0", we have A= A24".

An often used alternative notation is

VN@B—30)~N(0.17'()),

or

VN(B—80)~N(0.J~'(8)

with I($) = %IN(Q) and J(§)= %JN(ﬁ).

From (17) the asymptotic distribution of the parameters of
interest & follows immediately by dropping the ‘dummy’ variable f8
and the corresponding rows and column in the inverse Fisher
information. Of note, this is not identical to ‘formally’ derive the
inverse Fisher information based on L and 6. Namely, it is
important to drive the asymptotic covariance matrix with respect
to A and 9.

Since (9—30)~/\/’(0,J§1(:9)) the bounds for the (1 —a) CI for
o are given by

itz /Uy @)y, (18)

and those for the components of p, by

pkizl—%\/ (Jﬁl(‘g))lc+l,k+l‘ (19)

Here, z, denotes the o quantile of the standard normal
distribution.
Of course, when using the expected Fisher information, Jy
needs to be replaced by Iy. Under the assumption of the
- . o i\
conditional Poisson distribution (2), the second derivatives W
needed to derive the Fisher information are calculated in Analysis
(subsection 4.4; eq.39). Moreover, evaluated at the maximum
likelihood estimate, Nj=[ENj, it is seen that the expected and
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observed Fisher information are identical, i.e., J (§)=I (:9)=,
when assuming (2).
With some algebraic manipulation it is possible to simplify the
expressions for the confidence intervals assuming the CPD (2).
Result 3 Suppose the number of co-infections follow the conditional
Poisson distribution (2) and that Assumption 1 holds. Then an asymptotic

(1 — cr)-confidence interval for 2. is given by

. 21 (e 1)
At 2 . . (20)
— Ne*(1+ 7"/},’{ )
n— S PPk
k=1

Alternatively, the following formula, requires just the ML estimate for A

21—%(91* 1)

o
[+

(1)

— Nek 1
Ne* | 14+ — N

K1 N =N — Ny,

For a proof, see Analysis (subsection 5.3).

In the non-generic case Ny = N for all k, the ML estimate is not
unique, and we have A=+ 0. Hence, asymptotic Cls make no
sense in this case, neither for /4 nor for the frequencies py.

n
In the case ZNk =N, it also impossible to derive Cls as the
k=1

asymptotics (17) break down (cf. subsection 6 in Analysis).

Explicit formulas for the Cls of the allele frequencies are
obtained similarly.

Result 4 Under the same assumptions as Result 3, an asymptotic
(1 — a)-confidence interval for p; is given by

y!
Zl*%% p—
bt (22)
7 1 e | 20505
D L [ A/ L
Dj 12 = bj 7
] —1) k=1 ] —1 e
1 k#J
elpj—l
n jﬁ
L a7 Pk | —(1—p)?
et —1 k=1
k#j

The proof can again be found in Analysis (subsection 5.3).

3 Testing the parameters

In practice, data from several loci is typically available, each of
which yields a different ML estimate or there might be some prior
estimate for the parameters of interest. Depending on particular
properties of the marker loci (mutation rate, allele-frequency
spectrum, biochemical issues in determining motif repeats, etc.)
different marker loci will lead to different ML estimates. Hence, it
is desirable to test whether different estimates are significantly
different. The confidence intervals can be adapted to test the
parameters.
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Clearly, at different marker loci, different alleles will segregate
and the allele-frequency spectra will be very different. Hence, for
the present purpose, it is meaningless to compare the allele
frequencies at different loci. However, the estimate for 4 should be
consistent, as this parameter is the same for all loci. Consequently,
in the following we will focus on testing 2 and present three
alternative tests for the null hypothesis Ho:A=4p wvs. the
alternative Hy : A# A.

3.1 The likelihood-ratio test.
straightforward. Since

The first test is rather

2AL—LY9)~ g, (23)

under the null hypothesis 4= 1y, it is rejected at significance level o
if

2L —LPYy>ep 1,

In other words, we reject the null hypothesis for any g that lies
outside the (1 —«)-confidence interval of 7, which are obtained as
outlined above in ‘“Confidence intervals from the profile
likelihood”. Therefore, this test requires no additional numerical
effort if the confidence intervals were already derived.

The corresponding p-value is given by

e 7%
dx. 24
J V2xm (24)
22— L))

To calculate the p-value, LY needs to be derived first.
Similarly as in section in “Confidence intervals from the profile

likelihood”, this leads to the VA (p.p)=

equations

0\ A OA
% s gp (; ﬁ) 0. Therefore, the system of equations
A(Zo.p.P)
op
2, P = oAGop.p) | =0 (25)
0pn
A(Z0.p.P)

op

needs to be solved by a Newton method, i.e., by iterating

(pt+I’ﬁt+1)=(pt>ﬂ[)+(Apr>Aﬁf)’ (263')

where (Ap,,Af,) is the solution of the system of linear equations

7g)~0(pt’ﬁt):Vg,lo(Ptaﬁt)'(ApnAﬁz) (26b)

and (p;,f;) is any initial choice of @ and f. The derivative
Vg,-ﬂ(pt,[)’,) is obtained from (7) by deleting the first row and
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column and substituting A=Ay, i.e.,
A PN DA
opt T Opudpr OPop
Ve, @uB)=1 A 2A A I (27)
op1dpn P2 Bap.
A PAPA
apiof B OB ) Gy

where all derivatives are given by (39) and (40).

Result 5 Suppose Assumption 1 and Ao #0 holds. In the case of the
conditional  poisson  distribution, the p-value under the null hypothesis
Hy: A=2q is given by (24), where L% is given by (4) with =1
and py given by

. 1 Nk;LO)
=——log| 1— 28
P 7o g( ] (28)

where [ is the solution of (16€) with =17 .
The solution B is_found by iterating
Nkﬂo
I+ 5 Z log(1— )

/))H»l:ﬁt - (29)

ZNk (1— Nk/uo)_

The proof is presented in Analysis (subsection 5.4).
In case of Hyp: A=A9p=0, there are two possibilities. If

n
ZNk>N, then L(0,p)= —oo0. Hence, the null hypothesis is

always rejected. This is clear, because if Ag=0 is the true

n
parameter, it is impossible to observe data X with Z Ni >N (see
k=1

n
Remark 7 in Analysis, subsection 6). However, if Z N =N, then
k=1

2=0 and L(0.p)=L, and the null hypothesis is always accepted.

Therefore, in the case of 49g=0 the test can still be formally
performed in a meaningful way. However, note that the
asymptotic (23) does not long hold true, as 49o=0 does not lie in
the interior of the parameter space.

3.2 The score test. In the following, for any parameter
choice Ao, let py by the corresponding profile-likelihood estimate,
ie., py= arg r;;%x L(Z.p), where S, is the (n—1) dimensional

simplex. By using a dummy variable as before, p;, is obtained from
=(Pg.Py) = arg r(natlgi A(4o,p,p). The Fisher information can
P,

be written as

Liyiy  Loi
TGy = | 7070 Hoko
N(/k«OaﬂO) (1’20/10 Iiloilo 5

where Iz is obtained from the Fisher information with the first
row and column deleted. The definitions of the remaining sub-
matrices follow accordingly.
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A test for the null hypothesis Hy: A=4¢ vs. the alternative
Hy : A# /g is obtained by using the fact that

oL

77 Vo ~NO.L,

Ligio Lic b Tig o) (30)

0%0 — "ok i " A

(cf. Remark 6 in subsection 5.4 of Analysis). The function

oL
00 40k

\/ Ligzg —Liginy Iil()ll() T2

serves as test statistic, where the data is X =(Ny, . ..,,N,). The test
rejects Hy at the o-level if T(X)f[—zli%,zlf%] The correspond-
ing p-value is 2(1 —®(|T(X)])).

Note that it is legitimate to write L on the left-hand side of (30)
oL 0A
FVRrY R
the asymptotic variance from A.

Alternatively, the expected Fisher information I(4g.fty) in (30)
and (31) can be replaced by the observed Fisher information
J(Zo.0y). However, if A9 is mnot the ML estimate,
1(Z0,f1y) # J (Ao ly). As proven Analysis (subsection 5.4), one
obtains for the CGPD:

Result 6 Consider the score test_for the null hypothesis Hy : A= 2g vs.
the alternative Hy : A% Ay under the assumptions of Result 5. The test
statistic based on the observed Fisher information is

T(X)= (31)

because However, it is nevertheless important to derive

ZNI( Pre 40Pk
M —1 N 0Pk —1

T=vVN (32)
N 220D
[ /Ol’k
(eAO 2 ;ZZ ( /'Loﬁk_l +
(Jo+n— Z 0Pk )?
k=1

1

52 n ;‘Oﬁk—l 2
0N u
Ny e"0Pk

k=1

and that based on the expected Fisher information is

201

n ~
n— § e 0Pk
k=1

The p-values are 2(1 —®(T(X)|)) in either case.
DPo=D1,....pn) are derived as specified in Result 5.
Of note, instead of (30) the ML estimate can be used as

The frequencies

a plug-in  estimate for the asymptotic variance, i.e.,
ﬁ'iosilo ~N(O,IM—I; Iﬂoﬂo oi)' In this case, it is not necessary

to distinguish between the expected and observed Fisher
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information as they coincide (cf. section “Asymptotic confidence
intervals™).

In summary one obtains:

Remark 5 Under the assumptions of Result 6, a test statistic for the null
hypothesis Hy : .= Ay vs. the alternative Hy : A% Ao is

n = 0B
0 _Zﬂpkeok

_ H0—1 Lo N Pk —1
T=VN@E—1) kol . (34)
el 1+ "ii'

=1

where N and 7t are sample size and number of alleles, in the data

yielding the estimate A
The proof is analogously to the one of Result 6.

The test cannot be applied in the special cases ZN" =N or

Ni=N for all k, as the asymptotic (30) no longer holds true (cf.
subsection 6 of Analysis).

3.3 The Wald test. A third test for the null hypothesis
Hy: A=/¢ is an adaptaton of the Wald test for the profile
likelihood. It is based on the same asymptotic properties
that we wused to derive confidence intervals namely

(97 30)~ N0,y 1(\9)) This is exactly the same as the asymptotic
880~ N(0.75'(8)) as In()=1Ix(9)).

R N 1
(A=20) ~N Oy $))  or

VI @),

This  implies
(j. —20) ~N(0,1). Hence, the test statistic

—Jo
V),

can be used. The p-value is 2(1 —®(|T(X))).

Now, we shall consider again the CPD. An explicit expression
for (11\71(:9))11 is given by (54). Hence, we obtain:

Result 7 Under the assumptions of Result 5, the Wald test _for the null

T(X)=

hypothesis Hy © A= Ag vs. the alternative Hy : A Ao has the lest statistic
X —Net | 1 1
T(X)=(A—1p) Dy T (35)
“ “- n— Z Mk
k=1

based on the (expected or observed) Fisher information.

The p-values are 2(1 —O(|T(X)|) in either case. Here, 2 and the
Srequencies py= (D1, - . . ,pn) are derived as specified in Result 1.

Alternatively, if the profile-likelihood estimate based on A is
used as a plug-in for the asymptotic variance, one can employ
(3= 30)~N (075 Co.fty)) or (3= 90)~ N (0.1 (o.fty))-

In the first case, using (53) implies that the test statistic changes
to
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— Ne'o 1 & P 220Dk
NNk (1= 2
(@0 —1) zg; K < eﬂopk_1>
T(X)=(4— ) 1()»0+n728;“01~’k)2 (36).
k=1
% ifmﬂ—w
\ o N ke 0Pk

In the second case, (54) implies that the test statistic changes to

— Ne*o 1 1

7 +
eAO—l e’ —1 L
n— g e"0Pk
k=1

T(X)=(4— )

(37)

Also the Wald test cannot be applied in the special cases

n
Z Ni=N or Ny=N for all k, as the asymptotic for (9790) no
k=1
longer holds true (cf. subsection 6 of Analysis).

4 Testing the method

Although - as we have seen - most of the theory works quite
general, assuming a CPD for the number of co-infections permits
to derive explicit results or, at least, reduces the complexity
significantly. However, assuming a CPD might not be justified.
Therefore, it is desirable to have a test for the model’s fit. Namely,
let

n;
n;log—

Ly= i

ie{0,1}\{0}

be the likelihood assuming a perfect fit to the data, in which the
expected frequencies of infection with stain configuration i equal
their observed frequencies. In other words, Ly is the maximum
likelihood of the saturated model. As there are 2" —1 possible
allelic configurations 7 infecting a host, Ly has 2" —2 degrees of
freedom. The maximum likelihood Z,=L(;1,f)) of the reduced
model (assuming the CPD) has n—1 independent allele frequen-
cies and one Poisson parameter. Therefore,

2Ly —L)~%3n_, - (38)

Hence, the following test can be used.

Result 8 To test Hy: “the conditional Poisson distribution is justified”
vs. H 4: “the conditional Poisson distribution is not justified”, the test-statistic
T(X)=2(Ly — L) can be used. The p-value is given by . ;(%L _2(T(X))

It should be mentioned that the above test might perform poorly
if the number of lineages or alleles 7 is large. The reason is that the
%2 distribution has too many degrees of freedom. This might be
the case when using hyper-mutable microsatellite markers with 10
or more alleles found across samples.
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Application to data

As an illustration, the methods are applied to three previously-
described data sets [25-27]. Each of which comprises molecular
data from P. falciparum-infected blood samples from endemic areas
with different levels of malaria incidence. For each blood sample,
parasite DNA was extracted and several microsatellite markers
assayed.

1 Preliminary remarks

It is important to note beforechand that only (selectively) neutral
markers should be included in the analysis. Namely, loci linked to
others that are targets of selection (e.g., mdrl, crt, dhfr, dhps in P.
Jalciparum that are associated with selection for drug resistance) will
have skewed allele-frequency distribution. Hence, using these
markers might lead to artifacts and severe misinferences. In
practice, a marker located on a chromosome not carrying a
strongly selected gene (e.g. resistance-conferring gene), can be
regarded to be neutral. Moreover, clinical samples from groups
that will be compared need to consider confounding effects such as
differences in treatment polices, control interventions, and
changing transmission intensities (e.g., a group should not contain
samples from two time points during which treatment policies
changed). By not considering such effects, the estimates of MOI
would be inappropriate. For these reasons, we only used parts of
the available data sets.

2 Data description

The first data set emerged from a longitudinal study conducted
in Asembo Bay, a hyper-endemic region in Kenya, and was
described in [27]. We included five (neutral) microsatellites on
chromosome 2 and four (neutral) markers on chromosome 3.
Additionally, we included two markers on chromosome 8, quite
close to dhfr, which are common to all three data sets and meet
Assumption 1. Only blood samples collected in the first study year
(mid 1993 to mid 1994) were included, resulting in 42 blood
samples.

The second data set described in [26] is from a study from
Yaoundé, Cameroon, a region of intermediate/high transmission.
Besides the two markers on chromosome 8 mentioned above, we
included all eight available (neutral) microsatellite markers on
chromosomes 2 and 3 from all 331 blood samples (data of one of
the 332 original samples was unavailable).

The third data set is from Bolivar State, Venezuela, a region of
low transmission. It was described in [25] and consists of 97 blood
samples. Due to the low transmission intensities, for most markers
each blood samples contains only one allele, violating Assumption
1. We included all markers that met Assumption 1 as well as all
available neutral markers. Particularly, we included four on
chromosome 2 and three on chromosome 3, two markers on
chromosome 8 and one on chromosome 4, which are sufficiently
distant from respectively dips and dhfr to be considered neutral,
and the two makers on chromosome 4, which were also included
in the other data sets. All 97 blood samples were used.

3 Results
The results are summarized in Figures 1 and 2 and Tables 1-3.
In all cases, the test for the model fit (cf. Result 8) justified the
assumption of the CPD (cf. Tables 1-3). This is important because
the three locations exhibit different transmission intensities. In all
three regions, the ML estimates 4 or rather the mean MO,
Je
%, obtained from different marker loci are fairly consistent.
eh—
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(dots) and their
respective profile-likelihood-based (bleu;) and asymptotic
(green) ClIs for the data from Kenya (A), Cameroon (B) and
Venezuela (C) for several microsatellite markers each.
doi:10.1371/journal.pone.0097899.g001

Figure 1. Shown are the ML estimates

As expected, most variation in the estimates is observed in Kenya
because of the low sample size. Moreover, the transmission
intensities are stronger, which leads to more variation in allele-
frequency spectra among marker loci, resulting in more variation
among the ML estimates.

From Figure 1 it is apparent that the estimates for MOI are
highest in Kenya, followed by Cameroon, whereas they are very
low in Venezuela. This is summarized in Figure 2 showing that the
average ML estimates across the regions differ by several standard
deviations.
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1.4+ I

1.3
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1.0- 3

Kehya Cameroon Venezuela

region

Figure 2. Average ML estimates by region. Averages are the
arithmetic mean of the ML estimates + 2 standard deviations derived
from the microsatellite loci, which are common to all data sets,
including (blue) and excluding (green) locus L1, which appears to be
hyper-mutable in Kenya and Cameroon.
doi:10.1371/journal.pone.0097899.g002

The 95%

profile-likelihood  Cls for —= -

et —

given by
det Tt
[Tl’f—
es er—1
Cameroon and Venezuela (cf. Figure 1). However, due to the
relatively small sample size, they are much less informative for the
Kenya dataset.

The asymptotic confidence intervals agree well with the profile-
likelihood ClIs (cf. Figure 1 and Tables 1-3). This is particularly
true for Cameroon, as expected because of the large sample size.
The profile-likelihood CIs from the Kenya and Venezuela data are

asymmetric while, the asymptotic ClIs are - by definition -
eX

], are reasonably large for the data sets from

symmetric (however, the transformation x+— results in some

er—1
asymmetry). (Note that, unlike profile-likelihood-based intervals,
asymptotic CIs are mnot transformation respecting, ie.,

et

[fL,L] is the transformed CI of 4, not the CI of — 2
et—1" ¢t et—1
In relative terms, this is more pronounced in Venezuela than in
the Kenya data set. The reason is that the ML estimates (;1) from
the Venezuela data are close to zero, i.e., the boundary of the
parameter range. This results in a very skewed likelihood function,
yielding quite asymmetric profile-likelihood Cls. On the contrary,
in Kenya, the ML estimates are rather large, and the likelihood
function tends to be symmetric around its maximum.

Furthermore, we tested for pairwise differences between the
estimates based on different marker loci. Tables 4-6 report the p-
values for the likelihood-ratio, the Score, and the Wald test for the
three regions. In all data sets, all tests perform equally well. There
are some discrepancies, mainly due to the above mentioned
skewness of the likelihood function. In the case of a skewed
likelihood function, the likelihood-ratio test is the most preferable,
because it accounts for the skewness.

Tables 7-9 compare the three versions of the Score test, while
Tables 10-12 compare those for the Wald test. The results are
fairly consistent. However, the versions given by eqs. 34, 37 and 36
of the Score and Wald tests, respectively tend to be most
inconsistent with the other tests, especially the likelihood-ratio test.
The reason is that these use the roughest approximations.

Overall, the methods perform well for all data sets and provide
meaningful results. However, the statistical tests also yielded
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significant differences in some of the pairwise comparisons of the
various A estimates in each region (Tables 4-12). The allele
frequencies differ of course but all are based on the same true
parameter /. If the estimates for 4 are significantly different, some
of them cannot be trusted. This can have various reasons. First, it
can be a type I error. However, this occurs only with small
probability if the ClIs are well calibrated, i.e., their nominal
coverage (1 —a) is close to the actual coverage. Asymptotic CIs and
tests based on them (Wald, Score) will be more affected than
profile-likelihood-based intervals, because the former are inher-
ently forced to be symmetric. This is particularly true if the
estimates for A4 are close to zero. To quantify this effect, and to
suggest heuristic methods to recalibrate the Cls, a systematic
numerical robustness study of the approach is planned. Prelim-
Inary investigations, however, have shown that particularly the
profile-likelihood-based Cls are well calibrated.

Second, the tests are designed to compare the ML estimate
based on the data with a value 4, which has to be interpreted as
prior knowledge. Strictly speaking, it is not meant to be estimated
from data itself, or at least data which is available. A test designed
to compare two estimates, should incorporate information from
both data sets (data from both markers). A standard approach to
resolve this is as follows. One could calculate the product of the
maximum likelihood from both markers and compare it with the
maximum likelihood of both markers conditioned on equality of A.
This however would require much more numerical effort than the
tests here. Note further, that the structure of the data does not
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Table 1. Estimates for each locus of the data set from Kenya.

locus lower bound e;.eil upper bound 2(La~Lq) d.f.

u7 1.00194 1.03409 1.15244 6.40471 9
0.968395 1.10265

L5 1.21506 1.38975 1.64696 67.8528 15
1.18622 1.61235

JE] 1.16387 1.32208 1.56625 44.993 16
1.1331 1.52876

J6 1.13457 1.27344 1.49108 58.3296 15
1.10558 1.45595

ué 1.15044 1.29506 1.51735 65.1444 14
1.12211 1.48319

L4 1.18509 1.34319 1.57899 89.2578 18
1.15735 1.54568

us 1.16453 131318 1.53811 76.1215 20
1.13692 1.50489

K6 1.31334 1.51443 1.7943 134.024 26
1.28687 1.76291

L1 1.3654 1.59303 1.90742 87.4142 16
1.33699 1.87367

c4 1.15248 1.30977 1.55585 15.9715 7
1.12049 1.51705

b3 1.06529 1.16656 1.34475 34.7327 16
1.03537 1.30777

Each row shows, locus name, lower profile-likelihood (top) and asymptotic (bottom) confidence bound, ML estimate, upper profile-likelihood (top) and asymptotic

(bottom) confidence bound. For the confidence, bounds o« =0.05 was assumed. Moreover, the test statistic for the fit of the CPD (2) is shown as well as the

corresponding degrees of freedom. In all cases, the outcomes are not significant, suggesting that the assumption of the CPD is justified.

doi:10.1371/journal.pone.0097899.t001

allow to perform a permutation test, because the allele-frequency
distributions are expected to be different. This is true for two
different marker loci in the same endemic region as well as for the
same marker in two different populations.

Third, the model assumptions might be violated, i.e., the
underlying Poisson distribution might not be correct. This can
again be quantified in the coarse of a robustness study.

Fourth, the allele-frequency spectra of two different marker loci
1s very different, and the method might be sensitive to this. For
instance strong skewness in the data distributions might bias the
estimates. This is obviously the case if one marker shows no
variation at all. Moreover, the number of different allele at
different markers is very different, which results in very different
probabilities of the ML estimates. These issues again need to be
investigated in a numerical study.

Fifth, some STR markers tend to be hyper-mutable. As a result,
not just the frequency distribution might be more problematic, but
it is also more challenging to correctly identify the tandem repeat
numbers. Hence, for hyper-mutable markers the data might have
very bad quality. In our examples the marker labelled L1 appears
to be hyper-mutable.

Because of all these possible reasons, it would be pre-mature to
suggest a heuristic on how to decide, which estimates can be
trusted the most. A systematic numerical follow-up study is
planned to investigate all these possibilities in detail to provide
suggestions on the criteria upon which the data is chosen.
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Discussion

The number of genetically distinct lineages co-infecting a host -
commonly referred to as “multiplicity of infection” (MOI) - is a
key quantity in epidemiology. First, it relates with transmission
intensity since it provides a metric for the number of secondary
infections after a primary infection; assuming that the lineages
circulating are identifiable (e.g. secondary infections within a
clonal outbreak simply cannot be traceable). Second, it measures
the possibility of genetic exchange among those lineages as
determined by the genetic system of the pathogen in question.
Finally, if phenotypic differences are associated with those
lineages, MOI could lead to very complex dynamics driven by
natural selection.

Measuring MOI is desirable in a variety of infectious diseases,
but - in many instances - only feasible if it can be measured at low
cost and with a reasonable effort. Optimally it should fit into
standard study designs and should be easily computable with
whatever genotyping data can be collected from clinical
specimens. In order to meet these goals, we further developed
the maximum-likelihood (ML) method originally proposed by [20]
and applied it to three malaria datasets as examples.

From a total of N samples (e.g. blood samples), the number of
genetically distinguishable lineages present in each host are
recorded. From the resulting data, assuming that hosts are
infected randomly by those lineages according to their prevalence,
we derived the likelihood function. If infections with the pathogen
are rare events, a natural choice for the number of co-infecting
lineages 1is a conditional Poisson distribution (CPD). This
distribution comes with the appealing feature that it is character-

9o
ized by a single parameter ;1, whose transform i
e —

is the
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Table 2. See description of Table 1 but for the Cameroon data set.

locus lower bound % upper bound 2(Lp-Lq) d.f.

L5 1.12239 1.17804 1.23538 165.239 27
1.12754 1.24098

J3 1.11596 1.17407 1.23404 105.218 26
1.12171 1.24032

J6 1.15263 1.21385 1.27704 178.18 25
1.15774 1.28258

ue 1.17975 1.23815 1.29829 270.763 32
1.18389 130274

L4 1.17469 1.24032 1.30817 222.664 29
1.17986 131378

us 1.18476 1.25169 1.32089 195.916 24
1.18987 1.32643

K6 1.18436 1.24819 1.31408 294.437 40
1.18908 131919

L1 1.28997 1.36794 1.44861 332.781 40
1.29451 1.45349

c4 1.08125 1.20363 1.33427 0.958866 9
1.10312 136155

b3 1.1223 1.18418 1.24816 754321 27
1.12849 1.255

doi:10.1371/journal.pone.0097899.t002

average MOI. Assuming a CPD, the likelihood function simplifies
as well as the procedure to derive the ML estimates. Although, this
was previously described by [20], we were able to derive a number
of important results: First, the ML estimate always exists and is
unique. Second, it has the intuitive interpretation of being the
parameter vector under which the observed are the expected
prevalences for the distinguishable lineages, i.e., the observation is
the expectation, if the ML estimate is the true parameter vector.

Third, the recursion to compute the ML estimate for 7 reduced
from a multi- to a one-dimensional recursion, which just depends
on the number of samples N and the observed prevalences. The
ML estimates for the lineages frequencies are explicit functions of
2. Fourth, the recursion for 2 converges (at least) from every initial
value g > 2 Convergence is monotonically, at quadratic rate, and
typically occurs within a few iterations. Besides the obvious
computational advantages provided of our results their actual
foremost importance is that they justify the ML approach. Using
an ML estimates is only appropriate if it has a significantly higher
probability than distant alternative parameter choices, which is
difficult to evaluate in a multi-dimensional space. However, the
form of the ML estimate here - particularly because the lineages

prevalences depend continuously on 4 - indicates that the
observation will have significantly lower probability under distant
alternative parameter choices. The method worked well for the
three malaria datasets to which it was applied, and gave similar
results when applied to different independent microsatellite loci.
Although, our results justify the ML approach, it is nevertheless
of fundamental importance to provide confidence intervals (Cls).
We reported here on asymptotic and profile-likelihood-based Cls
for all parameters. Asymptotic Cls are either based on the
observed or the expected Fisher information, which under the
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CPD coincide. Explicit formulas for the CIs for all involved
parameters were derived. Profile-likelihood based Cls were
already emphasized by [20]. However, it was important to note
that they can actually be derived at low numerical costs by using
the method of Lagrange multiplies. This reduces the numerical
effort to the same magnitude as for the ML estimate. Assuming the
CPD, we proved that the CI for the parameter ;1, yielding the
estimate for the MOI, is uniquely defined. The confidence bounds
are derived by a two-dimension recursion, which converges locally
at quadratic rate. Both kinds of CIs gave meaningful results for the
three data sets to which we applied the methods and they agree
well. Although the asymptotic Cls are easier to derive, we suggest
to use the profile-likelihood-based Cls if sample size is low and/or
the ML estimate for 4 is small for the reasons discussed in the
application section. Although, we discussed Cls for the linages’
frequencies, these are somewhat less interesting, unless one focuses
on the prevalence of a particular linage. Otherwise one should
derive confidence regions on the simplex for the lineage
frequencies, which is done as outlined, but numerically more
demanding.

To test the ML estimate against other parameter choices
typically three statistical tests are used, the likelihood-ratio, the
Score, and the Wald test. The latter two are based on the
asymptotic Cls, while the likelihood-ratio test builds upon the
profile-likelihood-based CIs. Motivated by our intention to apply
the methods to malaria we focused on using these tests to compare
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Table 3. See description of Table 1 but for the Venezuela data set.

locus lower bound ef.e_‘l upper bound 2(Lp-Lq) d.f.

J3 N/A 1 N/A N/A N/A
N/A N/A

J6 N/A 1 N/A N/A N/A
N/A N/A

U6 N/A 1 N/A N/A N/A
N/A N/A

L4 N/A 1 N/A N/A N/A
N/A N/A

us 0.974273 1.02745 1.08251 8.32780 8
1.00156 1.12327

K6 0.971082 1.03104 1.09339 8.06610 3
1.00176 1.13908

L1 0.984526 1.04242 1.10251 0.00000 2
1.00703 1.13188

c4 0.973367 1.02863 1.08592 9.79400 3
1.00163 1.1273

b3 0.99278 1.06223 1.13479 3.66900 4
1.01538 1.16345

fr13 0.981231 1.05152 1.12504 0.20579 3
1.00852 1.16137

ps6 0.98346 1.04538 1.1098 0.00000 2
1.00752 1.14139

ps7 0.978848 1.02256 1.06754 1.01430 4
1.00128 1.10032

N/A indicates that that the method is not applicable (cf. Analysis, section 6).

doi:10.1371/journal.pone.0097899.t003

estimates for the parameter A Namely, several genetic markers
characterizing linages are typically available (e.g., several micro-
satellite markers), to all of which the methods are applicable. While

the true parameter A is of course the same for all markers, the ML
estimates obtained from them will differ. It is therefore important

to test whether these estimates differ significantly. The parameter Y
changes on temporal and spatial scales. An obvious question is,
whether MOI changes over time (e.g. before and after the
implementation of control measures) or varies across endemic
regions. Hence, it is important to test for significant differences in
estimates for /.

Not surprisingly all tests described perform equally well as they
are asymptotically equivalent. However, as in the case of CIs we
suggest to use the likelthood-ratio test if sample size is small or the
parameters compared are small. If interested in p-values additional
effort is required for the likelihood-ratio test, because a two-
dimensional iteration needs to be performed. However, numeri-
cally this is only as demanding as obtaining the Cls. Because the
test statistics for the Score and Wald tests can be derived, it is easy
to derive p-values in these cases. For each of these two tests we
provided three alternative variants, which all worked almost
equally well in the provided examples. We should point out that it
was our intention to indicate only how tests for the parameters can
be constructed. With the usual approaches one could compare
multiple parameters at the same time, including the information of
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all these markers. This however, exceeds both our intention and
the scope of this article. Finally, as a justification for using the
CPD, which simplifies the method to a great extent, we
summarized the test suggested by [20]. Although the test will be
uninformative if many lineages are present it provides a
justification for the approach. Of note, the CPD is an intuitive
assumption if infections are relatively rare events. This does not
relate with the overall prevalence but rather with how high the
observed incidence is in a given population in terms of the time
scale required for the pathogen to complete its transmission cycle.
Such relationship is hard to establish without complex simulations
but it is worth noting that there could be biologic scenarios
(particular pathogens or epidemiologic settings) where this
assumption does not hold. Thus, it is advisable to check whether
the CPD assumption is violated using the tests for the model fit
proposed in this investigation. In our case of study, we observe
robust estimates across very different epidemiologic settings.
Overall, the methods developed here can be used to compare
groups under different exposures, different manifestations of disease,
groups of patients that have different genotypes (e.g. sickle cell or
any other hemoglobinopathies associated with protection), or the
efficacy of a given vaccine. Biologically, this method assumes that
the rate of evolution of the marker used is “low” relative to the time
of the infection. That is, there is a “numerable” set of lineages that
can be estimated and no variants are generated during the time
scale of one infection. Thus, it is not suitable for pathogens such as
HIV or any other hypervariable virus. The second assumption is
that the set of markers used to detect and characterize the MOI are
effectively neutral, so they are not linked to genes under selection.
Thus, the loci cannot be associated with antigens or drug resistance.
As presented, each loci is considered independent, which is a typical
assumption of genotyping base approximations used in molecular
epidemiology. We also want to emphasize that this MOI estimate
depends on the number of detectable lineages given a laboratory
method. Thus, results from different markers such SNPs or
microsatellites are expected to differ as a function of their differences
In mutation rates and mode of evolution. One could actually
calculate the fit of individual loci and then exclude potential outliers
if there is any biological reason to do so (e.g. microsatellites under
different evolutionary models where one is hyper-variable or non-
variable when compared with others). The method is sensitive
enough to detect differences in MOI under different epidemiologic
settings as indicated by the analyses of empirical data. Whereas this
is not per se a “genomic’ method, in the sense that is not designed to
estimate MOI directly from reads generated from next generation
sequence (NGS) data, it can do so from a given set of SNPs or
microsatellites detected by using NGS. Whereas the method was
originally intended for applications to malaria, it can be applied to
other parasitic or microbial diseases where the assumptions are not
violated. E.g. variation on the VN'TRs in a multi-clonal infection of
Mycobacterium tuberculosis. Unlike empirical approaches where
simply alleles are counted and then averaged, the proposed ML
method provides a robust and computationally efficient statistical
framework that can be integrated in epidemiological investigations.

Analysis

1 The Model
1.1 Background. Here, Q; given by (1) is explicitly derived
under the assumption that k,, is given by the CPD (2). Namely,
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where in the derivations the condition iy =1 indicates that the

product is taken over all non-zero components of i, corresponding
to the alleles found in a sample with allele configuration i.

1.2 Log-Likelihood. Assuming that the number of lineages
infecting a host follows the CPD (2), the log-likelihood (3) simplifies

to

1 n » )
— — . Pl e
L=L(/p)= Ei n; loge) lkl_Il(e 1)

=—Nlog(e"—1)+ Y m » ixlog(e”k—1)
i k=1

=—Nlog(e—1)+ ZNl‘log(e‘pkfl)
k=1

where

E in;
ie{0,1}"

Ni= E iy =
f

is the number of samples that contain allele Aj. Notably,

n
Z Ny =N with equality only if all samples are single infections.
k=1
1.3 Proof of Remark 1. The proof of Remark 1 is as follows.
Proof of Remark 1. First, note that

. ek —1
lim —
-0 et —1

=Dk -

Moreover, using de I'Hospitals rule we see that

Im?)L—hmZNklog —(N ZNk)log(e —1)

= ZNkpk—(N ZN/() hm log(e —1)=—

k=1
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n
because N < ZNk (note that this holds also true if py=0 for

some k). This proves that A=0 is not a maximum likelihood

estimate, which is quite intuitive.

]

1.4 Derivatives of the log-likelihood. Assuming the CPD
(2) the log-likelihood function is given by (4) and the derivatives of

(5) are hence straightforwardly calculated to be

G NG o
g/[: =1- ip,- (39¢)

and since L does not depend on f
% =0. (39)

The entries of the Hessian matrix (7), i.e., the second derivatives

of A, given by (5), are calculated to be

A2 2 Vi n 2 Inw
0°A  0°L e pie’’k
=2 =N—u N N~ (40a
0ir 82 (e’ —1)? k; “en—1y (402)
2 2 2 2 D b
ﬂaA:(’?A:AaL:ﬂéL:Nk e 1P (40m)
0.0py ~ Opidi  02dpx  OpidA ek —1 ek —1
PN PL  —Npilek
Ci=g=—Kr (40c)
o g (eMr—1)
A2 2
oA 0°L
— = == 0 fork#j, 40d
dpkOp;  Oprlp; / (40d)
A A
S P — 1 fork#, 40e
B~ 3P J (40¢)
PN A
=0, (40f)

opoL.  0i0B
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’A
— =0. (40g)
op
2 Proofs of the main results
2.1 Existence and uniqueness of the ML estimate. First,

the result showing existence and uniqueness of the ML estimate in
the generic case is proven.

Proof of Result 1. Assume A#0, as this cannot be the ML
estimate according to Remark 1. Equating (39b) to zero yields

Je'he
P ei;/?’ 1= p for all k. Substituting this into (39a) and setting the
A
equation to zero yields f=N i T Therefore, we obtain
Je _ e
K1~ N1 ™
1 Ny —a
PkZ*EIOg(I*W(I*E ”)) (41)

proving the last assertion. Hence, it remains to prove the

statements for L.
By wusing (41)

" 1< N,
1= Zl’k =— jZlOg<1 — —k(l —ef'l)), which is equivalent
k=1 k=1 N

to

and equating (39¢) to we obtain

zero,

(42)

N N L
f()M).—)Hr;log(l y (e ))_0.

Therefore, the ML estimate is a solution of (42). Straightforward
calculation gives

N _;
—0e 4

FO=1=3 g
- Tra—eh

and

Nk
N Ne-

_ &(1 —e"l))

f1G)= Z

k=1

(

Note that, f(0)=0 and f(O)_l—Z]]vv

k=1

<0, because

n
ZNk >N. Hence, f(1)<0 near zero. Note further that
k=1
/llim f(2)=00. Hence, f(A)=0 has at least one positive solution.
)
Since, Ni <N for at least one k, f”(4)>0, implying that f(4) is
strictly convex for 2>0. Because f is strictly convex there can be
at most one positive solution A of f(1)=0. Moreover, f is strictly

monotonically increasing for >
The solution can be found by a Newton method. Because f(1) is

strictly convex and monotonically increasing for 4 > 4, the Newton
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method converges monotonically to the solution A. Moreover,
because f is continuous, the rate of convergence is at least

S )

ields (9) completes the
fo 7 "

proof. O
The special case, in which only single infections occur, is

quadratic. Noting that 4,41 =4,—

summarized by Remark 2. It can be proven as follows.

Proof of Remark 2. Examining the proof of Result 1 yields that
that the ML estimate is any positive root of f (1) = 0. In the present case
f(0)=,"(0)=0. However, since N; <N must hold for at least one k,
f s stll strictly convex. This implies that f(4) >0 for all 2>0. Hence,
no maximum likelihood estimate with 4> 0 exists.

Moreover, since

A—> 0

lim L= lim > Nilogek —1e —1—(N—>_ Ny)log (e’ —1)
= k=1

=zn:Nklog1—0=—oo

the ML estimate can only be attained at A=0.
In the limit A—0, one obtains, as in the proof of Remark 1,

lim L= lim Z Ny logpi,

A—0 A—0

Particularly, the likelihood
O

In the other non-generic situation, every lineage is found in all
samples, which is described in Remark 3 and can be proven as
follows.

Proof of Remark 3. The proof of Result 1 yields
f(A)=4(1—n). Hence, f(A)=0 has no positive solution, and
hence no ML estimate with >0 exists. Clearly, Remark 1 states
that A=0 is also not an ML estimate.

In this case the log-likelihood function simplifies to

N
which is maximized at Pk=Wk.

function is finite in this case.

L(Z,p)= lim —Nlog (e)“— 1+ ZNlog(e)‘f’k 1
J— o0 —

— Nlog(e* —I)Zpk—l- ZNlog(e)pk—l)
k=1 k=1

NZlog

1 — ek

—NZIOg P

Taking the limit A— 0 yields

l—e %
(I—e=7y%

/lpk

_ZNlog hx(l—e Vi

n
=> Nlogl=0
k=1

Jim LG.p)= Jim ) Nlog
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Since L=0 implies that the likelihood is one, this limit case,
which is - of note - independent of the allele-frequency
distribution, is the maximum likelihood. O

Remark 4 states that the expected number of samples
containing a given lineage equals the observed number of samples
containing this allele if the ML estimate is the true parameter. The
proof is as follows.

Proof of Remark 4. The maximum likelihood estimate
) 0Pk

satisfies VA(0,) =0. Equating (39b) to zero yields Ny Ape

=
for all k. Substituting this into (39a) and setting the equation to
)t
Zero yields =N g/li Therefore, we obtain
Je" e 1—e =%
keil’i—l = ﬁ or NkzNﬁ- Hence, it remains

to be shown that Ny =EN; holds.
In the following we will use that Q,-=[E%. To simplify the

notation assume k=n. Hence,

Z inn,-) = Z Iy IEI’Z,‘ =

ie{0,1}™\{0} ie{0,1}"

Z H (e; Pj— 'l

te{O 1}

EN, =[E(

> NG

ie{0,1}"

( eﬂpn

) > H (e — 1)

ie{0,1"— 1/

1@@“—U(%@"1—1)

+ > 1_[(e)’” f’)

ie{0,1}'— 2/
(elpn l)e/l.pn 1 Z H (e/p j-

ie{0,1}"— 2/

et —1

Z H(elp/ )i

ie{0,1}"— 2/

Successively repeating the last step gives

n—1

N ; 1p;
EN,= (1) [T e
—1 j=1
_ N e w_ N e —1 ,
e—1 e j=i er—1 e
1—e~%n
T -t

Since the alleles can be arbitrarily labeled, we obtain
1 —e "k

ENy =N ——-
k l—e %"~

(43)

The proof is completed by noting that EL is obtained from (4)
by replacing Ny with ENy.
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2.2 Profile likelihood based confidence intervals. The
existence sand uniqueness of the profile-likelihood-based confi-
dence intervals are proven as follows.

Proof of Result 2. The proof consists of several parts.

n

Part A: Exustence in the generic case. We first assume ZNk >N
k=1

and Nj #N for at least one k and prove the CI’s existence.
oA
The CI’s bounds satisfy (12). The equations o =0, yield
"k Pk
'B:Nk)“iempk 7 or

1 Ni
pr=—=log( 1— ,
A B

n
which implies that > N4 must hold for all k. Since, Z =1,
k=1
arrives

(44)

by the

Ny
//; ). Thus, for fixed 4 the Lagrange

summing  up above at

Y
—=)» log(1—
=1

multiplier f is a zero of the function

expression  one

1¢ Ni A
g(p=1+ z;log(l - 7) (45)
Its derivative is given by
GB= 13 0 (46)
‘ )“ﬁk:1i |
Ny

Hence, g is strictly monotonically increasing in f, and
consequently has at most one zero f(4). Note that
lim g;(f)=—o0 and llm 2,(f)=1. Hence, g;()=0 has
p— maxNM
exactly one solution (4). Furthcrmorc, according to the implicit-
function theorem, f(4) is a continuously differentiable function of

A

The likelihood function (4) can be rewritten as

L(M')——NZM log (¢/ —1)+NZ “log (e7k — 1)

(47)
(m_m
—NZI N
Note that
(¥ (1=~ nyt
ek —1)N —e Pk)N
: — lim oD
Jim e = fm e (1—e— 7Yk
1 if Ny=N
1o if Ny <N.
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Since Ny <N for at least one k, it follows that

lim L(Ap)=—o0 (48)

for any arbitrary but fixed allele-frequency vector p. Moreover, the
proof of Remark 1 reveals that

lim Z(4,p) = — o0 (49)

2, let L(2,B(0) :

Now, for any

B=PB(A).
Next,

lim L(Z,B(%))= — 0.
L= 0

First, assume lina L(2,p(A))# —oo. Hence, there exists a
lim 7,=0 but lim L(Z,,B(%n)) # — o0.

;‘-m 5
generality,

= L(A,p) with p given by (44) with

we  show  indirectly  that ;in(l) L(Z,p(A)=

sequence (4,), with

that for a

Without

Hence, 34> —o0 such

T L)) = A.
lim L(4,,p(4,))=A. Let p, be the corresponding sequence of
n—oo

subsequence

of

loss

allele-frequency vectors. Since the simplex is compact, there exists
a convergent subsequence p, —p. Because L is continuous, it
follows that ﬁiné L(4,p)=A> — 0, contradicting (48).

Analogously it is shown that lim L(4,(4))= — .
L= 0

Since L(j.,j))—l*>0, P(Z) as well as L are continuous, and
%in(l) L(LPA)—TI" = lim L(,pA)—I"=— there

exist

Al <;1<),2, such that (4;,(4;),p) is a solution of (12), where p is
given by (44). This proves the existence of the CI’s bounds.

Part B: Uniqueness in the generic case. Next, the uniqueness of the
confidence intervals is proven. Assume two values 4j <Ay with
L(21,p(A))—=1I"=L(22,p(22))—I"=0. Since L(Z,H(2)) is continu-

ously differentiable the mean value theorem implies that there
dL - -

—,(/1 p(A)=0. Application of the chain
aPk(ﬁ(@)

exists A <;1</12 with
rule lelds o (/1 ﬁ()))— = (/L B+ Z o (; By
By definition of f(4), —(/l,ﬁ(/l))=ﬁ(/1) holds.
aPk(ﬂ(}))

the relation

Hence, G 00 = T (LB + ) Z

= G+ p0) —; P

L 0 oL
= 5 (BN + BUA) 57 1= 7 (). Thus,

0= %(Z,ﬁ(?{)): %(i,ﬁ(i)): %(1,13),~ where p is given by
(44) with f= B(4). This implies that (1,p,f(4)) is a zero of (39), or,
in other words, that 7 is a maximum likelihood estimate. Because
of its uniqueness ;1=;1, and A <2</12. Hence, 1</, < or
A<iy<lgis impossible, and the CI is therefore uniquely defined.

Part C: Existence and uniqueness in the non-generic cases. In the case

n
ZNk:N the same proof holds with obvious modifications. As
k=1

n
(49) is violated and becomes hn{l) L(Ap)= ZNk log px > — 0.
= e
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It follows that at least one solution of (12) exist. The above proof of
uniqueness, implies that this is the only solution.

Similarly, for Ny=N for all k, (48) is violated and becomes
llif(l) L(2,p)=0, from which the existence of exactly one solution

of (12) follows from the same proof as in the generic case.

Part D: Derwation of the CIs in the generic case. Parts A and B reveal
that the bounds of the CI’s bounds are the two solutions ((4,5) and
(Z,B)) of the equations L(/,B) —I* =0 and g;(8) =0, where g;(f) is
given by (45), and L(4,)= L(A,p) with p=p(f) given by (44). A
little algebraic manipulations yields that L(4,f) is given by (16¢).

The solutions can be found by a Newton method. Straightfor-
ward calculation gives

)

a - Nagogt a4
oL—r 1
— 14
B 1%
agi_ 1 1 Nk/l 1
T AZ;IOg(I ﬁ) 74

1 1
= ;U —g(f)— 5 4.

og, 1
op I

where 4= A(A,f) and g;(f) are given by (16¢) and (45) or (16d),
respectively. Hence, the Newton method leads to the following
iteration

OL—I* oL—1I*\""
(it+l>_(l’{1)_ 0 0ﬁ (L_l*)|
Bis B, 08, 0g; g, )b
A ap GaBr)

Due to its relatively simple form, the above matrix can be easily
inverted and the iteration can be rewritten as (16a) and (16b).

The Newton methods converges locally quadratically if the
above matrix is nonsingular in the solutions. Part A of the proof
reveals that these solutions satisfy g;(f)=1, vyielding

% = "iz()L—A). Hence, the matrix simplifies to
A
2
N+ £2A 1y
M= et—1 ) )
1 1
?(i—A) EA
Therefore,
v By
det M = o, e —1 A
a — gA A

PLOS ONE | www.plosone.org
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Y A
Clearly, since 4>0, det M =0 if and only if Nexe ] =p.
According to the proof of Result 1 this condition is only fulfilled at
the unique ML estimate. Hence, det M #0 in (4,f) and .p).

Therefore, the Newton method converges quadratically for any

initial value sufficiently close to the respective solution. O
2.3 Asymptotic confidence intervals.
Proof of Result 3. This proof is slightly more general than
necessary as we will re-use part of it later.
First, consider a matrix M = (m;;) with the following structure

M= (;T g) (50a)

with

a 0 bl bn
A= , B= , and
00 1 ... 1

D=diag(d,, ....d,).

Let Mz(ﬁ’li,-)ij=M71. We aim to derive m1y;. We do so by
inverting M blockwise. Namely,

(A—BD~'BT)~!

M~'=
(—D*‘BT(A—BD*IBT)"

—(A—BD~'BT)~1BD!
D '+D 'BT(4—BD'BT)"'BD!

The formulae applies whenever, d;#0 and the 2 x2 matrix
A—BD™'B" is invertible. Moreover,

A—BD*IBTz(a” a”), (51)
(253 an

n b2 n b
k k

where anl=a— E -, ap=dy = — E -, and day =
=1 =1k

n
1
— E —. Its inverse is given by
= di

1 a —a
(A4—BD~'BT) 1= — ( 2 ‘2).
apax —dp \ —di ap

Hence, the desired quantity #1;; becomes

-1

(> bid 'y

n 2
1 bk k=1

- ~1

m“:(M )11:7: -5

an —aiy/ax o
> 4
k=1

a—
k:ldk

We are now ready to derive the confidence interval given by

(18). To derive (Jy 1(8)),, we first note that (7), (40) and
rearrangement of the parameters imply that the Fisher informa-
tion matrix has the form (50), with
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52 A A
PO op;i.

given by (40), and (J 1(8)),, corresponds to 7y1. Therefore,
n g I Nren ) ek Je*k
Zik:Z (eap,(_l)z Negn 1 onp)
k=1 k=1
w1 )
N e'lpk —1

and consequently

2

(52)

an =
pk eipk n e/lpk ;ka 2
Z ek —1)? (e*Pk — ,;Nk)»—zoelpk—l)
e g 1 & 5 2/1]7/{ )
=—N———— NyePk | 1— .
(" =1y 12,; ' < Pk —1
Moreover,

) -1 )
n n D ipj, -
o s () (o)
=de =\ (e — 1) ek —1 Pk —1

1 <& S’k 1 n 1
=_ 4Pl = =4 Pl
)~2k2::1(e 1)(1 e;"’k—l) ),+j,2 3 4

A k=1
and
n 1 B 1 n (E‘A‘pk—l)z
2= wen
Hence,
Nt 1N 2/lpk) !
N NP 1— +
(e —1) zzk; , ( Pk —1
Us' = | CGbn= e (53)
k=1
/12 n (e/lpk_l)Z

p,
k=1 Nké‘ K

is easy. Namely, exactly the same

Deriving (11;1(:9))11

calculations hold with

52/\ aZA A
a;ﬂ(‘g) b= — a a;(9) and dk—[Eaz(.Q)

a=—E
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By inspecting (40), it becomes clear that all derivations remain

1— — Ak
unchanged with Nj replaced by E Ny =N ﬁ (cf. eq. 33).
This gives
— Né* ; -
- + 2 +n— e’k
(e — 1)2 ) ;LZ ( Z )—
URCONE (tn—Y ey
Ne* /;
i —1))2 "
(e =Di= S e
k=1

NB)' 2 D B
(L 2( +n—Ze )—

— "2
= 1 ,
L(7+2)+n—§ eﬂplx)
n—§ :elpk k=1

which simplifies to

— Ne* 1 1

- +
et—1 | et—1 o
k=1

Substituting the above with 8=39 into (18) - using the fact that

In($)=Jn(9) - yields (20) afier after a little algebraic manipula-
tion.

Uy '), = (54)

(1—eHEN;
N —(1—e)EN;
Substituting this into (54) gives

The identities e”* =1+ follow from (43).

—1

- — Ne* 1
—1 _
Uy D= @17 1+ (_IEN, - (59)
N—(1—eh)EN,,

Substitution of the above evaluated at $ (using the fact that
Ni=ENj) into (18) yields (21) after some rearrangement.

|

Proof of Result 4. To simplify the notation, we first derive the
formulas for the confidence interval of p,. By re-arranging the
parameters as in the proof of Result 3, it is obvious that the matrix
M given by (50) can be used instead of the Fisher information Jy
(or Iy). Particularly, (Mfl)n+2’n+2 =(J];1)n+1§n+1.

We can apply a blockwise inversion formula to M similar as in
the proof of Result 3. Namely,
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Net  —1 =2 p2
a= (= Ly,
et—1"et—1 et —1

M, B\
M=
Bl d,

(Mi—Bid, \BY)™H =My By(dy— B My By b N e
d;'BT (M, —Bid; 'B")™"  (d,— BT M;'B))"! et—1 ek —1""
N2t 1

dy=————.
K=o Tl ek —1

where
y 2 Therefore
A B T >
M1=(BT D), and Bj =(b,, 1,0, ...,0),
Ne* —1 ] P2
with a11=ei_1<ei_1+;eipk_1 -
Ne* "=Letric —1 (1 Dk )2
~ 0 ~ b con by vy | 2 B D
A:a , B= ! l,and ¢ =4 ¢
0 0 1 ... 1 Vel . . {5
D : € - pn -
D:dlag(dla ...,d,1,1). =€;“—1 <€;”—1+2 2 __22:: >’
Clearly,
n—1 lfp n—1
_ _ _ Cl12—— e‘”k—l—/ka n " - ek
(MY, 2042=(dy—BI M 'B))"! Z 7 A2 /122
_ 1
 dy— by —byiiyy — by — iy ) X
e —1 &
ay=— 5 ;Z(elpkfl)
et i

where my; are the elements of M, ' The inverse of M is

calculated exactly as the inverse of M in the proof of Result 3

Namely, we arrive at
Hence,

(ﬁlll 77’112) B 1 ( axn _aIZ)
B R
—dap  dai

mpyp  my aylax —dap,

n—1312 n—1
b v 1 2 n—1
E dan= E Ne AP n—1 1 ;
> d ,and dpy = dk 762—1 ((16@”—1) ( 52 +i2/;epk>

Hence, the desned quantity m“ becomes

| n—1
APn l—p, n-—1 1 ip
. - - - - 2 /Lk
2(1 ezpw1_1)< 2 2 +12k;e

—1
(M~ =
n+2.n+2 2
’ —bzary +2bpayy—a
dn+ n“22 ndj2 —411
a11a22 =41y

2
—bjan+2b,ai —an =

with a1 =a—

desired  quantity (1161(:9))”“,”1

1 l—pn n—l ;
+(€/ -2 F) J) zzel’k>)

To  derive  the
. 02 A 1
(=Ux'yi10s1) we need to set a=—FE—, Eb=
oA
2 A2
— oA and dy=— %. By using (40) and (43) we obtain
Oprdd’ o} _ N (Iont Z o)y 2on(d—pn) 1
T ei—1 (ew )2 " eln — 1 et—1
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Moreover,
anan—aj,=
—1 lfpn n—1 ; n—1 A
(et A e A

2
l—p, n—1 12,
_(_ L2 +Azzepk>

k=1

—1 1—p, n—l i»
z(ei—l“Lz 2 >< Ee’k)
lfpn 2 lipn ”71
Y R ) o) e}
() () (-
1 7n—1
T ei—1 )2

Combining the above yields,

;2 Zw&)

22 W) (1=p)’ pn) '
A

2
717,1022 +2b,a1» —an
dy+ L -
aydax —dyp,

2pu(1—py) 1
1— APy ol s on) _
Nize;' 1 (efpn — 2 (I—n+ Z k)~ el — 1 + o —1

et —1 | etrn—1

ﬁ(l—”+ ;e’ﬁk)—a—pn)z

and finally

(Ilvi'l)n+]4n+] =
—1
21777(1—[%) 1
D
e —1 1 (e’Fn )2(1 n+Ze )- eirn — 1 +e’~—1
N)»ZL’)‘ g/an_l n—1 X )
ka)f(lfpn)

Hence, the bounds of the confidence intervals are given by

1 Jet—1
1__7 -
ot 21\ Ne
n T
_ lpk 2pp(1—py) 1
n e =t —_—
1 (eipn 1)2( + Z ) P — 1 +e;vfl

b _
et =1 S -nt Sy~ (1-p,»
k=1

By replacing n by j, one obtains the confidence interval of p;

given by (22).
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2.4 Testing the Parameters.. Proof of Result 5. The
result is proven by showing that the iteration (29) leads to the
profile-likelihood with 4= 49. The proof of Remark 2 reveals that
the desired values for f§ is the unique zero of g;,(f) given by (45).
The zero can be found using a Newton method. Combining (45)
and (46) yields (29) after a little rearrangement.

O

Remark 6. If Ay and p, (and By) are the true (unknown) parameters,
oA _
ﬁ'iﬂﬂi‘o NN(O,I;LU)VU _Ilu,llol Ilo;o) /lOldX

Hoko
We aim to test only for Ay, so any choice can be made for the true parameter.
However, the  parameters  py occur in  the asymplotic — variance

~1
Tioso = Liam Ly
variance. There are two possibilities. Furst, the true parameter pyy is replaced by

the /)r(y‘ileflikelihnod estimates Py based on Ay and the asymptotic variance by
Lio — Loy 1 o ﬂoll‘ﬂ Here, either the expected or the observed Fisher
information can be used.

Second, both Ay and py can be replaced by the ML estimate (i,j)) In this
case the expected and observed Fisher information coincide.

Proof of Result 6. The remark is proven by explicitly deriving
the test statistic. To simplify the notation we write A and p for Ao
—Jud J (or

IMfIA,,I”;lI,,;M) we can follow the proof of Result 3.

the asymptotic

1Ly, Hence, we need a plug-in estimate for the asymptotic

and p,, respectively. To derive Jj;

From the blockwise inversion formula (51) the relation

1
T —Jud 1J, S 56
oy Y (Jﬁl(‘g))ll ( )

follows immediately, where the denominator on the left-hand side
1s given by the reciprocal of (53).

oL 0A
Noting that —=— obtains

’) 0
oL
a = ,1 + ZNk Ap

the test statistic (31), and writing /10 and p, for 4 and p gives (32).
Of course, (56) also holds if Jy is replaced by Iy, where

given by (39a) one

. Substituting this and (56) in

Iy 1(3))11 is given by (54). Thus, the same reasoning as above
yields (33). O

3 The case /=0
3.1 Log-likelihood. In the limiting case that the true
parameter is A=0 the conditional poison distribution becomes

for m=1,

1
= 57
fom {0 for m>1. (57)

Following the derivations in subsection 4.1, Q; becomes

pr  for
-1

0 else,

i=ek,
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where e; denotes the kth base vector. Hence, the likelihood
function (3) becomes

L=L0.p)=>_ Nilogp. (58)

k=1

This is the limiting case of (3) for A—0. Furthermore, we can
conclude the following.
Remark 7. If the true parameter is o =0, according to (57), an
n

observation X = (N1, . ..,N,) with Z Ni> N is impossible in a sample

k=1

n
of size N. Hence, Z Ni =N with probability one.
k=1
Assume 49 =0 is the true parameter. Then, we can assume

ZNklog for A>0
k=

L(Z.p)= ;
> Nilogpi for =0,
k=1

As mentioned above, the case A=0 is just the continuation of
the likelihood function.

n

Hence, we can define A(Zp.p): =L(L.p)+B(1— Y pi).
k=1

Moreover, the (one-sided) derivatives of the likelihood function

A exist in A=0. We have,

AO.p.p) .. IAUp.P) ., pr—1
G Mg _;Nk 7 (%)
OAO.p.p) _ . OACLp.B) _ Nk
CEOPP) _ fim —B, 59b
Opr is0  Opx Dk 4 (596)
OAOp.B) . OAUPB) .
i = lim i =1 ];pk. (59¢)

The proof is found in the next subsection 6.2.

2 (0,11 )

From (59a) we immediately see that ———— <0. Hence, the

ML estimate A=0 (cf. Remark 2) is a boundary maximum.
However, it is necessary for the asymptotic distributions (11), (17),
(30), and (38) that all derivatives of the likelihood function vanish.
As this is not the case, we can neither derive confidence intervals,

nor test the parameters in the case A=0.
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3.2 Derivatives of the likelihood function.

oAOp.B) . A(Lp, /3) AOp.B) ek —1
2 _lalﬁo E Nj hm log e =)
Applying de IHospitals rule gi hmlo K B
! (] ospitals rule 1Ves
pplying p g limlog 1) =

Hence, successive application of this rule to the above yields

w/\(0,17 B) Z N Pké’}"”‘ (¢ =)= (Pk —1)e’ p(e" = 1)
pr(e? =1’ ek —1
Pk 1
h ZNI” 113(1)1 e Pk 1—e
n A oMk
_ thPk(l e )= e)l )
Pt Kim0l—e Pk —e—7 4 ¢~ AT+
- : pile™" —e™ k)

lim - -
=0 pre~ Pk +e——(1+ pr)e“1+7i)

n _ —A_ 7}‘[71(
_ ZNk lim — pr(e y234 2) 1
= 0 —pre Pk —em i (L py)te PR
n 2 n
Pk — Pk pr—1
=> N = N
k=1 R 2

NOP) _ . NGB
oL or

Note, that the last steps also provcs
Similarly, from (39d)

A—0

INCGp.P) _ lim N Je"k —i
opi is0 K 1 T im0

&
Pk

D AP
. ePk + JprePk
lim N AT
-0 pke/'pk

OA(L N,
Since from (58) M K , one obtains (59b).
P Pi’
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