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Abstract

The number of co-infections of a pathogen (multiplicity of infection or MOI) is a relevant parameter in epidemiology as it
relates to transmission intensity. Notably, such quantities can be built into a metric in the context of disease control and
prevention. Having applications to malaria in mind, we develop here a maximum-likelihood (ML) framework to estimate the
quantities of interest at low computational and no additional costs to study designs or data collection. We show how the
ML estimate for the quantities of interest and corresponding confidence-regions are obtained from multiple genetic loci.
Assuming specifically that infections are rare and independent events, the number of infections per host follows a
conditional Poisson distribution. Under this assumption, we show that a unique ML estimate for the parameter (l)
describing MOI exists which is found by a simple recursion. Moreover, we provide explicit formulas for asymptotic
confidence intervals, and show that profile-likelihood-based confidence intervals exist, which are found by a simple two-
dimensional recursion. Based on the confidence intervals we provide alternative statistical tests for the MOI parameter.
Finally, we illustrate the methods on three malaria data sets. The statistical framework however is not limited to malaria.
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Introduction

Infections are ubiquitous and ecologically complex processes.

Indeed the chain of events conducing to the colonization and

replication of parasites within a host involves many environmental,

physiological, and genetic factors both in the host and the

infectious agent. A common observation in many host-parasite

interactions is that there are multiple genetically distinct lineages of

the pathogen infecting the same individual host [1–3]. Whereas in

some diseases such as malaria, this is considered an important

parameter, in others it is still somehow a neglected aspect that is

just starting to be considered [2].

The observation of multiple genetic variants or multiplicity of

infection (MOI) is indicative of the transmission dynamics since it

allows for the co-transmission of different parasite variants or the

overlap of several genetic variants due to multiple infectious

contacts. Thus, the incidence of MOI or superparasitism per se is

an important metric of exposure [2,4–7]. In addition to its

epidemiological importance, as many other ecological processes

involving genetically distinct individuals, MOI leads to several

outcomes derived from the interactions among lineages. This

process is usually referred to as the intra-host dynamics [3].

During the last two decades, the outcomes of intra-host

dynamics have been the subject of several theoretical and

experimental investigations exploring a broad spectrum of

scenarios. Usually, such studies focus on major effects that

different interconnected factors have in terms of parasite

dispersion (parasite fitness) and/or the elicited manifestations of

disease that may lead to an effect on the host’s fitness [3,8–11].

Furthermore, intra-host dynamics also affect the spread of parasite

lineages with adaptive mutations conferring resistance to antimi-

crobial agents or that allow the evasion of immune and/or

vaccine-mediated protection [12,13]. Under all these circumstanc-

es, following or measuring MOI as a parameter is essential

whenever epidemiological inferences or models involving intra-

host dynamics are formulated.

Although it is possible to control or measure the number of

distinctive parasite lineages in models and experimental settings

(e.g.[14]), a totally different scenario is the one faced by those

studying naturally occurring infections in the context of ecological

and epidemiological investigations [4–6,15,16]. Under such

circumstances, MOI is usually measured by ad hoc metrics that

rely on a set of genetic markers or the observed polymorphism in

one or several genes [2]. The need for an experimental definition

of MOI has generated approaches based on phylogenetic

frameworks (e.g. many viruses) or some form of multi-locus

genotyping [2,17]. Whereas such approximations have been

useful, there is still need for a formal statistical framework that

allows the estimation of the actual number of lineages and other

approximations to MOI that facilitates and/or considers con-

founding factors.

Given the broad spectrum of genetic architectures observed in

parasitic organisms, it is not possible to define a universal

framework of MOI. E.g. HIV accumulates mutations at a rate

that allows for the use of phylogenetic base methods [17]. On the

other hand, eukaryotic parasites such as Plasmodium, Trypanosoma,
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Toxoplasma, and Schistosoma [18,19] and bacteria such as Myco-

bacterium [16] evolve at a rate at which it is possible to determine

a stable number of genetically distinct lineages during the course of

an infection given a set of genetic markers. In this investigation, we

describe a formal statistical framework to estimate MOI that

allows, among other aspects, building formal tests for comparing

groups, e.g., before or after deploying an intervention such as a

vaccine, complicated versus non-complicated cases, populations

with different exposures, among other possibilities.

More specifically, we further develop the maximum-likelihood

framework introduced by [20], which allows to estimate MOI and

prevalences of pathogen lineages from a single genetic marker,

e.g., microsatellite loci. We establish how to compute ML

estimates and confidence intervals (or regions) for all involved

parameters. Based on these, we show how statistical tests can be

constructed to test the parameters. Although, the framework is - in

principle - not restricted to a particular disease or species, we

applied it to malaria by comparing data sets from three endemic

regions with different levels of endemicity.

The philosophy behind the method section’s structure is the

following. We first establish the general methods and then refine

them assuming that the number of co-infections follows a

conditional Poisson distribution. This structure embraces a better

understanding of how to derive particular results for alternative

choices to the Poisson distribution. Moreover, rigorous mathe-

matical proofs are shifted to the appendix. Readers less interested

in these technical details should feel free to skip them.

Methods

We adapt the maximum-likelihood method of [20] to estimate

the average MOI. This approach is fully compatible with the

model of [12,21] which describes the hitchhiking effect associated

with drug resistance in Malaria, for which MOI is a fundamental

quantity. Being able to estimate MOI, the model can be ‘reverse

engineered’ to reconstruct the evolutionary process underlying

drug resistance. By doing so, a formal means is provided to identify

those among the many compounding factors, which can be

influenced to slow-down or prevent the spread of drug resistance

in the course of public health initiatives.

1 Model background
Assume n different ‘lineages’ A1, . . . ,An of a pathogen, e.g., n

alleles at a marker locus (or haplotypes in a non-recombining

region), circulate in a given population. Particularly, we have

neutral markers in mind characterizing linages, so that their

frequencies do not change too rapidly, e.g., due to selection. The n
lineages considered are those that contribute to infection, not new

variants that are generated by mutation inside hosts, but ‘fail’ to

participate in transmission.

Because we identify a pathogen with the allele at the considered

locus, we will use the terms ‘lineage’ and ‘allele’ synonymously.

(We refrain from using the term strain, as we refer here to a

genotypic characterization and the term strain may have different

meanings across pathogens.)

In vector notation, the lineages’ relative frequencies are

p~(p1, . . . ,pn). An individual (host) is infected by m (not necessarily

different) lineages of the pathogen with probability km. The m lineages

are sampled randomly from the pathogen population. Hence, within

an infection, the combination of pathogen linages follows a

multinomial distribution with parameters m and p1, . . . ,pn. Conse-

quently, the probability that mk of the infecting linages carry allele Ak

(m1z . . . zmn~m) is given by P(mDm)~
m

m

� �
pm, where

m~(m1, . . . ,mn),
m

m

� �
: ~

m!

m1! . . . mn!
is a multinomial coefficient,

and pm : ~pm1

1 . . . pmn
n . Clearly, m summarizes the pathogen config-

uration infecting a host.

In practice, m is unknown for a given host. It is possible to

detect which alleles (or lineages) are present in a clinical sample,

but it is difficult to reliably reconstruct m without using next

generation sequencing, a technology that is not practical to use in

many settings. For instance, if only a single allele, say A1, is found

in a clinical sample, the patient might have been infected by just

one parasite lineages (m~1), or co-infected by several lineages

(m~2,3, . . . ), all of which carry allele A1. Hence, it is convenient

to represent an infection (lineages detected in a patient) by a vector

of zeros and ones of length n, referring to the detected alleles

(lineages). Hence, a clinical sample is represented by a vector

i~(i1, . . . ,in)[f0,1gn
\f0g, where ik~1 if Ak is found in the

infection, and otherwise ik~0. In mathematical terms

i~sign m~(sign m1, . . . ,sign mn). (Remember sign 0~0 and

sign x~1 for xw0). Note that the vector ~(0, . . . ,0) is excluded,

which corresponds to no infection. In the following, m will always

denote a vector of nonnegative integers and i a vector of zeros and

ones.

Let m be the multiplicity of infection (MOI) with distribution

km. Because km is unknown in practice, we aim to estimate it from

clinical samples - or rather some summary statistics characterizing

km.

Assume a total of N clinical samples, taken from different hosts

roughly at the same time. We assume that the n lineages A1, . . . An

detected in the samples are all lineages circulating in the

population. (There is no knowledge of undetectable lineages.)

Each clinical sample contains one or more of the n lineages

(alleles). (We assume that lineages that infected the host have not

vanished due to intra-host dynamics, e.g., drug treatments, and

that new lineages have not emerged inside the host, e.g. by

mutation, recombination etc.) A clinical specimen with allelic (or

lineage) configuration i could descend from an infection with

pathogen configuration m as long as sign m~i. Let Qi denote the

expected frequency of clinical specimen with allelic configuration

i. Then,

Qi~
X?
m~DiD

km

X
m:

sign m~i,
DmD~m

m

m

� �
pm , ð1Þ

where the first sum runs over all integers larger than or equal to

DiD : ~i1z . . . zin, as this obviously is the minimum number of

parasite lineages that could have caused the infection. The second

sum runs over all possible configurations m of exactly m parasites

that lead to the allelic configuration i (i.e. sign m~i), and hence

could have potentially infected the host.

It follows, that for a given allele-frequency distribution p, Qi is

determined by the distribution km. If infections with the pathogen

are rare, a natural assumption is that the number of pathogens

infecting a host is Poisson distributed, or more precisely follows a

conditional Poisson distribution (CPD), i.e.,

km~
1

el{1

lm

m!
for m§1: ð2Þ

Of note, this conditions on the fact that each host is infected by

at least one pathogen. The mean value of this distribution is
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m~
lel

el{1
:

Assuming the CPD (2), Qi can explicitly be derived. In Analysis

(subsection 4.1) it is shown that

Qi~
1

el{1
P

n

k~1
(elpk{1)ik :

2 Maximum likelihood
Consider a total of N samples or clinical specimen, ni of which

have allelic configuration i. Hence, N~
X

i

ni , where the sum

runs over all zero-one vectors of length n, i.e,. i[f0,1gn
\f0g (the

case of no infection i.e., i~0~(0, . . . ,0) is excluded).

Since the (natural) likelihood for observing these samples is

P
i

Qni

i , the log-likelihood is given by

L~ logP
i

Q
ni
i ~

X
i

ni log Qi : ð3Þ

Assuming the CPD for the number of lineages infecting a host, it

is shown in Analysis (subsection 4.2) that the log-likelihood

becomes

L~L(l,p)~{N log (el{1)z
Xn

k~1

Nk log (elpk{1), ð4Þ

where Nk~
X

i:ik~1

ni~
X

i[f0,1gn
ikni is the number of samples that

contain allele Ak. The prevalence of allele k is then Nk=N.

Notably,
Xn

k~1

Nk§N with equality if and only if exclusively single-

lineage infections occur. This is one of two special cases that need

to be treated separately. In the other special case all lineages are

found in every infection. These cases are somewhat non-generic.

We shall therefore formulate the following generic assumption.

Assumption 1 Assume that the sum over the alleles’ prevalences is larger

than one, but not all alleles are 100% prevalent. In other words, more than one

lineage is found in at least one infection, i.e.,
Xn

k~1

NkwN and not all lineages

are found in every infection, i.e., Nk=N for at least one k.

Results

In the following l will refer to the parameter of the CPD, or in

the general case, to the parameter (or parameter vector)

summarizing the distribution km. In the latter case l~0 has to

be interpreted as k1~1.

We shall start by deriving the maximum likelihood (ML)

estimates for the parameters of interest. Before we do so, we shall

start by a rather intuitive observation.

Not surprisingly l~0 can never be an ML estimate if multiple

alleles are found in at least one sample, as l~0 implies single

infections only. We summarize this in the following remark which

is proved in Analysis (subsection 4.3).

Remark 1 If at least one sample contains more than one allele, i.e.,Xn

k~1

Nk§N, l~0 is not the maximum likelihood estimate.

To obtain the ML estimate for h~(l,p1, . . . ,pn), (4) needs to be

maximized on the simplex, either using the method of Lagrange

multiplies or by eliminating one of the redundant variables, i.e., by

setting e.g., pn~1{
Xn{1

i~1

pi. When using Lagrange multipliers we

need to find the zeros of the derivatives of

L(h,b)~L(h){b(1{
Xn

i~1

pi) , ð5Þ

i.e., +L~(
LL
Ll

,
LL
Lp1

, . . . ,
LL
Lpn

,
LL
Lb

)~0. The derivatives based on

the conditional Poisson distribution are derived in Analysis

(subsection 4.4). The equations +L(h,b)~0 can be straightfor-

wardly solved by a Newton method, i.e., by iterating

(htz1,btz1)~(ht,bt)z(Dht,Dbt) ,
ð6aÞ

where (Dht, Dbt) is the solution of the system of linear equations

{+L(ht,bt)~H(ht,bt)
:(Dht,Dbt) ð6bÞ

and (h1,b1) is any initial choice of h and b. Here, H(ht,bt) denotes

the (transposed) Hessian matrix evaluated at (ht,bt), i.e.,

H(h,b)~

L2L

Ll2
L2L

Lp1Ll . . . L2L
LpnLl

L2L
LbLl

L2L
LlLp1

L2L

Lp2
1

. . . L2L
LpnLp1

L2L
LbLp1

..

. ..
.

P
..
. ..

.

L2L
LlLpn

L2L
Lp1Lpn

. . . L2L

Lp2
n

L2L
LbLpn

L2L
LlLb

L2L
Lp1Lb . . . L2L

LpnLb
L2L

Lb2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð7Þ

If, in the general case, l is a parameter vector, the derivatives

above have to be interpreted accordingly.

In the case of the conditional Poisson distribution (2) the entries

of the Hessian matrix are derived in Analysis (subsection 4.4).

Clearly, instead of (6) also (htz1,btz1)~(ht,bt){

(H(ht,bt))
{1:+L(ht,bt) can be iterated, which, however, is

numerically less recommendable. Alternative approaches would

be using an iterative least-square algorithm or the EM algorithm

(cf. e.g.[22]).

Of note, in general, an ML estimate does neither necessarily

exist, nor is it unique, not to mention that closed formulas typically

do not exist. Unfortunately, assuming the CPD (2), the ML

estimate indeed cannot be calculated explicitly. However, the
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estimate exists and is unique. Furthermore, although it can be

straightforwardly derived by the above methods, the complexity of

whole procedure can be greatly simplified.

Result 1 Assume the conditional Poisson distribution (2) for km . Under

Assumption 1 there is a unique maximum likelihood estimate

ĥh~(l̂l,p̂p1, . . . ,p̂pn). The first component l̂l is the unique positive solution of

the equation.

lz
Xn

k~1

log (1{
Nk

N
(1{e{l))~0 : ð8Þ

It is found by iterating

ltz1~lt{

ltz
Xn

k~1

log (1{
Nk

N
(1{e{lt ))

1{
Xn

k~1

Nk

Nelt{Nk(elt{1)

, ð9Þ

which converges monotonically and at quadratic rate from any initial value

l1§l̂l.

The maximum likelihood estimates of the allele frequencies are given by

p̂pk~{
1

l̂l
log (1{

Nk

N
(1{e{l̂l)) : ð10Þ

The result is proven in Analysis (subsection 5.1).

For the sake of completeness we shall also consider the instances

in which Assumption 1 is violated. In the first situation, only one

pathogen lineage is found in each infection, i.e., there is no

indication whatsoever of co-infections. The results are summarized

in the following remark which is proven in Analysis (subsection

5.1).

Remark 2 Assume that each sample contains only one allele, i.e.,Xn

k~1

Nk~N. Then the ML estimates are l̂l~0 and p̂pk~
Nk

N
.

In the other non-generic case that all alleles are found in every

sample an ML estimate does not exist, more precisely, it is ?,

implying that – with probability one – all alleles are in every

sample independently of the allele-frequency distribution.

Remark 3 Assume N~Nk for all k. Then the ML estimate is

‘‘l̂l~z?’’ for every allelic distribution.

A proof can be found in Analysis (subsection 5.1).

Of note, the maximum likelihood has an intuitive interpreta-

tion. We summarize this as the following result which is proven in

Analysis (subsection 5.1).

Remark 4 The maximum likelihood estimate ĥh~(l̂l,p̂p1, . . . ,p̂pn) is the

set of parameters for which the observed number of samples containing allele Ak

equals its expectations, i.e.,

Nk~ENk~N
1{e{l̂lp̂pk

1{e{l̂l
:

Hence, the maximum likelihood maximizes the expectation of the log-

likelihood.

1 Confidence intervals from the profile-likelihood

Let ĥh~(l̂l,p̂p1, . . . ,p̂pn) denote the ML estimate. Confidence

intervals can be derived from the profile-likelihood for each

parameter.

We are interested in finding a confidence interval (CI) for l. For

a fixed value of l, the profile likelihood is defined as

L(l) : ~ max
p

L(h)~ max
p

L(l,p)

i.e., as the maximum likelihood taken over the remaining

parameters while keeping the parameter of interest fixed.

Moreover, denote the maximum likelihood by L̂L (clearly

L̂L~ max
l

L(l)). Suppose l0 is the true parameter and L(l0) the

corresponding profile likelihood. Then

2(L̂L{L(l0))*x2
1, ð11Þ

i.e. twice the difference of the maximum likelihood minus the

profile likelihood assuming the true parameter is x2 distributed

with one degree of freedom (cf. e.g. [23], chapter 4). This can be

used to construct confidence intervals for the true parameter l0.

To construct a CI at the (1{a) level, we need to find all l
satisfying

2(L̂L{L(l))ƒc1,1{a ,

i.e., we need to find lƒl satisfying 2(L̂L{L(l))~

2(L̂L{L(l))~c1,1{a, where cn,a denotes a-quantile of the x2

distribution with n degrees of freedom. In other words, the

equation L(l){L̂Lzc1,1{a=2~0 needs to be solved. By definition

of L(l), this means that L l,pð Þ{L̂Lzc1,1{a=2~0 needs to be

solved with respect to (l,p), while simultaneously maximizing

L(l,p) with respect to p. The latter is done using the method of

Lagrange multipliers for fixed l, i.e.,

~LLl(p,b)~L(l,p,b)~L(l,p){b(1{
Xn

i~1

pi) ,

is maximized. This leads to the equations

+~LLl(p,b)~(
LL
Lp1

, . . . ,
LL
Lpn

,
LL
Lb

)~0. Therefore, following [24]

the bound of the confidence intervals are found by solving the

following system of equations

f (l,p,b) : ~

L(l,p){l�

LL(l,p,b)
Lp1

..

.

LL(l,p,b)
Lpn

LL(l,p,b)
Lb

0
BBBBBBBB@

1
CCCCCCCCA

~0 , ð12Þ

where l�~L̂L{c1,1{a

Clearly, f (l,p,b)~0 can be straightforwardly solved by a

Newton method, i.e., by iterating
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(ltz1,ptz1,btz1)~(lt,pt,bt)z(Dlt,Dpt,Dbt) , ð13aÞ

where (Dlt, Dpt , Dbt ) is the solution of the system of linear

equations

{f (lt,pt,bt)~+f (lt,pt,bt)
:(Dl,Dpt,Dbt) ð13bÞ

and (l1, p1,b1) is any initial choice of l, p and b. The derivative

+f(ln,pn,bn) is identical to (7) except for the first line, which needs

to be replaced by

(
LL

Ll
,
LL

Lp1
, . . . ,

LL

Lpn

,
LL

Lb
): ð14Þ

The derivatives of L are given by (39). Hence, +f(lt,pt,bt) is given

by

+f (lt,pt,bt)~

LL
Ll

LL
Lp1

. . .
LL
Lpn

0

L2L

LlLp1

L2L

Lp2
1

. . .
L2L

LpnLp1

L2L

LbLp1

..

. ..
.

P
..
. ..

.

L2L

LlLpn

L2L

Lp1Lpn

. . .
L2L

Lp2
n

L2L

LbLpn

L2L

LlLb

L2L

Lp1Lb
. . .

L2L

LpnLb

L2L

Lb2

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

ð15Þ

where all derivatives are given by (39) and (40).

Again, alternatively (ltz1,ptz1,btz1)~(lt,pt,bt){(+f

(lt,pt,bt))
{1:f (lt,pt,bt) can be iterated, which however requires to

invert the matrix +f (lt,pt,bt) in every iteration step. The

alternatives to the Newton method are again the EM algorithm

or an iterated least-mean-square algorithm.

To obtain the confidence bounds l and l it is necessary to

iterate (13) from two different initial values. Of note, obtaining one

bound for the confidence interval is numerically only as

demanding as obtain the ML estimate.

Confidence intervals for the allele frequencies pi are obtained

similarly by iterating (13) with obvious changes. Namely, the first

component of the function f needs to be replaced by
LL(l,p,b)

Ll
and the (iz1)-th component by L(l,p){l�, i.e., f is the gradient

of L with the derivative with respect to pi replaced by L(l,p){l�.
Consequently +f is identical to (7) with the (iz1)-th component

replaced by (14).

Importantly, existence and uniqueness of the confidence bounds

l and l can be proved under the assumption of the CPD (2).

Moreover, it is possible to significantly reduce the complexity of

the Newton method (13) to find the CI’s bounds. We obtain the

following result, which is proven in Analysis (subsection 5.2).

Result 2 Suppose Assumption 1 holds. If km is given by the conditional

Poisson distribution (2), the confidence interval for l̂l (based on the profile

likelihood) is uniquely defined.

The bounds of the confidence interval (l and l) for l̂l are obtained by

iterating

ltz1~lt(1z
(elt{1)((L{l�)zglt bt)

bt(glt{1)(elt{1)zNltelt ) ð16aÞ

btz1~bt(1z
(L{l�)(elt{1)(Azglt{1){glt (Nlte

lt{Abt(e
lt{1))

A(Nlteltz(elt{1)(glt{1)bt) ) , ð16bÞ

where

A~A(lt,bt)~
1

lt

Xn

k~1

1
bt

Nklt
{1

,

glt~glt btð Þ~1z
1

lt

Xn

k~1

log 1{
Nklt

bt

� �
ð16dÞ

and

L~L(lt,bt)~{N log (elt{1){
Xn

k~1

Nk log (
bt

Nklt

{1): ð16eÞ

There are exactly two possible solutions (l,b) and (l,b). The algorithm is

converging quadratically for any initial values (l1,b1) sufficiently close to the

one of the solutions.

The proof is found in Analysis (subsection 5.2).

Formally, the above result holds true in the non-generic

cases
Xn

k~1

Nk§N and Nk~N. If all samples contain just one

lineage, i.e.,
Xn

k~1

Nk§N, the ML estimate is l̂l~0 and the

confidence interval has the form ½0,l�. If all samples contain all

lineages, i.e., Nk~N the maximum likelihood estimate is

l̂l~? and the confidence interval has the form ½l,z?), hence

it is infinitely large. Although, formally the result still holds, the

asymptotic (11) is no longer true, as discussed in Analysis

(subsection 6), rendering the result inapplicable if Assumption

1 is violated.

2 Asymptotic confidence intervals
As an alternative to the profile likelihood, one can use the

asymptotic normality of the maximum likelihood to construct

confidence intervals. Asymptotically the difference of the

maximum likelihood (h~(l̂l,p̂p)) and the true parameter

(h0~(l̂l0,p0)) is normally distributed. However, it is important

to notice that - unless one eliminates one of the redundant

allele frequencies - the Lagrange multiplier b needs to be

treated like a regular parameter. The corresponding likelihood

function is of course given by (5). Hence, the actual parameters

involved are q̂q~(h,b). The difference of the maximum

likelihood (q̂q) and the true parameter (q̂q0) is asymptotically

distributed according to

(q̂q{q0)*N (0,I{1
N (q̂q)), ð17aÞ
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(q̂q{q0)*N (0,J{1
N (q̂q)) , ð17bÞ

where IN (q̂q)~{E(
L2L

Lq2
)Dq~q̂q is the expected Fisher information

and JN (q̂q)~{
L2L

Lq2
Dq~q̂q is the observed Fisher information (based

on sample size N). The matrix {
L2L

Lq2
Dq~q̂q is the transposed

Hessian matrix given by (7).

The expression (q̂q{q0)*N (0,I{1
N (q̂q)) is the convenient,

although imprecise notation, for (IN (q̂q))
1
2(q̂q{q0)*N (0,II), where

II is the (nz2)-dimensional identity matrix and (IN (q̂q))
1
2 the

symmetric square root of the Fisher information. Namely, any

positive semi-definite, symmetric matrix A (as it is the case of any

covariance matrix, and particularly the Fisher information) has a

spectral decomposition A~ODOT , where O is orthogonal and D
is the diagonal matrix that contains all eigenvalues. These are real

and nonnegative, and the diagonal matrix that contains the square

roots of the eigenvalues is denoted by D
1
2. Hence, by setting

A
1
2~OD

1
2OT , we have A~A

1
2A

1
2.

An often used alternative notation is

ffiffiffiffiffi
N
p

(q̂q{q0)*N (0,I{1(q̂q)),

or

ffiffiffiffiffi
N
p

(q̂q{q0)*N (0,J{1(q̂q))

with I(q̂q)~
1

N
IN (q̂q) and J(q̂q)~

1

N
JN (q̂q).

From (17) the asymptotic distribution of the parameters of

interest q follows immediately by dropping the ‘dummy’ variable b
and the corresponding rows and column in the inverse Fisher

information. Of note, this is not identical to ‘formally’ derive the

inverse Fisher information based on L and h. Namely, it is

important to drive the asymptotic covariance matrix with respect

to L and q.

Since (q̂q{q0)*N (0,J{1
N (q̂q)) the bounds for the (1{a) CI for

l0 are given by

l̂l+z1{a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(J{1

N (q̂q))11

q
ð18Þ

and those for the components of p0 by

p̂pk+z1{a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(J{1

N (q̂q))kz1,kz1

q
: ð19Þ

Here, za denotes the a quantile of the standard normal

distribution.

Of course, when using the expected Fisher information, JN

needs to be replaced by IN . Under the assumption of the

conditional Poisson distribution (2), the second derivatives
L2L

L 2

needed to derive the Fisher information are calculated in Analysis

(subsection 4.4; eq.39). Moreover, evaluated at the maximum

likelihood estimate, Nk~ENk, it is seen that the expected and

observed Fisher information are identical, i.e., J(q̂q)~I(q̂q)~,

when assuming (2).

With some algebraic manipulation it is possible to simplify the

expressions for the confidence intervals assuming the CPD (2).

Result 3 Suppose the number of co-infections follow the conditional

Poisson distribution (2) and that Assumption 1 holds. Then an asymptotic

(1{a)-confidence interval for l̂l is given by

l̂l+
z1{a

2
(el̂l{1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

{Nel̂l(1z el̂l{1

n{
Pn

k~1

e
l̂lp̂pk

)

vuut
: ð20Þ

Alternatively, the following formula, requires just the ML estimate for l

l̂l+
z1{a

2
(el̂l{1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

{Nel̂l 1z 1Pn
k~1

Nk

el̂l(N{Nk){Nk

0
BB@

1
CCA

vuuuuut
ð21Þ

For a proof, see Analysis (subsection 5.3).

In the non-generic case Nk~N for all k, the ML estimate is not

unique, and we have l̂l~z?. Hence, asymptotic CIs make no

sense in this case, neither for l nor for the frequencies pk.

In the case
Xn

k~1

Nk~N, it also impossible to derive CIs as the

asymptotics (17) break down (cf. subsection 6 in Analysis).

Explicit formulas for the CIs of the allele frequencies are

obtained similarly.

Result 4 Under the same assumptions as Result 3, an asymptotic

(1{a)-confidence interval for p̂pj is given by

p̂pj+
z1{a

2

1

l̂l

ffiffiffiffiffiffiffi
el̂l

l̂l{1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

e
l̂lp̂pj {1

z

p̂p2
j

(e
l̂lp̂pj {1)2

1{nz
Pn

k~1
k=j

e
l̂lp̂pk

0
B@

1
CA{

2p̂pj (1{p̂pj )

e
l̂lp̂pj {1

z 1

el̂l{1

1

el̂l{1
1{nz

Pn
k~1
k=j

e
l̂lp̂pk

0
B@

1
CA{(1{p̂pj )2

vuuuuuuuuuuut

ð22Þ

The proof can again be found in Analysis (subsection 5.3).

3 Testing the parameters
In practice, data from several loci is typically available, each of

which yields a different ML estimate or there might be some prior

estimate for the parameters of interest. Depending on particular

properties of the marker loci (mutation rate, allele-frequency

spectrum, biochemical issues in determining motif repeats, etc.)

different marker loci will lead to different ML estimates. Hence, it

is desirable to test whether different estimates are significantly

different. The confidence intervals can be adapted to test the

parameters.
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Clearly, at different marker loci, different alleles will segregate

and the allele-frequency spectra will be very different. Hence, for

the present purpose, it is meaningless to compare the allele

frequencies at different loci. However, the estimate for l should be

consistent, as this parameter is the same for all loci. Consequently,

in the following we will focus on testing l and present three

alternative tests for the null hypothesis H0 : l~l0 vs. the

alternative H1 : l=l0.

3.1 The likelihood-ratio test. The first test is rather

straightforward. Since

2(L̂L{L(l0))*x2
1, ð23Þ

under the null hypothesis l~l0, it is rejected at significance level a
if

2(L̂L{L(l))§c1,1{a:

In other words, we reject the null hypothesis for any l0 that lies

outside the (1{a)-confidence interval of l̂l, which are obtained as

outlined above in ‘‘Confidence intervals from the profile

likelihood’’. Therefore, this test requires no additional numerical

effort if the confidence intervals were already derived.

The corresponding p-value is given by

ð?
2(L̂L{L(l0))

e
{x

2ffiffiffiffiffiffiffiffi
2xp
p dx: ð24Þ

To calculate the p-value, L(l0) needs to be derived first.

Similarly as in section in ‘‘Confidence intervals from the profile

likelihood’’, this leads to the equations +~LLl(p,b)~

(
LL
Lp1

, . . . ,
LL
Lpn

,
LL
Lb

)~0. Therefore, the system of equations

gl0
(p,b) : ~

LL(l0,p,b)

Lp1

..

.

LL(l0,p,b)

Lpn

LL(l0,p,b)

Lb

0
BBBBBBBBBB@

1
CCCCCCCCCCA

~0 ð25Þ

needs to be solved by a Newton method, i.e., by iterating

(ptz1,btz1)~(pt,bt)z(Dpt,Dbt) , ð26aÞ

where (Dpt,Dbt) is the solution of the system of linear equations

{gl0
(pt,bt)~+gl0

(pt,bt)
:(Dpt,Dbt) ð26bÞ

and (p1,b1) is any initial choice of h and b. The derivative

+gl0
(pt,bt) is obtained from (7) by deleting the first row and

column and substituting l~l0, i.e.,

+gl0
(pt,bt)~

L2L

Lp2
1

. . .
L2L

LpnLp1

L2L

LbLp1

..

.
P

..

. ..
.

L2L

Lp1Lpn

. . .
L2L

Lp2
n

L2L

LbLpn

L2L

Lp1Lb
. . .

L2L

LpnLb

L2L

Lb2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

D

(l0,pt ,bt)

ð27Þ

where all derivatives are given by (39) and (40).

Result 5 Suppose Assumption 1 and l0=0 holds. In the case of the

conditional poisson distribution, the p-value under the null hypothesis

H0 : l~l0 is given by (24), where L(l0) is given by (4) with l~l0

and ~p0 given by

~ppk~{
1

l0
log 1{

Nkl0

b

� �
ð28Þ

where b is the solution of (16e) with l~l0 .

The solution b is found by iterating

btz1~bt 1{

1z 1
l0

Xn

k~1

log (1{
Nkl0

bt

)

Xn

k~1

Nk

bt

(1{
Nkl0

bt

){1

0
BBBB@

1
CCCCA: ð29Þ

The proof is presented in Analysis (subsection 5.4).

In case of H0 : l~l0~0, there are two possibilities. IfXn

k~1

NkwN, then L(0,p)~{?. Hence, the null hypothesis is

always rejected. This is clear, because if l0~0 is the true

parameter, it is impossible to observe data X with
Xn

k~1

NkwN (see

Remark 7 in Analysis, subsection 6). However, if
Xn

k~1

Nk~N, then

l̂l~0 and L(0,p)~L̂L, and the null hypothesis is always accepted.

Therefore, in the case of l0~0 the test can still be formally

performed in a meaningful way. However, note that the

asymptotic (23) does not long hold true, as l0~0 does not lie in

the interior of the parameter space.

3.2 The score test. In the following, for any parameter

choice l0, let ~pp0 by the corresponding profile-likelihood estimate,

i.e., ~pp0~ arg max
p[Sn

L(l0,p), where Sn is the (n{1) dimensional

simplex. By using a dummy variable as before, p0 is obtained from

~mm0 : ~(~pp0,~bb0)~ arg max
(p,b)

L(l0,p,b). The Fisher information can

be written as

IN (l0,~mm0)~
Il0l0

Il0~mm0

I~mm0l0
I~mm0~mm0

 !
,

where I~mm0~mm is obtained from the Fisher information with the first

row and column deleted. The definitions of the remaining sub-

matrices follow accordingly.
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A test for the null hypothesis H0 : l~l0 vs. the alternative

H1 : l=l0 is obtained by using the fact that

LL

Ll
Dl0,~mm0

*N(0,Il0l0
{Il0~mm0

I{1
~mm0~mm0

I~mm0l0
) ð30Þ

(cf. Remark 6 in subsection 5.4 of Analysis). The function

T(X)~

LL

Ll
Dl0,~mm0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Il0l0
{Il0~mm0

I{1
~mm0~mm0

I~mm0l0

q ð31Þ

serves as test statistic, where the data is X~(N1, . . . ,,Nn). The test

rejects H0 at the a-level if T(X) 6 [ ½{z1{a
2
,z1{a

2
� The correspond-

ing p-value is 2(1{W(DT(X)D)).
Note that it is legitimate to write L on the left-hand side of (30)

because
LL

Ll
~

LL
Ll

. However, it is nevertheless important to derive

the asymptotic variance from L.

Alternatively, the expected Fisher information I(l0,~mm0) in (30)

and (31) can be replaced by the observed Fisher information

J(l0,~mm0). However, if l0 is not the ML estimate,

I(l0,~mm0)=J(l0,~mm0). As proven Analysis (subsection 5.4), one

obtains for the CPD:

Result 6 Consider the score test for the null hypothesis H0 : l~l0 vs.

the alternative H1 : l=l0 under the assumptions of Result 5. The test

statistic based on the observed Fisher information is

T~
ffiffiffiffiffi
N
p

el0

el0{1
{
Xn

k~1

Nk

N

~ppkel0~ppk

el0~ppk{1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{el0

(el0{1)2
{

1

l2
0

Xn

k~1

Nk

N
el0~ppk 1{

2l0~ppk

el0~ppk {1

� �
z

1

l2
0

(l0zn{
Xn

k~1

el0~ppk )2

N
Xn

k~1

(el0~ppk {1)2

Nkel0~ppk

vuuuuuuuuuuuut

ð32Þ

and that based on the expected Fisher information is

T~
ffiffiffiffiffi
N
p

el0{
Xn

k~1

Nk

N
~ppkel0~ppk

el0{1

el0~ppk {1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
el0 1z el0 {1

n{

Xn

k~1

el0~ppk

0
BBB@

1
CCCA

vuuuuuut

: ð33Þ

The p-values are 2(1{W(DT(X)D)) in either case. The frequencies

p̂p0~(p̂p1, . . . ,p̂pn) are derived as specified in Result 5.

Of note, instead of (30) the ML estimate can be used as

a plug-in estimate for the asymptotic variance, i.e.,

LL

Ll
Dl0,~mm0

*N(0,Il̂ll̂l{Il̂lm̂m0
I{1

m̂m0m̂m0
Im̂m0 l̂l). In this case, it is not necessary

to distinguish between the expected and observed Fisher

information as they coincide (cf. section ‘‘Asymptotic confidence

intervals’’).

In summary one obtains:

Remark 5 Under the assumptions of Result 6, a test statistic for the null

hypothesis H0 : l~l0 vs. the alternative H1 : l=l0 is

T~
ffiffiffiffiffî
NN

p
(el̂l{1)

el0

el0 {1
{
Xn

k~1

Nk

N

~ppkel0~ppk

el0~ppk{1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
el̂l 1z el̂l{1

n̂n{

X̂nn

k~1

el̂lp̂pk

0
BBBB@

1
CCCCA

vuuuuuuut

, ð34Þ

where N̂N and n̂n are sample size and number of alleles, in the data

yielding the estimate l̂l.

The proof is analogously to the one of Result 6.

The test cannot be applied in the special cases
Xn

k~1

Nk~N or

Nk~N for all k, as the asymptotic (30) no longer holds true (cf.

subsection 6 of Analysis).

3.3 The Wald test. A third test for the null hypothesis

H0 : l~l0 is an adaptation of the Wald test for the profile

likelihood. It is based on the same asymptotic properties

that we used to derive confidence intervals namely

(q̂q{q0)*N (0,I{1
N (q̂q)). This is exactly the same as the asymptotic

q̂q{q0*N (0,J{1
N (q̂q)) as JN (q̂q))~IN (q̂q)).

This implies (l̂l{l0)*N (0,(I{1
N (q̂q))11) or

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(I{1

N (q̂q))11

q
(l̂l{l0)*N (0,1). Hence, the test statistic

T(X)~
l̂l{l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(I{1
N (q̂q))11

q

can be used. The p-value is 2(1{W(DT(X)D).
Now, we shall consider again the CPD. An explicit expression

for (I{1
N (q̂q))11 is given by (54). Hence, we obtain:

Result 7 Under the assumptions of Result 5, the Wald test for the null

hypothesis H0 : l~l0 vs. the alternative H1 : l=l0 has the test statistic

T(X)~(l̂l{l0)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{Nel̂l

el̂l{1

1

el̂l{1
z

1

n{
Xn

k~1

el̂lp̂pk

0
BBB@

1
CCCA

vuuuuuut ð35Þ

based on the (expected or observed) Fisher information.

The p-values are 2(1{W(DT(X)D) in either case. Here, l̂l and the

frequencies p̂p0~(p̂p1, . . . ,p̂pn) are derived as specified in Result 1.

Alternatively, if the profile-likelihood estimate based on l0 is

used as a plug-in for the asymptotic variance, one can employ

(q̂q{q0)*N ( ,J{1
N (l0,~mm0)) or (q̂q{q0)*N (0,I{1

N (l0,~mm0)).

In the first case, using (53) implies that the test statistic changes

to
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T(X)~(l̂l{l0)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{Nel0

(el0{1)2
{

1

l2
0

Xn

k~1

Nkel0~ppk 1{
2l0~ppk

el0~ppk {1

� �
z

1

l2
0

(l0zn{
Xn

k~1

el0~ppk )2

Xn

k~1

(el0~ppk{1)2

Nkel0~ppk

vuuuuuuuuuuuut
:ð36Þ

In the second case, (54) implies that the test statistic changes to

T(X)~(l̂l{l0)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{Nel0

el0{1

1

el0{1
z

1

n{
Xn

k~1

el0 p̂pk

0
BBB@

1
CCCA

vuuuuuut : ð37Þ

Also the Wald test cannot be applied in the special casesXn

k~1

Nk~N or Nk~N for all k, as the asymptotic for (q̂q{q0) no

longer holds true (cf. subsection 6 of Analysis).

4 Testing the method
Although - as we have seen - most of the theory works quite

general, assuming a CPD for the number of co-infections permits

to derive explicit results or, at least, reduces the complexity

significantly. However, assuming a CPD might not be justified.

Therefore, it is desirable to have a test for the model’s fit. Namely,

let

LN~
X

i[f0,1gn\f0g
ni log

ni

N

be the likelihood assuming a perfect fit to the data, in which the

expected frequencies of infection with stain configuration i equal

their observed frequencies. In other words, LN is the maximum

likelihood of the saturated model. As there are 2n{1 possible

allelic configurations i infecting a host, LN has 2n{2 degrees of

freedom. The maximum likelihood L̂L~L(l̂l,p̂p) of the reduced

model (assuming the CPD) has n{1 independent allele frequen-

cies and one Poisson parameter. Therefore,

2(LN{L̂L)*x2
2n{n{2 : ð38Þ

Hence, the following test can be used.

Result 8 To test H0: ‘‘the conditional Poisson distribution is justified’’

vs. HA: ‘‘the conditional Poisson distribution is not justified’’, the test-statistic

T(X)~2(LN{L̂L) can be used. The p-value is given by .x2
2n{n{2(T(X))

It should be mentioned that the above test might perform poorly

if the number of lineages or alleles n is large. The reason is that the

x2 distribution has too many degrees of freedom. This might be

the case when using hyper-mutable microsatellite markers with 10

or more alleles found across samples.

Application to data

As an illustration, the methods are applied to three previously-

described data sets [25–27]. Each of which comprises molecular

data from P. falciparum-infected blood samples from endemic areas

with different levels of malaria incidence. For each blood sample,

parasite DNA was extracted and several microsatellite markers

assayed.

1 Preliminary remarks
It is important to note beforehand that only (selectively) neutral

markers should be included in the analysis. Namely, loci linked to

others that are targets of selection (e.g., mdr1, crt, dhfr, dhps in P.

falciparum that are associated with selection for drug resistance) will

have skewed allele-frequency distribution. Hence, using these

markers might lead to artifacts and severe misinferences. In

practice, a marker located on a chromosome not carrying a

strongly selected gene (e.g. resistance-conferring gene), can be

regarded to be neutral. Moreover, clinical samples from groups

that will be compared need to consider confounding effects such as

differences in treatment polices, control interventions, and

changing transmission intensities (e.g., a group should not contain

samples from two time points during which treatment policies

changed). By not considering such effects, the estimates of MOI

would be inappropriate. For these reasons, we only used parts of

the available data sets.

2 Data description
The first data set emerged from a longitudinal study conducted

in Asembo Bay, a hyper-endemic region in Kenya, and was

described in [27]. We included five (neutral) microsatellites on

chromosome 2 and four (neutral) markers on chromosome 3.

Additionally, we included two markers on chromosome 8, quite

close to dhfr, which are common to all three data sets and meet

Assumption 1. Only blood samples collected in the first study year

(mid 1993 to mid 1994) were included, resulting in 42 blood

samples.

The second data set described in [26] is from a study from

Yaoundé, Cameroon, a region of intermediate/high transmission.

Besides the two markers on chromosome 8 mentioned above, we

included all eight available (neutral) microsatellite markers on

chromosomes 2 and 3 from all 331 blood samples (data of one of

the 332 original samples was unavailable).

The third data set is from Bolivar State, Venezuela, a region of

low transmission. It was described in [25] and consists of 97 blood

samples. Due to the low transmission intensities, for most markers

each blood samples contains only one allele, violating Assumption

1. We included all markers that met Assumption 1 as well as all

available neutral markers. Particularly, we included four on

chromosome 2 and three on chromosome 3, two markers on

chromosome 8 and one on chromosome 4, which are sufficiently

distant from respectively dhps and dhfr to be considered neutral,

and the two makers on chromosome 4, which were also included

in the other data sets. All 97 blood samples were used.

3 Results
The results are summarized in Figures 1 and 2 and Tables 1–3.

In all cases, the test for the model fit (cf. Result 8) justified the

assumption of the CPD (cf. Tables 1–3). This is important because

the three locations exhibit different transmission intensities. In all

three regions, the ML estimates l̂l or rather the mean MOI,

l̂lel̂l

el̂l{1
, obtained from different marker loci are fairly consistent.
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As expected, most variation in the estimates is observed in Kenya

because of the low sample size. Moreover, the transmission

intensities are stronger, which leads to more variation in allele-

frequency spectra among marker loci, resulting in more variation

among the ML estimates.

From Figure 1 it is apparent that the estimates for MOI are

highest in Kenya, followed by Cameroon, whereas they are very

low in Venezuela. This is summarized in Figure 2 showing that the

average ML estimates across the regions differ by several standard

deviations.

The 95% profile-likelihood CIs for
l̂lel̂l

el̂l{1
, given by

½ lel

el{1
,

lel

el{1
�, are reasonably large for the data sets from

Cameroon and Venezuela (cf. Figure 1). However, due to the

relatively small sample size, they are much less informative for the

Kenya dataset.

The asymptotic confidence intervals agree well with the profile-

likelihood CIs (cf. Figure 1 and Tables 1–3). This is particularly

true for Cameroon, as expected because of the large sample size.

The profile-likelihood CIs from the Kenya and Venezuela data are

asymmetric while, the asymptotic CIs are - by definition -

symmetric (however, the transformation x.
xex

ex{1
results in some

asymmetry). (Note that, unlike profile-likelihood-based intervals,

asymptotic CIs are not transformation respecting, i.e.,

½ lel

el{1
,

lel

el{1
� is the transformed CI of l̂l, not the CI of

l̂lel̂l

el̂l{1
.)

In relative terms, this is more pronounced in Venezuela than in

the Kenya data set. The reason is that the ML estimates (l̂l) from

the Venezuela data are close to zero, i.e., the boundary of the

parameter range. This results in a very skewed likelihood function,

yielding quite asymmetric profile-likelihood CIs. On the contrary,

in Kenya, the ML estimates are rather large, and the likelihood

function tends to be symmetric around its maximum.

Furthermore, we tested for pairwise differences between the

estimates based on different marker loci. Tables 4–6 report the p-

values for the likelihood-ratio, the Score, and the Wald test for the

three regions. In all data sets, all tests perform equally well. There

are some discrepancies, mainly due to the above mentioned

skewness of the likelihood function. In the case of a skewed

likelihood function, the likelihood-ratio test is the most preferable,

because it accounts for the skewness.

Tables 7–9 compare the three versions of the Score test, while

Tables 10–12 compare those for the Wald test. The results are

fairly consistent. However, the versions given by eqs. 34, 37 and 36

of the Score and Wald tests, respectively tend to be most

inconsistent with the other tests, especially the likelihood-ratio test.

The reason is that these use the roughest approximations.

Overall, the methods perform well for all data sets and provide

meaningful results. However, the statistical tests also yielded

Figure 1. Shown are the ML estimates
l̂lel̂l

el̂l{1
(dots) and their

respective profile-likelihood-based (blue) and asymptotic
(green) CIs for the data from Kenya (A), Cameroon (B) and
Venezuela (C) for several microsatellite markers each.
doi:10.1371/journal.pone.0097899.g001

Figure 2. Average ML estimates by region. Averages are the
arithmetic mean of the ML estimates + 2 standard deviations derived
from the microsatellite loci, which are common to all data sets,
including (blue) and excluding (green) locus L1, which appears to be
hyper-mutable in Kenya and Cameroon.
doi:10.1371/journal.pone.0097899.g002
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significant differences in some of the pairwise comparisons of the

various l estimates in each region (Tables 4–12). The allele

frequencies differ of course but all are based on the same true

parameter l. If the estimates for l are significantly different, some

of them cannot be trusted. This can have various reasons. First, it

can be a type I error. However, this occurs only with small

probability if the CIs are well calibrated, i.e., their nominal

coverage (1{a) is close to the actual coverage. Asymptotic CIs and

tests based on them (Wald, Score) will be more affected than

profile-likelihood-based intervals, because the former are inher-

ently forced to be symmetric. This is particularly true if the

estimates for l are close to zero. To quantify this effect, and to

suggest heuristic methods to recalibrate the CIs, a systematic

numerical robustness study of the approach is planned. Prelim-

inary investigations, however, have shown that particularly the

profile-likelihood-based CIs are well calibrated.

Second, the tests are designed to compare the ML estimate

based on the data with a value l0, which has to be interpreted as

prior knowledge. Strictly speaking, it is not meant to be estimated

from data itself, or at least data which is available. A test designed

to compare two estimates, should incorporate information from

both data sets (data from both markers). A standard approach to

resolve this is as follows. One could calculate the product of the

maximum likelihood from both markers and compare it with the

maximum likelihood of both markers conditioned on equality of l.

This however would require much more numerical effort than the

tests here. Note further, that the structure of the data does not

allow to perform a permutation test, because the allele-frequency

distributions are expected to be different. This is true for two

different marker loci in the same endemic region as well as for the

same marker in two different populations.

Third, the model assumptions might be violated, i.e., the

underlying Poisson distribution might not be correct. This can

again be quantified in the coarse of a robustness study.

Fourth, the allele-frequency spectra of two different marker loci

is very different, and the method might be sensitive to this. For

instance strong skewness in the data distributions might bias the

estimates. This is obviously the case if one marker shows no

variation at all. Moreover, the number of different allele at

different markers is very different, which results in very different

probabilities of the ML estimates. These issues again need to be

investigated in a numerical study.

Fifth, some STR markers tend to be hyper-mutable. As a result,

not just the frequency distribution might be more problematic, but

it is also more challenging to correctly identify the tandem repeat

numbers. Hence, for hyper-mutable markers the data might have

very bad quality. In our examples the marker labelled L1 appears

to be hyper-mutable.

Because of all these possible reasons, it would be pre-mature to

suggest a heuristic on how to decide, which estimates can be

trusted the most. A systematic numerical follow-up study is

planned to investigate all these possibilities in detail to provide

suggestions on the criteria upon which the data is chosen.

Table 1. Estimates for each locus of the data set from Kenya.

locus lower bound
lel̂l

el̂l{1
upper bound 2(LN–L1) d.f.

U7 1.00194 1.03409 1.15244 6.40471 9

0.968395 1.10265

L5 1.21506 1.38975 1.64696 67.8528 15

1.18622 1.61235

J3 1.16387 1.32208 1.56625 44.993 16

1.1331 1.52876

J6 1.13457 1.27344 1.49108 58.3296 15

1.10558 1.45595

U6 1.15044 1.29506 1.51735 65.1444 14

1.12211 1.48319

L4 1.18509 1.34319 1.57899 89.2578 18

1.15735 1.54568

U5 1.16453 1.31318 1.53811 76.1215 20

1.13692 1.50489

K6 1.31334 1.51443 1.7943 134.024 26

1.28687 1.76291

L1 1.3654 1.59303 1.90742 87.4142 16

1.33699 1.87367

c4 1.15248 1.30977 1.55585 15.9715 7

1.12049 1.51705

b3 1.06529 1.16656 1.34475 34.7327 16

1.03537 1.30777

Each row shows, locus name, lower profile-likelihood (top) and asymptotic (bottom) confidence bound, ML estimate, upper profile-likelihood (top) and asymptotic
(bottom) confidence bound. For the confidence, bounds a = 0.05 was assumed. Moreover, the test statistic for the fit of the CPD (2) is shown as well as the
corresponding degrees of freedom. In all cases, the outcomes are not significant, suggesting that the assumption of the CPD is justified.
doi:10.1371/journal.pone.0097899.t001
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Discussion

The number of genetically distinct lineages co-infecting a host -

commonly referred to as ‘‘multiplicity of infection’’ (MOI) - is a

key quantity in epidemiology. First, it relates with transmission

intensity since it provides a metric for the number of secondary

infections after a primary infection; assuming that the lineages

circulating are identifiable (e.g. secondary infections within a

clonal outbreak simply cannot be traceable). Second, it measures

the possibility of genetic exchange among those lineages as

determined by the genetic system of the pathogen in question.

Finally, if phenotypic differences are associated with those

lineages, MOI could lead to very complex dynamics driven by

natural selection.

Measuring MOI is desirable in a variety of infectious diseases,

but - in many instances - only feasible if it can be measured at low

cost and with a reasonable effort. Optimally it should fit into

standard study designs and should be easily computable with

whatever genotyping data can be collected from clinical

specimens. In order to meet these goals, we further developed

the maximum-likelihood (ML) method originally proposed by [20]

and applied it to three malaria datasets as examples.

From a total of N samples (e.g. blood samples), the number of

genetically distinguishable lineages present in each host are

recorded. From the resulting data, assuming that hosts are

infected randomly by those lineages according to their prevalence,

we derived the likelihood function. If infections with the pathogen

are rare events, a natural choice for the number of co-infecting

lineages is a conditional Poisson distribution (CPD). This

distribution comes with the appealing feature that it is character-

ized by a single parameter l̂l, whose transform
l̂lel̂l

el̂l{1
is the

average MOI. Assuming a CPD, the likelihood function simplifies

as well as the procedure to derive the ML estimates. Although, this

was previously described by [20], we were able to derive a number

of important results: First, the ML estimate always exists and is

unique. Second, it has the intuitive interpretation of being the

parameter vector under which the observed are the expected

prevalences for the distinguishable lineages, i.e., the observation is

the expectation, if the ML estimate is the true parameter vector.

Third, the recursion to compute the ML estimate for l̂l reduced

from a multi- to a one-dimensional recursion, which just depends

on the number of samples N and the observed prevalences. The

ML estimates for the lineages frequencies are explicit functions of

l̂l. Fourth, the recursion for l̂l converges (at least) from every initial

value l0wl̂l. Convergence is monotonically, at quadratic rate, and

typically occurs within a few iterations. Besides the obvious

computational advantages provided of our results their actual

foremost importance is that they justify the ML approach. Using

an ML estimates is only appropriate if it has a significantly higher

probability than distant alternative parameter choices, which is

difficult to evaluate in a multi-dimensional space. However, the

form of the ML estimate here - particularly because the lineages

prevalences depend continuously on l̂l - indicates that the

observation will have significantly lower probability under distant

alternative parameter choices. The method worked well for the

three malaria datasets to which it was applied, and gave similar

results when applied to different independent microsatellite loci.

Although, our results justify the ML approach, it is nevertheless

of fundamental importance to provide confidence intervals (CIs).

We reported here on asymptotic and profile-likelihood-based CIs

for all parameters. Asymptotic CIs are either based on the

observed or the expected Fisher information, which under the

Table 2. See description of Table 1 but for the Cameroon data set.

locus lower bound
lel

el{1
upper bound 2(LN–L1) d.f.

L5 1.12239 1.17804 1.23538 165.239 27

1.12754 1.24098

J3 1.11596 1.17407 1.23404 105.218 26

1.12171 1.24032

J6 1.15263 1.21385 1.27704 178.18 25

1.15774 1.28258

U6 1.17975 1.23815 1.29829 270.763 32

1.18389 1.30274

L4 1.17469 1.24032 1.30817 222.664 29

1.17986 1.31378

U5 1.18476 1.25169 1.32089 195.916 24

1.18987 1.32643

K6 1.18436 1.24819 1.31408 294.437 40

1.18908 1.31919

L1 1.28997 1.36794 1.44861 332.781 40

1.29451 1.45349

c4 1.08125 1.20363 1.33427 0.958866 9

1.10312 1.36155

b3 1.1223 1.18418 1.24816 75.4321 27

1.12849 1.255

doi:10.1371/journal.pone.0097899.t002
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CPD coincide. Explicit formulas for the CIs for all involved

parameters were derived. Profile-likelihood based CIs were

already emphasized by [20]. However, it was important to note

that they can actually be derived at low numerical costs by using

the method of Lagrange multiplies. This reduces the numerical

effort to the same magnitude as for the ML estimate. Assuming the

CPD, we proved that the CI for the parameter l̂l, yielding the

estimate for the MOI, is uniquely defined. The confidence bounds

are derived by a two-dimension recursion, which converges locally

at quadratic rate. Both kinds of CIs gave meaningful results for the

three data sets to which we applied the methods and they agree

well. Although the asymptotic CIs are easier to derive, we suggest

to use the profile-likelihood-based CIs if sample size is low and/or

the ML estimate for l̂l is small for the reasons discussed in the

application section. Although, we discussed CIs for the linages’

frequencies, these are somewhat less interesting, unless one focuses

on the prevalence of a particular linage. Otherwise one should

derive confidence regions on the simplex for the lineage

frequencies, which is done as outlined, but numerically more

demanding.

To test the ML estimate against other parameter choices

typically three statistical tests are used, the likelihood-ratio, the

Score, and the Wald test. The latter two are based on the

asymptotic CIs, while the likelihood-ratio test builds upon the

profile-likelihood-based CIs. Motivated by our intention to apply

the methods to malaria we focused on using these tests to compare

estimates for the parameter l̂l. Namely, several genetic markers

characterizing linages are typically available (e.g., several micro-

satellite markers), to all of which the methods are applicable. While

the true parameter l̂l is of course the same for all markers, the ML

estimates obtained from them will differ. It is therefore important

to test whether these estimates differ significantly. The parameter l̂l
changes on temporal and spatial scales. An obvious question is,

whether MOI changes over time (e.g. before and after the

implementation of control measures) or varies across endemic

regions. Hence, it is important to test for significant differences in

estimates for l̂l.

Not surprisingly all tests described perform equally well as they

are asymptotically equivalent. However, as in the case of CIs we

suggest to use the likelihood-ratio test if sample size is small or the

parameters compared are small. If interested in p-values additional

effort is required for the likelihood-ratio test, because a two-

dimensional iteration needs to be performed. However, numeri-

cally this is only as demanding as obtaining the CIs. Because the

test statistics for the Score and Wald tests can be derived, it is easy

to derive p-values in these cases. For each of these two tests we

provided three alternative variants, which all worked almost

equally well in the provided examples. We should point out that it

was our intention to indicate only how tests for the parameters can

be constructed. With the usual approaches one could compare

multiple parameters at the same time, including the information of

Table 3. See description of Table 1 but for the Venezuela data set.

locus lower bound
lel

el{1
upper bound 2(LN–L1) d.f.

J3 N/A 1 N/A N/A N/A

N/A N/A

J6 N/A 1 N/A N/A N/A

N/A N/A

U6 N/A 1 N/A N/A N/A

N/A N/A

L4 N/A 1 N/A N/A N/A

N/A N/A

U5 0.974273 1.02745 1.08251 8.32780 8

1.00156 1.12327

K6 0.971082 1.03104 1.09339 8.06610 3

1.00176 1.13908

L1 0.984526 1.04242 1.10251 0.00000 2

1.00703 1.13188

c4 0.973367 1.02863 1.08592 9.79400 3

1.00163 1.1273

b3 0.99278 1.06223 1.13479 3.66900 4

1.01538 1.16345

fr13 0.981231 1.05152 1.12504 0.20579 3

1.00852 1.16137

ps6 0.98346 1.04538 1.1098 0.00000 2

1.00752 1.14139

ps7 0.978848 1.02256 1.06754 1.01430 4

1.00128 1.10032

N/A indicates that that the method is not applicable (cf. Analysis, section 6).
doi:10.1371/journal.pone.0097899.t003
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all these markers. This however, exceeds both our intention and

the scope of this article. Finally, as a justification for using the

CPD, which simplifies the method to a great extent, we

summarized the test suggested by [20]. Although the test will be

uninformative if many lineages are present it provides a

justification for the approach. Of note, the CPD is an intuitive

assumption if infections are relatively rare events. This does not

relate with the overall prevalence but rather with how high the

observed incidence is in a given population in terms of the time

scale required for the pathogen to complete its transmission cycle.

Such relationship is hard to establish without complex simulations

but it is worth noting that there could be biologic scenarios

(particular pathogens or epidemiologic settings) where this

assumption does not hold. Thus, it is advisable to check whether

the CPD assumption is violated using the tests for the model fit

proposed in this investigation. In our case of study, we observe

robust estimates across very different epidemiologic settings.

Overall, the methods developed here can be used to compare

groups under different exposures, different manifestations of disease,

groups of patients that have different genotypes (e.g. sickle cell or

any other hemoglobinopathies associated with protection), or the

efficacy of a given vaccine. Biologically, this method assumes that

the rate of evolution of the marker used is ‘‘low’’ relative to the time

of the infection. That is, there is a ‘‘numerable’’ set of lineages that

can be estimated and no variants are generated during the time

scale of one infection. Thus, it is not suitable for pathogens such as

HIV or any other hypervariable virus. The second assumption is

that the set of markers used to detect and characterize the MOI are

effectively neutral, so they are not linked to genes under selection.

Thus, the loci cannot be associated with antigens or drug resistance.

As presented, each loci is considered independent, which is a typical

assumption of genotyping base approximations used in molecular

epidemiology. We also want to emphasize that this MOI estimate

depends on the number of detectable lineages given a laboratory

method. Thus, results from different markers such SNPs or

microsatellites are expected to differ as a function of their differences

in mutation rates and mode of evolution. One could actually

calculate the fit of individual loci and then exclude potential outliers

if there is any biological reason to do so (e.g. microsatellites under

different evolutionary models where one is hyper-variable or non-

variable when compared with others). The method is sensitive

enough to detect differences in MOI under different epidemiologic

settings as indicated by the analyses of empirical data. Whereas this

is not per se a ‘‘genomic’’ method, in the sense that is not designed to

estimate MOI directly from reads generated from next generation

sequence (NGS) data, it can do so from a given set of SNPs or

microsatellites detected by using NGS. Whereas the method was

originally intended for applications to malaria, it can be applied to

other parasitic or microbial diseases where the assumptions are not

violated. E.g. variation on the VNTRs in a multi-clonal infection of

Mycobacterium tuberculosis. Unlike empirical approaches where

simply alleles are counted and then averaged, the proposed ML

method provides a robust and computationally efficient statistical

framework that can be integrated in epidemiological investigations.

Analysis

1 The Model
1.1 Background. Here, Qi given by (1) is explicitly derived

under the assumption that km is given by the CPD (2). Namely,

Qi~
X?
m~DiD

1

el{1

lm
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X
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n
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(elpk{1)ik ,

where in the derivations the condition ik~1 indicates that the

product is taken over all non-zero components of i, corresponding

to the alleles found in a sample with allele configuration i.
1.2 Log-Likelihood. Assuming that the number of lineages

infecting a host follows the CPD (2), the log-likelihood (3) simplifies

to

L~L(l,p)~
X

i

ni log
1

el{1
P

n

k~1
(elpk {1)ik

~{N log (el{1)z
X

i

ni

Xn
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ik log (elpk{1)

~{N log (el{1)z
Xn
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Nk log (elpk{1),

where

Nk~
X

i

ikni~
X

i[f0,1gn
ikni

is the number of samples that contain allele Ak. Notably,Xn

k~1

Nk§N with equality only if all samples are single infections.

1.3 Proof of Remark 1. The proof of Remark 1 is as follows.

Proof of Remark 1. First, note that

lim
l?0

elpk {1

el{1
~pk :

Moreover, using de l’Hospitals rule we see that

lim
l?0

L~ lim
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because Nv

Xn

k~1

Nk (note that this holds also true if pk~0 for

some k). This proves that l~0 is not a maximum likelihood

estimate, which is quite intuitive. %

1.4 Derivatives of the log-likelihood. Assuming the CPD

(2) the log-likelihood function is given by (4) and the derivatives of

(5) are hence straightforwardly calculated to be

LL
Ll
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LL

Ll
~{N

el
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z
Xn
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pkelpk
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LL
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~Nk
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and since L does not depend on b

LL

Lb
~0 : ð39eÞ

The entries of the Hessian matrix (7), i.e., the second derivatives

of L, given by (5), are calculated to be
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2 Proofs of the main results
2.1 Existence and uniqueness of the ML estimate. First,

the result showing existence and uniqueness of the ML estimate in

the generic case is proven.

Proof of Result 1. Assume l=0, as this cannot be the ML

estimate according to Remark 1. Equating (39b) to zero yields

Nk

lelpk

elpk {1
~b for all k. Substituting this into (39a) and setting the

equation to zero yields b~N
lel

el{1
. Therefore, we obtain
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lel

el{1
or
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proving the last assertion. Hence, it remains to prove the

statements for l̂l.

By using (41) and equating (39c) to zero, we obtain

1~
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pk~{
1

l

Xn

k~1
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, which is equivalent

to

f (l) : ~lz
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Therefore, the ML estimate is a solution of (42). Straightforward

calculation gives

f ’(l)~1{
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Note that, f (0)~0 and f ’(0)~1{
Xn

k~1

Nk

N
v0, because

Xn

k~1

NkwN. Hence, f (l)v0 near zero. Note further that

lim
l??

f (l)~?. Hence, f (l)~0 has at least one positive solution.

Since, NkvN for at least one k, f ’’(l)w0, implying that f (l) is

strictly convex for l§0. Because f is strictly convex there can be

at most one positive solution l̂l of f (l)~0. Moreover, f is strictly

monotonically increasing for lwl̂l.

The solution can be found by a Newton method. Because f (l) is

strictly convex and monotonically increasing for l§l̂l, the Newton
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method converges monotonically to the solution l̂l. Moreover,

because f ’’’ is continuous, the rate of convergence is at least

quadratic. Noting that ltz1~lt{
f (lt)

f ’(lt)
yields (9) completes the

proof. %

The special case, in which only single infections occur, is

summarized by Remark 2. It can be proven as follows.

Proof of Remark 2. Examining the proof of Result 1 yields that

that the ML estimate is any positive root of f (l)~0. In the present case

f (0)~f ’(0)~0. However, since NkvN must hold for at least one k,

f is still strictly convex. This implies that f (l)w0 for all lw0. Hence,

no maximum likelihood estimate with lw0 exists.

Moreover, since

lim
l??

L~ lim
l??

Xn

k~1

Nk log elpk{1el{1{(N{
Xn

k~1

Nk) log (el{1)

~
Xn
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Nk log 1{0~{?

the ML estimate can only be attained at l~0.

In the limit l?0, one obtains, as in the proof of Remark 1,

lim
l?0

L~ lim
l?0

Xn

k~1

Nk log pk ,

which is maximized at pk~
Nk

N
. Particularly, the likelihood

function is finite in this case. %

In the other non-generic situation, every lineage is found in all

samples, which is described in Remark 3 and can be proven as

follows.

Proof of Remark 3. The proof of Result 1 yields

f (l)~l(1{n). Hence, f (l)~0 has no positive solution, and

hence no ML estimate with lw0 exists. Clearly, Remark 1 states

that l~0 is also not an ML estimate.

In this case the log-likelihood function simplifies to

L(l,p)~ lim
l??

{N log (el{1)z
Xn

k~1

N log (elpk {1)

~{N log (el{1)
Xn

k~1

pkz
Xn

k~1

N log (elpk{1)

~N
Xn

k~1

log
elpk {1

(el{1)pk
~N

Xn

k~1

log
1{e{lpk

(1{e{l)pk
:

Taking the limit l?? yields

lim
l??

L(l,p)~ lim
l??

Xn

k~1

N log
1{e{lpk

(1{e{l)pk

~
Xn

k~1

N log lim
l??

1{e{lpk

(1{e{l)pk

~
Xn

k~1

N log 1~0 :

Since L~0 implies that the likelihood is one, this limit case,

which is - of note - independent of the allele-frequency

distribution, is the maximum likelihood. %

Remark 4 states that the expected number of samples

containing a given lineage equals the observed number of samples

containing this allele if the ML estimate is the true parameter. The

proof is as follows.

Proof of Remark 4. The maximum likelihood estimate

satisfies +L(h,b)~0. Equating (39b) to zero yields Nk
lelpk

elpk {1
~b

for all k. Substituting this into (39a) and setting the equation to

zero yields b~N
lel

el{1
. Therefore, we obtain

Nk
lelpk

elpk {1
~N

lel

el{1
or Nk~N

1{e{lpk

1{e{l
. Hence, it remains

to be shown that Nk~ENk holds.

In the following we will use that Qi~E
ni

N
. To simplify the

notation assume k~n. Hence,

ENn~E(
X

i[f0,1gn\f0g
inni)~

X
i[f0,1gn

inEni~
X

i[f0,1gn
inNQi

~
N

el{1

X
i[f0,1gn

inP
n

j~1
(elpj {1)ij

~
N

el{1
(elpn{1)

X
i[f0,1gn{1

P
n{1

j~1
(elpj {1)ij

~
N

el{1
(elpn{1)((elpn{1{1)

X
i[f0,1gn{2

P
n{2

j~1
(elpj {1)ij

z
X

i[f0,1gn{2

P
n{2

j~1
(elpj {1)ij)

~
N

el{1
(elpn{1)elpn{1

X
i[f0,1gn{2

P
n{2

j~1
(elpj {1)ij :

Successively repeating the last step gives

ENn~
N

el{1
(elpn{1)P

n{1

j~1
elpj

~
N

el{1

elpn{1

elpn
P

n

j~1
elpj ~

N

el{1

elpn{1

elpn
el

~N
1{e{lpn

1{e{l
:

Since the alleles can be arbitrarily labeled, we obtain

ENk~N
1{e{lpk

1{e{l
, ð43Þ

The proof is completed by noting that EL is obtained from (4)

by replacing Nk with ENk.
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2.2 Profile likelihood based confidence intervals. The

existence sand uniqueness of the profile-likelihood-based confi-

dence intervals are proven as follows.

Proof of Result 2. The proof consists of several parts.

Part A: Existence in the generic case. We first assume
Xn

k~1

NkwN

and Nk=N for at least one k and prove the CI’s existence.

The CI’s bounds satisfy (12). The equations
LL
Lpk

~0, yield

b~Nkl
empk

empk {1
, or

pk~{
1

l
log 1{

Nkl

b

� �
, ð44Þ

which implies that bwNkl must hold for all k. Since,
Xn

k~1

pk~1,

by summing up the above expression one arrives at

1~{
1

l

Xn

k~1

log (1{
Nkl

b
). Thus, for fixed l the Lagrange

multiplier b is a zero of the function

gl(b)~1z
1

l

Xn

k~1

log 1{
Nkl

b

� �
: ð45Þ

Its derivative is given by

g0l(b)~
1

lb

Xn

k~1

1

b

Nkl
{1

w0: ð46Þ

Hence, g is strictly monotonically increasing in b, and

consequently has at most one zero b(l). Note that

lim
b?max

k
Nkl

gl(b)~{? and lim
b??

gl(b)~1. Hence, gl(b)~0 has

exactly one solution b(l). Furthermore, according to the implicit-

function theorem, b(l) is a continuously differentiable function of

l.

The likelihood function (4) can be rewritten as

L(l,p)~{N
Xn

k~1

pk log (el{1)zN
Xn

k~1

Nk

N
log (elpk{1)

~N
Xn

k~1

log
(elpk{1)

Nk
N

(el{1)pk
:

ð47Þ

Note that

lim
l??

(elpk {1)
Nk
N

(el{1)pk
~ lim

l??
elpk (

Nk
N

{1) (1{e{lpk )
Nk
N

(1{e{l)pk

~
1 if Nk~N ,

0 if NkvN :

(

Since NkvN for at least one k, it follows that

lim
l??

L(l,p)~{? ð48Þ

for any arbitrary but fixed allele-frequency vector p. Moreover, the

proof of Remark 1 reveals that

lim
l?0

L(l,p)~{? : ð49Þ

Now, for any l, let L(l,b(l)) : ~L(l,p) with p given by (44) with

b~b(l).

Next, we show indirectly that lim
l?0

L(l,b(l))~

lim
l??

L(l,b(l))~{?.

First, assume lim
l?0

L(l,b(l))= {?. Hence, there exists a

sequence (ln), with lim
n??

ln~0 but lim
n??

L(ln,b(ln))={?.

Hence, A Aw{? such that for a subsequence lnk
,

lim
nk??

L(lnk
,b(lnk

))~A. Without loss of generality,

lim
n??

L(ln,b(ln))~A. Let pn be the corresponding sequence of

allele-frequency vectors. Since the simplex is compact, there exists

a convergent subsequence pnk
?p. Because L is continuous, it

follows that lim
l?0

L(l,p)~Aw{?, contradicting (48).

Analogously it is shown that lim
l??

L(l,b(l))~{?.

Since L(l̂l,p̂p){l�w0, b(l) as well as L are continuous, and

lim
l?0

L(l,b(l)){l�~ lim
l??

L(l,b(l)){l�~{?, there exist

l1vl̂lvl2, such that (li,b(li),p) is a solution of (12), where p is

given by (44). This proves the existence of the CI’s bounds.

Part B: Uniqueness in the generic case. Next, the uniqueness of the

confidence intervals is proven. Assume two values l1vl2 with

L(l1,b(l1)){l�~L(l2,b(l2)){l�~0. Since L(l,b(l)) is continu-

ously differentiable the mean value theorem implies that there

exists l1v
~llvl2 with

dL

dl
(~ll,b(~ll))~0. Application of the chain

rule yields
dL

dl
(l,b(l))~

LL

Ll
(l,b(l))z

Xn

k~1

LL

Lpk

(l,b(l))
Lpk(b(l))

Ll
.

By definition of b(l), the relation
LL

Lpk

(l,b(l))~b(l) holds.

Hence,
dL

dl
(l,b(l))~

LL

Ll
(l,b(l))zb(l)

Xn

k~1

Lpk(b(l))

Ll

~
LL

Ll
(l,b(l))zb(l)

L
Ll

Xn

k~1

pk(b(l))

~
LL

Ll
(l,b(l))zb(l)

L
Ll

1~
LL

Ll
(l,b(l)): Thus,

0~
dL

dl
(~ll,b(~ll))~

LL

dl
(~ll,b(~ll))~

LL

dl
(~ll,~pp), where ~pp is given by

(44) with b~b(~ll). This implies that (~ll,~pp,b(~ll)) is a zero of (39), or,

in other words, that ~ll is a maximum likelihood estimate. Because

of its uniqueness ~ll~l̂l, and l1vl̂lvl2. Hence, l1vl2vl̂l or

l̂lvl1vl2 is impossible, and the CI is therefore uniquely defined.

Part C: Existence and uniqueness in the non-generic cases. In the caseXn

k~1

Nk~N the same proof holds with obvious modifications. As

(49) is violated and becomes lim
l?0

L(l,p)~
Xn

k~1

Nk log pkw{?.
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It follows that at least one solution of (12) exist. The above proof of

uniqueness, implies that this is the only solution.

Similarly, for Nk~N for all k, (48) is violated and becomes

lim
l?0

L(l,p)~0, from which the existence of exactly one solution

of (12) follows from the same proof as in the generic case.

Part D: Derivation of the CIs in the generic case. Parts A and B reveal

that the bounds of the CI’s bounds are the two solutions ((l,b) and

(l,b)) of the equations L(l,b){l�~0 and gl(b)~0, where gl(b) is

given by (45), and L(l,b)~L(l,p) with p~p(b) given by (44). A

little algebraic manipulations yields that L(l,b) is given by (16e).

The solutions can be found by a Newton method. Straightfor-

ward calculation gives

LL{l�

Ll
~{N

el

el{1
z

b

l2
A ,

LL{l�

Lb
~{

1

l
A ,

Lgl

Ll
~{

1

l2

Xn

k~1

log 1{
Nkl

b

� �
{

1

l2
A

~
1

l
(1{gl(b)){

1

l2
A ,

Lgl

Lb
~

1

lb
A ,

where A~A(l,b) and gl(b) are given by (16c) and (45) or (16d),

respectively. Hence, the Newton method leads to the following

iteration

ltz1

btz1

� �
~

lt

bt

� �
{

LL{l�

Ll

LL{l�

Lb

Lgl

Ll

Lgl

Lb

0
BB@

1
CCA

{1D
(lt,bt)

: L{l�

gl

� �
D(lt ,bt) :

Due to its relatively simple form, the above matrix can be easily

inverted and the iteration can be rewritten as (16a) and (16b).

The Newton methods converges locally quadratically if the

above matrix is nonsingular in the solutions. Part A of the proof

reveals that these solutions satisfy gl(b)~1, yielding
Lgl

Ll
~

1

l2
(l{A). Hence, the matrix simplifies to

M~

{N
el

el{1
z

b

l2
A {

1

l
A

1

l2
(l{A)

1

lb
A

0
BB@

1
CCA :

Therefore,

det M~
{1

l2b D N lel

el{1
{

b

l
A A

b{
b

l
A A

D :

Clearly, since Aw0, det M~0 if and only if N
lel

el{1
~b.

According to the proof of Result 1 this condition is only fulfilled at

the unique ML estimate. Hence, det M=0 in (l,b) and (l,b).

Therefore, the Newton method converges quadratically for any

initial value sufficiently close to the respective solution. %

2.3 Asymptotic confidence intervals.

Proof of Result 3. This proof is slightly more general than

necessary as we will re-use part of it later.

First, consider a matrix M~(mij) with the following structure

M~
A B

BT D

� �
ð50aÞ

with

A~
a 0

0 0

� �
, B~

b1 . . . bn

1 . . . 1

� �
, and

D~diag(d1, . . . ,dn) :

Let ~MM~( ~mmij)ij~M{1. We aim to derive ~mm11. We do so by

inverting M blockwise. Namely,

M{1~
(A{BD{1BT ){1 {(A{BD{1BT ){1BD{1

{D{1BT (A{BD{1BT ){1 D{1zD{1BT (A{BD{1BT ){1BD{1

 !
:

The formulae applies whenever, di=0 and the 2|2 matrix

A{BD{1BT is invertible. Moreover,

A{BD{1BT~
a11 a12

a21 a22

� �
, ð51Þ

where a11~a{
Xn

k~1

b2
k

dk

, a12~a21~{
Xn

k~1

bk

dk

, and a22~

{
Xn

k~1

1

dk

. Its inverse is given by

(A{BD{1BT ){1~
1

a11a22{a2
12

a22 {a12

{a12 a11

� �
:

Hence, the desired quantity ~mm11 becomes

~mm11~(M{1)11~
1

a11{a2
12=a22

~ a{
Xn

k~1

b2
k

dk

z

(
Xn

k~1

bkd{1
k )2

Xn

k~1

d{1
k

0
BBBB@

1
CCCCA

{1

:

We are now ready to derive the confidence interval given by

(18). To derive (J{1
N (q̂q))11 we first note that (7), (40) and

rearrangement of the parameters imply that the Fisher informa-

tion matrix has the form (50), with
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a~{
L2L

Ll2
(q) , bk~{

L2L

LpkLl
(q) and dk~{

L2L

Lp2
k

(q)

given by (40), and (J{1
N (q̂q))11 corresponds to ~mm11. Therefore,

Xn

k~1

b2
k

dk

~
Xn

k~1

Nkl2elpk

(elpk{1)2

 !{1

Nk
elpk

elpk{1
(1{

lelpk

elpk {1
)

� �2

~
Xn

k~1

Nk
elpk

l2
1{

lpk

elpk {1

� �2
ð52Þ

and consequently

a11~

{N
el

(el{1)2
z
Xn

k~1

Nk

p2
kelpk

(elpk {1)2
{
Xn

k~1

Nk
elpk

l2
1{

lpk

elpk{1

� �2

~{N
el

(el{1)2
{

1

l2

Xn

k~1

Nkelpk 1{
2lpk

elpk {1

� �
:

Moreover,

Xn

k~1

bk

dk

~
Xn

k~1

Nkl2elpk

(elpk{1)2

 !{1

{Nk
elpk

elpk {1
1{

lpk

elpk{1

� �� �

~{
1

l2

Xn

k~1

(elpk {1) 1{
lelpk

elpk {1

� �
~

1

l
z

n

l2
{

1

l2

Xn

k~1

elpk

and

Xn

k~1

1

dk

~
1

l2

Xn

k~1

(elpk{1)2

Nkelpk
:

Hence,

(J{1
N (q̂q))11~

{Nel

(el{1)2
{

1

l2

Xn

k~1

Nkelpk 1{
2lpk

elpk{1

� �
z

1

l2

(lzn{
Xn

k~1

elpk )2

Xn

k~1

(elpk {1)2

Nkelpk

0
BBBBBBBBB@

1
CCCCCCCCCA

{1

:ð53Þ

Deriving (I{1
N (q̂q))11 is easy. Namely, exactly the same

calculations hold with

a~{E
L2L

Ll2
(q) , bk~{E

L2L

LpkLl
(q) and dk~E

L2L

Lp2
k

(q) :

By inspecting (40), it becomes clear that all derivations remain

unchanged with Nk replaced by E Nk~N
1{e{lpk

1{e{l
(cf. eq. 53).

This gives

(I{1
N (q̂q))11~

{Nel

(el{1)2
z

Nel

(el{1)l2
(2lzn{

Xn

k~1

elpk ){

Nel

(el{1)l2

(lzn{
Xn

k~1

elpk )2

n{
Xn

k~1

elpk

0
BBBBBBBBBB@

1
CCCCCCCCCCA

{1

~

Nel

el{1 ( {1

el{1
z

1

l2
(2lzn{

Xn

k~1

elpk ){

1

l2 (
l2

n{
Xn

k~1

elpk

z2lzn{
Xn

k~1

elpk ))

0
BBBBBBB@

1
CCCCCCCA

{1

,

which simplifies to

(I{1
N (q̂q))11~

{Nel

el{1

1

el{1
z

1

n{
Xn

k~1

elpk

0
BBB@

1
CCCA

0
BBBB@

1
CCCCA

{1

: ð54Þ

Substituting the above with q~q̂q into (18) - using the fact that

IN (q̂q)~JN (q̂q) - yields (20) after after a little algebraic manipula-

tion.

The identities elpk ~1z
(1{el)ENk

N{(1{el)ENk

follow from (43).

Substituting this into (54) gives

(I{1
N (q̂q))11~

{Nel

(el{1)2
1z

1

(1{el)ENk
N{(1{el)ENk

0
B@

1
CA

0
B@

1
CA

{1

: ð55Þ

Substitution of the above evaluated at q̂q (using the fact that

Nk~ENk) into (18) yields (21) after some rearrangement.

Proof of Result 4. To simplify the notation, we first derive the

formulas for the confidence interval of pn. By re-arranging the

parameters as in the proof of Result 3, it is obvious that the matrix

M given by (50) can be used instead of the Fisher information JN

(or IN ). Particularly, (M{1)nz2,nz2~(J{1
N )nz1,nz1.

We can apply a blockwise inversion formula to M similar as in

the proof of Result 3. Namely,
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M{1~
M1 B1

BT
1 dn

 !{1

~
(M1{B1d{1

n BT
1 ){1 {M{1

1 B1(dn{BT
1 M{1

1 B1){1

{d{1
n BT

1 (M1{B1d{1
n BT

1 ){1 (dn{BT
1 M{1

1 B1){1

 !
,

where

M1~
~AA ~BB

~BBT ~DD

 !
, and BT

1 ~(bn, 1, 0, . . . , 0) ,

with

~AA~
a 0

0 0

� �
, ~BB~

b1 . . . bn{1

1 . . . 1

� �
, and

~DD~diag(d1, . . . , dn{1) :

Clearly,

(M{1)nz2,nz2~(dn{BT
1 M{1

1 B1){1

~
1

dn{b2
n ~mm11{bn ~mm12{bn ~mm21{~mm22

,

where ~mmij are the elements of M{1
1 . The inverse of M1 is

calculated exactly as the inverse of M in the proof of Result 3.

Namely, we arrive at

~mm11 ~mm12

~mm21 ~mm22

� �
~

1

a11a22{a2
12

a22 {a12

{a12 a11

� �

with a11~a{
Xn{1

k~1

b2
k

dk

, a12~{
Xn{1

k~1

bk

dk

, and a22~{
Xn{1

k~1

1

dk

.

Hence, the desired quantity ~mm11 becomes

(M{1)nz2,nz2~
1

dnz
{b2

na22z2bna12{a11

a11a22{a2
12

:

To derive the desired quantity (I{1
N (q̂q))nz1,nz1

(~(J{1
N (q̂q))nz1,nz1) we need to set a~{E

L2L

Ll2
, Ebk~

{
L2L

LpkLl
, and dk~{

L2L

Lp2
k

. By using (40) and (43) we obtain

a~
Nel

el{1
(

{1

el{1
z
Xn{1

k~1

p2
k

elpk {1
) ,

bk~{
Nel

el{1
(1{

lpk

elpk{1
),

dk~
Nl2el

el{1

1

elpk{1
:

Therefore,

a11~
Nel

el{1

{1

el{1
z
Xn{1

k~1

p2
k

elpk {1

 !
{

Nel

el{1

Xn{1

k~1

elpk {1

l2
1{

lpk

elpk {1

� �2

~
Nel

el{1

{1

el{1
z2

1{pn

l
z

n{1

l2
{

1

l2

Xn{1

k~1

elpk

 !
,

a12~
1

l2

Xn{1

k~1

elpk {1{lpk~{
1{pn

l
{

n{1

l2
z

1

l2

Xn{1

k~1

elpk ,

a22~{
el{1

Nl2el

Xn{1

k~1

(elpk {1) :

Hence,

{b2
na22z2bna12{a11~

{
Nel

el{1
1{

lpn

elpn{1

� �2

{
n{1

l2
z

1

l2

Xn{1

k~1

elpk

 ! 

{2 1{
lpn

elpn{1

� �
{

1{pn

l
{

n{1

l2
z

1

l2

Xn{1

k~1

elpk

 !

z
1

el{1
{2

1{pn

l
{

n{1

l2
z

1

l2

Xn{1

k~1

elpk

 !
Þ

~
Nel

el{1

p2
n

(elpn{1)2
(1{nz

Xn{1

k~1

elpk ){
2pn(1{pn)

elpn{1
z

1

el{1

 !
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Moreover,

a11a22{a2
12~

{1

el{1
z2

1{pn

l
z

n{1

l2
{

1

l2

Xn{1

k~1

elpk )({
n{1

l2
z

1

l2

Xn{1

k~1

elpk

 !

{ {
1{pn

l
{

n{1

l2
z

1

l2

Xn{1

k~1

elpk

 !2

~
{1

el{1
z2

1{pn

l

� �
{

n{1

l2
z

1

l2

Xn{1

k~1

elpk

 !

{
1{pn

l

� �2

z2
1{pn

l

� �
{

n{1

l2
z

1

l2

Xn{1

k~1

elpk

 !

~
1

el{1
{

n{1

l2
z

1

l2

Xn{1

k~1

elpk

 !
{

(1{pn)2

l2
:

Combining the above yields,

dnz
{b2

na22z2bna12{a11

a11a22{a2
12

~

Nl2el

el{1

1

elpn{1
z

p2
n

(elpn{1)2
(1{nz

Xn{1

k~1

elpk ){
2pn(1{pn)

elpn{1
z

1

el{1

1

el{1
(1{nz

Xn{1

k~1

elpk ){(1{pn)2

0
BBBB@

1
CCCCA

and finally

(I{1
N )nz1,nz1~

el{1

Nl2el

1

elpn {1
z

p2
n

(elpn {1)2
(1{nz

Xn{1

k~1

elpk ){
2pn(1{pn)

elpn {1
z

1

el{1

1

el{1
(1{nz

Xn{1

k~1

elpk ){(1{pn)2

0
BBBB@

1
CCCCA

{1

:

Hence, the bounds of the confidence intervals are given by

p̂pn+
z1{a

2

1

l̂l

ffiffiffiffiffiffiffiffiffiffiffiffi
el̂l{1

Nel̂l

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

el̂lp̂pn{1
z

p̂p2
n

(el̂lp̂pn {1)2
(1{nz

Pn{1

k~1

el̂lp̂pk ){
2p̂pn(1{p̂pn)

el̂lp̂pn {1
z 1

el̂l{1

1

el̂l{1
(1{nz

Pn{1

k~1

el̂lp̂pk ){(1{p̂pn)2

vuuuuuut

:

By replacing n by j, one obtains the confidence interval of p̂pj

given by (22).

%

2.4 Testing the Parameters.. Proof of Result 5. The

result is proven by showing that the iteration (29) leads to the

profile-likelihood with l~l0. The proof of Remark 2 reveals that

the desired values for b is the unique zero of gl0
(b) given by (45).

The zero can be found using a Newton method. Combining (45)

and (46) yields (29) after a little rearrangement.

%

Remark 6. If l0 and p0 (and b0) are the true (unknown) parameters,

the asymptotic
LL
Ll

Dl0,~mm0
*N (0,Il0l0

{Il0m0
I{1

m0m0
Im0l0

) holds.

We aim to test only for l0, so any choice can be made for the true parameter.

However, the parameters p0 occur in the asymptotic variance

Il0l0
{Il0m0

I{1
m0m0

Im0l0
. Hence, we need a plug-in estimate for the asymptotic

variance. There are two possibilities. First, the true parameter p0 is replaced by

the profile-likelihood estimates ~pp0 based on l0 and the asymptotic variance by

Il0l0
{Il0~mm0

I{1
~mm0~mm0

I~mm0l0
. Here, either the expected or the observed Fisher

information can be used.

Second, both l0 and p0 can be replaced by the ML estimate (l̂l,p̂p). In this

case the expected and observed Fisher information coincide.

Proof of Result 6. The remark is proven by explicitly deriving

the test statistic. To simplify the notation we write l and p for l0

and p0, respectively. To derive Jll{JlmJ{1
mm Jml (or

Ill{IlmI{1
mm Iml) we can follow the proof of Result 3.

From the blockwise inversion formula (51) the relation

Jll{JlmJ{1
mm Jml~

1

(J{1
N (q̂q))11

ð56Þ

follows immediately, where the denominator on the left-hand side

is given by the reciprocal of (53).

Noting that
LL

Ll
~

LL
Ll

given by (39a) one obtains

LL

Ll
~{N

el

el{1
z
Xn

k~1

Nk

pkelpk

elpk {1
. Substituting this and (56) in

the test statistic (31), and writing l0 and ~pp0 for l and p gives (32).

Of course, (56) also holds if JN is replaced by IN , where

(I{1
N (q))11 is given by (54). Thus, the same reasoning as above

yields (33). %

3 The case l̂l~0
3.1 Log-likelihood. In the limiting case that the true

parameter is l~0 the conditional poison distribution becomes

km~
1 for m~1,

0 for mw1 :

�
ð57Þ

Following the derivations in subsection 4.1, Q i becomes

Qi~
pk for i~ek ,

0 else ,

�
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where ek denotes the kth base vector. Hence, the likelihood

function (3) becomes

L~L(0,p)~
Xn

k~1

Nk log pk : ð58Þ

This is the limiting case of (3) for l?0. Furthermore, we can

conclude the following.

Remark 7. If the true parameter is l0~0, according to (57), an

observation X~(N1, . . . ,Nn) with
Xn

k~1

NkwN is impossible in a sample

of size N. Hence,
Xn

k~1

Nk~N with probability one.

Assume l0~0 is the true parameter. Then, we can assume

L(l,p)~

Xn

k~1

Nk log
elpk {1

el{1
for lw0

Xn

k~1

Nk log pk for l~0,

8>>>><
>>>>:

As mentioned above, the case l~0 is just the continuation of

the likelihood function.

Hence, we can define L(l,p,b) : ~L(l,p)zb(1{
Xn

k~1

pk).

Moreover, the (one-sided) derivatives of the likelihood function

L exist in l~0. We have,

LL(0,p,b)

Ll
~ lim

l?0

LL(l,p,b)

Ll
~
Xn

k~1

Nk
pk{1

2
, ð59aÞ

LL(0,p,b)

Lpk

~ lim
l?0

LL(l,p,b)

Lpk

~
Nk

pk

{b , ð59bÞ

LL(0,p,b)

Lb
~ lim

l?0

LL(l,p,b)

Lb
~1{

Xn

k~1

pk : ð59cÞ

The proof is found in the next subsection 6.2.

From (59a) we immediately see that
LL(0,p,b)

Ll
v0. Hence, the

ML estimate l̂l~0 (cf. Remark 2) is a boundary maximum.

However, it is necessary for the asymptotic distributions (11), (17),

(30), and (38) that all derivatives of the likelihood function vanish.

As this is not the case, we can neither derive confidence intervals,

nor test the parameters in the case l̂l~0.

3.2 Derivatives of the likelihood function.

LL(0,p,b)

Ll
~ lim

l?0

L(l,p,b){L(0,p,b)

l
~
Xn

k~1

Nk lim
l?0

1

l
log

elpk {1

pk(el{1)

Applying de l’Hospitals rule gives lim
l?0

log
elpk {1

pk(el{1)
~0.

Hence, successive application of this rule to the above yields

LL(0,p,b)

Ll
~
Xn

k~1

Nk lim
l?0

pkelpk (el{1){(elpk {1)el

pk(el{1)2

pk(el{1)

elpk{1

~
Xn

k~1

Nk lim
l?0

pk

1{e{lpk
{

1

1{e{l

~
Xn

k~1

Nk lim
l?0

pk(1{e{l){(1{e{lpk )

1{e{lpk{e{lze{l(1zpk )

~
Xn

k~1

Nk lim
l?0

pk(e{l{e{lpk )

pke{lpkze{l{(1zpk)e{l(1zpk )

~
Xn

k~1

Nk lim
l?0

{pk(e{l{pke{lpk )

{p2
ke{lpk{e{lz(1zpk)2e{l(1zpk)

~
Xn

k~1

Nk

p2
k{pk

2pk

~
Xn

k~1

Nk

pk{1

2
:

Note, that the last steps also proves
LL(0,p,b)

Ll
~ lim

l?0

LL(l,p,b)

Ll
.

Similarly, from (39d)

lim
l?0

LL(l,p,b)

Lpk

~ lim
l?0

Nk
lelpk

elpk{1
~ lim

l?0
Nk

elpk zlpkelpk

pkelpk
~

Nk

pk

:

Since from (58)
LL(l,p,b)

Lpk

~
Nk

pk

, one obtains (59b).
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