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Background: Chronic subdural hematoma (CSDH) is common in elderly

people with a clear or occult traumatic brain injury history. Surgery is a

traditional method to remove the hematomas, but it carries a significant risk

of recurrence and poor outcomes. Non-surgical treatment has been recently

considered e�ective and safe for some patients with CSDH. However, it is

a challenge to speculate which part of patients could obtain benefits from

non-surgical treatment.

Objective: To establish and validate a new predictionmodel of self-absorption

probability with chronic subdural hematoma.

Method: The prediction model was established based on the data from a

randomized clinical trial, which enrolled 196 patients with CSDH from February

2014 to November 2015. The following subjects were extracted: demographic

characteristics, medical history, hematoma characters in imaging at admission,

and clinical assessments. The outcome was self-absorption at the 8th week

after admission. A least absolute shrinkage and selection operator (LASSO)

regression model was implemented for data dimensionality reduction and

feature selection. Multivariable logistic regression was adopted to establish

the model, while the experimental results were presented by nomogram.

Discrimination, calibration, and clinical usefulness were used to evaluate the

performance of the nomogram. A total of 60 consecutive patients were

involved in the external validation, which enrolled in a proof-of-concept

clinical trial from July 2014 to December 2018.

Results: Diabetes mellitus history, hematoma volume at admission, presence

of basal ganglia suppression, presence of septate hematoma, and usage of

atorvastatin were the strongest predictors of self-absorption. The model had

good discrimination [area under the curve (AUC), 0.713 (95% CI, 0.637–0.788)]

and good calibration (p = 0.986). The nomogram in the validation cohort

still had good discrimination [AUC, 0.709 (95% CI, 0.574–0.844)] and good
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calibration (p = 0.441). A decision curve analysis proved that the nomogram

was clinically e�ective.

Conclusions: This prediction model can be used to obtain self-absorption

probability in patients with CSDH, assisting in guiding the choice of therapy,

whether they undergo non-surgical treatment or surgery.

KEYWORDS

chronic subdural hematoma, self-absorption, non-surgical treatment, prediction

model, nomogram

Introduction

Chronic subdural hematoma (CSDH) is common in elderly

people, which is combined with clear or occult traumatic brain

injury (TBI) history (1). Its incidence is 127.1/100,000 among

patients of 80 years or older (2). Traditional treatment has

normally involved surgery to remove the hematomas (3), but

the recurrence rate among high-risk patients is approximate

25.6% (4) and mortality rate among elderly is approximately

24–32% (5). Non-surgical treatment may be more effective and

safer on some patients with CSDH. Recently, we accomplished a

randomized controlled trial (Efficacy of Atorvastatin on Chronic

Subdural Hematoma, ATOCH) (6). The results showed the

hematoma in 76.5% (75/98) of patients with CSDH in the

placebo group would be self-absorption, but the self-absorption

time of different patients varied obviously, from several weeks to

several months. Atorvastatin, an HMG-CoA reductase inhibitor,

could increase the self-absorption rate to 88.8% (87/98), and

shorten the average absorption time. But it is a challenge

to speculate which parts of patients could obtain benefits

from non-surgical treatment. Meanwhile, it would be unsafe

and rewardless for the patients without self-absorption ability

to use non-surgical treatment. Evaluating the self-absorption

ability of different patients with CSDH could guide the choice

of treatment. Based on current knowledge, it is a fact that

no research specified which kind of factors would enable

superior prediction of self-absorption. Therefore, the aim of

this study was to establish and validate a prediction model for

self-absorption probability in patients with chronic subdural

hematoma. On this basis, a more evidence-based approach could

contribute to clinical practice guidance.

Materials and methods

Source of data

All patients had provided written consents before

enrollment. This study re-analyzed the entire database

with the approval of the ethics committee of Tianjin Medical

University General Hospital. The primary cohort of this study

from a randomized controlled trial (ATOCH) (6), which was

gathered from February 2014 to November 2015, was used to

develop the prediction model for self-absorption probability

in patients with CSDH. ATOCH was a randomized clinical

trial of atorvastatin on the absorption effect of hematoma

among 196 individuals with CSDH (169 men and 27 women;

median age, 65 (54.5–75) years; range, 24–89 years). In total,

60 consecutive outpatient CSDHs (45 men and 15 women;

mean age, 66.5 (58.5–75 years; range, 34–89 years) as the

independent validated cohort were enrolled in a proof-of-

concept clinical trial from July 2014 to December 2018 by the

same researchers (7).

We included patients with the following characteristics: no

surgery treatment, first onset of CSDH, and lack of anticoagulant

treatment. The following exclusion criteria was adopted to all

study samples: CSDH caused by cancer, hemopathy, or other

known serious comorbidities, and lack of follow-up at the

8th week.

Clinical data

The following clinical statistics were gathered: age, sex,

history of TBI, history of hypertension, diabetes mellitus (8) and

hyperlipemia, Markwalder grading scale/Glasgow Coma Scale

(MGS-GCS), activities of daily living (9) at admission, and the

use of atorvastatin.

Images acquisition and analysis

CT images were collected with different scanners at each

center and sent electronically to Tianjin Medical University

General Hospital. All the images were uniformly analyzed

by 3 independent neuroradiologists to standardize the

measurements. The following imaging data were record:

hematoma volume (calculated using the Tada formula),

thickness of hematoma, midline shift distance, presence of basal

ganglia compress, hematoma location (unilateral or bilateral

hematoma), and presence of septate hematoma (Figure 1).

Hematoma volume was calculated using the Tada formula and

received the results after an average of three neuroradiologists’
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FIGURE 1

Image examples of the key features of presence of septation (A) and basal ganglia compression (B).

calculations. All patients underwent a follow-up CT scan at 8

weeks after enrollment.

Outcome

Whether hematoma could be self-absorbed without surgery

at the 8th week was the outcome of this prediction model.

Good absorption was defined as hematoma reduction >50%

from baseline hematoma volume. Poor absorption was defined

as hematoma reduction <50% or hematoma enlargement.

Statistical analysis

Comparison between good absorption and
poor absorption group in primary and
validation cohort

Following the evaluation of the normal distribution by

Shapiro–Wilk testing, the data were summarized using the

mean with SD or the median with quartiles as continuous

variables, and the classification variables were summarized using

the frequency and percentage. The comparison between good

absorption and poor absorption groups in the primary and

validation cohorts was analyzed by Student’s unpaired t-test,

Wilcoxon test, or chi-square test. All statistical analyses were

conducted using the SPSS version (SPSS Inc., Chicago, Ill), with

p < 0.05 given statistical meaning.

Feature selection and establishment of an
individualized prediction model

The least absolute shrinkage and selection operator (LASSO)

method (10) was used to choose the most effective predictive

features from the primary dataset. The following features

were selected and analyzed by multivariable logistic regression:

history of diabetes mellitus (8), the use of atorvastatin (drug),

hematoma volume (volume), presence of basal ganglia compress

(compress), and presence of septate hematoma (separate).

Subsequently, a predictive model of CSDH self-absorption was

established based on the multivariable logistic analysis of the

primary cohort. To provide clinicians with a quantitative tool

to predict the probability of individual CSDH self-absorption,

we constructed the nomogram based on the predictive model

in the primary cohorts described above. We have considered

the interaction between hematoma volume and basal ganglia

compress in the nomogram. The LASSO method and the

nomogram were conducted with R software (version 3.3.0), and

multivariable logistic analysis was been analyzed with the help of

SPSS (version 19).

Apparent performance of the nomogram in the
primary cohort

Calibration curves were drawn to evaluate the alignment

of the nomogram by Hosmer–Lemeshow tests (11). A receiver

operating characteristic (ROC) curve was measured to quantify

the discrimination performance of the nomogram (12).
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TABLE 1 Characteristics of patients with chronic subdural hematoma (CSDH) in the primary and validation cohorts.

Characteristic Primary cohort Validation cohort

Good absorption

(n = 130)

Poor absorption

(n = 66)

P Good absorption

(n = 39)

Poor absorption

(n = 21)

P

Age, median (Interquartile range), years 66.0 (54.0–75.0) 64.0 (55.5–74.0) 0.782 70.0 (60.0–75.0) 65.0 (57.0–75.0) 0.394

Gender (male): no. (%) 109 (83.8) 60 (90.9) 0.175 27 (69.2) 18 (85.7) 0.160

CSDH with TBI History: no. (%) 119 (91.5) 58 (87.9) 0.413 33 (84.6) 14 (66.7) 0.200

Hypertension: no. (%) 23 (17.7) 12 (18.2) 0.933 9 (23.1) 8 (38.1) 0.218

Diabetes mellitus: no. (%) 5 (3.8) 8 (12.1) 0.058* 4 (10.3) 4 (19.0) 0.577

Hyperlipidaemia: no. (%) 16 (12.3) 7 (10.6) 0.726 0 (0) 0 (0) NA

Symptoms

Headache: no. (%) 92 (70.8) 44 (66.7) 0.556 28 (71.8) 13 (61.9) 0.432

Weakness: no. (%) 35 (26.9) 25 (37.9) 0.116 11 (28.2) 6 (28.6) 0.976

MGS-GCS score: no. (%) 0.103 0.121

0 1 3 6 1

1 120 55 29 14

2 9 8 4 6

ADL-BI score: median (Interquartile range) 95.0 (88.8–100.0) 95.0 (80.0–100.0) 0.333 100.0 (95.0–100.0) 95.0 (90.0–100.0) 0.103

Usage of atorvastatin: no. (%) 71 (54.6) 27 (40.9) 0.070* 39 (100.0) 21 (100.0) NA

Hematoma volume, median (Interquartile range), ml 59.1 (36.6–86.0) 71.9 (51.1–115.5) 0.003* 60.1 (43.8–70.1) 68.7 (47.3–102.0) 0.032*

Thick of hematoma, median (Interquartile range), mm 15.0 (11.0–19.0) 15.0 (12.0–20.0) 0.542 10.0 (8.0–12.0) 15.0 (10.0–18.0) 0.011*

Midline shift distance, median (Interquartile range), mm 1.0 (0–5.3) 2.0 (0–7.0) 0.508 2.0 (2.0–4.5) 2.0 (4.0–6.0) 0.105

Presence of basal ganglia compress: no. (%) 27 (20.8) 24 (36.4) 0.019* 5 (12.8) 11 (52.4) 0.001*

Hematoma location (unilateral hematoma): no. (%) 99 (76.2) 40 (60.6) 0.024* 31 (79.5) 13 (61.9) 0.142

Presence of septate hematoma: no. (%) 19 (14.6) 4 (6.1) 0.079* 10 (25.6) 2 (9.5) 0.250

*P < 0.05.

Nomograms and calibration curves were conducted with R

software (version 3.3.0), and an ROC curve was performed using

SPSS (version 19).

Independent validation of the nomogram

The validation cohort helped to inspect the performance

of the internally validated nomogram. The predictive model

formed in the primary cohort lends itself to all patients in the

validation cohort and helps to digitalize the total score for every

single patient. The ROC curve and calibration curve were then

performed on the factors of the total score.

Clinical use

A decision curve analysis was managed to evaluate the

clinical effectiveness of the nomogram, which quantified the

net benefits at different threshold probabilities in the primary

cohort (13).

Results

In Table 1, information was stated including the baseline

demographic, clinical, and imaging characteristics between good

absorption and poor absorption groups in the primary and

validation cohorts. The good absorption rate was 66.3 and 65%

in the primary and validation cohorts, respectively. No obvious

difference was found in the baseline characteristics between

two cohorts, either within the good absorption or in the poor

absorption group.

Feature selection and prediction model
establishment

Known predictors, such as baseline volume and drug usage

were associated with greater likelihood of good absorption.

Of these features, 15 potential predictors of 196 patients in

the primary cohort (13:1 ratio, Figure 2) were analyzed by the

LASSO logistic regression model. The LASSO logistic regression

analysis identified 5 independent predictors: history of diabetes

mellitus (8), the use of atorvastatin (drug), hematoma volume

(volume), presence of basal ganglia compress (compress), and

presence of septate hematoma (separate). Incorporating the

independent predictors listed above, the prediction model was

developed by multivariable logistic regression analysis (Table 2)

and presented as the nomogram (Figure 3).

For example, a patient with CSDH has a history of diabetes

mellitus, usage of atorvastatin, 60ml of hematoma volume
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FIGURE 2

Texture feature selection using the least absolute shrinkage and selection operator (LASSO) method. (A) Tuning parameter (λ) selection in the

LASSO model used 10-fold cross-validation via minimum criteria. The binomial deviance was plotted vs. log (Lambda). Dotted vertical lines were

drawn at the optimal values by using the minimum criteria and the 1 standard error of the minimum criteria (the 1-SE criteria). Log (Lambda)

−3.809 was chosen (1-SE criteria) according to 10-fold cross-validation. (B) LASSO coe�cient profiles of the 15 texture features. A coe�cient

profile plot was produced against the log (λ) sequence. Vertical line was drawn at the value selected using a 10-fold cross-validation, where

optimal λ resulted in 5 nonzero coe�cients.

TABLE 2 Risk factors for good self-absorption in patients with CSDH

by multivariable logistic regression.

Intercept and variable β Odds ratio (95% CI) P

Intercept 1.577 <0.001

History of diabetes mellitus

(8)

−1.185 0.306 (0.091–1.028) 0.055

Presence of septate hematoma

(separate)

1.250 3.491 (1.045–11.658) 0.042

Use of atorvastatin (drug) 0.475 1.609 (0.851–3.041) 0.143

Hematoma volume (volume) −0.014 0.986 (0.977–0.996) 0.004

Presence of basal ganglia

compress (compress)

−0.627 0.534 (0.262–1.087) 0.084

without basal ganglia compress and septation. Based on the

nomogram, the point of volume (compress= 0) is about 65, the

point of DM is 0, the point of separate is 0, and the point of drug

is about 8. The total point is 73, indicating that self-absorption is

approximately 60%.

Apparent performance of the nomogram
in the primary cohort

The calibration curve of the nomogram with good

absorption probability showed good consistency between

prediction and observation in the primary cohort (Figure 4A).

The Hosmer–Lemeshow test did not present a significant

difference (p = 0.986), which indicated that the perfect fit

did not deviate. The ROC curve of the prediction nomogram

indicated that the AUC was 0.713 (95% CI, 0.637–0.788) in the

primary cohort.

Independent validation of the nomogram

A good calibration of good absorption probability was

observed in the validation cohort (Figure 4B). No significant

difference could be noticed from the Hosmer–Lemeshow test (p

= 0.441). The ROC curve for the prediction of good absorption

showed that the AUC was 0.709 (95% CI, 0.574–0.844) in the

validation cohort.

Clinical use

The decision curve for the nomogram (Figure 5) showed

that if the threshold of probability was > 40% in one patient,

using this model for predicting good self-absorption brings

more benefits than the assumption that all patients have self-

absorption or no patients have self-absorption. The prediction

model can assist in guiding the choice of therapy, whether to

undergo non-surgical treatment or surgery.

Discussion

A nomogram was established and validated for the

personalized prediction of hematoma self-absorption in
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FIGURE 3

Established nomogram. The nomogram was developed in the primary cohort, with a history of diabetes mellitus (8), the use of atorvastatin

(drug), hematoma volume (volume), presence of basal ganglia compress (compress), and presence of septate hematoma (separate)

incorporated.

FIGURE 4

Calibration curves of the nomogram prediction in each cohort. (A) A calibration curve of the nomogram in the primary cohort. (B) A calibration

curve of the nomogram in the validation cohort. Calibration curves depict the calibration of each model in terms of the agreement between the

predicted probability of self-absorption and observed outcomes of self-absorption. The y-axis represents the actual self-absorption rate. The

x-axis represents the predicted self-absorption probability. The diagonal gray solid line represents a perfect prediction by an ideal model. The

thin black solid line represents the performance of the nomogram, of which a closer fit to the diagonal solid line represents a better prediction.
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FIGURE 5

A decision curve analysis for the nomogram. The y-axis measures the net benefit. The pink line represents the nomogram. The blue line

represents the assumption that all patients have self-absorption. The black line represents the assumption that no patients have self-absorption.

The net benefit was calculated by subtracting the proportion of all patients who are false positive from the proportion who are true positive,

weighting by the relative harm of forgoing treatment compared with the negative consequences of an unnecessary treatment. The decision

curve showed that if the self-absorption probability of a patient >40%, using the nomogram in the current study to predict self-absorption adds

more benefit than either assumption that all patients have self-absorption or assumption that no patients have self-absorption.

patients with CSDH. The primary cohort was a well-designed

multicenter CSDH clinical trial population, which could

present the patients with CSDH in China. The nomogram

incorporated five items: history of diabetes mellitus (8), the

use of atorvastatin (drug), hematoma volume (volume),

presence of basal ganglia compress (compress), and presence

of septate hematoma (separate). We demonstrated that using

an easy-to-use predictive tool (containing five items), CSDH

patients with a high risk of self-absorption could undergo only

conservative treatment.

For examining the predictor-outcome association, the 15

candidate features were eventually reduced to 5 potential

predictors by using the LASSO method to narrow the

regression coefficients. This method went beyond the method

of selecting predictors based on the univariate intensity

associated with the outcome (10). The nomogram that

combined multiple individual features demonstrated adequate

discrimination in the primary cohort (AUC, 0.713), which

was very similar in the validation cohort (AUC, 0.709). Given

that the good absorption was comparable in the two cohorts,

the similar discrimination implied that the nomogram was

robust for prediction and could be applied directly in the

validation cohort.

Although the pathogenesis of CSDH was studied by a

succession of studies, which aspects included pontine vein

avulsion hemorrhage, increased osmolality, hematoma capsule

bleeding, and local hyperfibrinolysis, the pathogenesis and

absorption mechanism of CSDH were not well understood

(14, 15). The amount of inflammatory cytokines and vascular

endothelial growth factor (VEGF) secreted into hematoma,

leading to the proliferation of the immature blood vessels on

the capsule, the damage of vascular endothelial cells, and the

opening of gap junctions. The increased permeability causes

the continuous leakage of circulating substances, resulting

in the gradual hematoma growth (15). Meanwhile, the key

influence factor in the formation process of CSDH may be

the missing of anti-inflammatory and pro-repair components,

such as regulatory T (Treg) cells and endothelial progenitor

cells (EPCs), which lead to the recurrence of “immature

angiogenesis—endothelial cell damage—vascular leakage” on

hematoma walls (14, 16–19). In the formation and development

of CSDH, immunomodulatory abnormalities and decreased
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vascular repair maturation have been confirmed playing a

critical role by related studies (20–22).

It is well-known that diabetes mellitus is a prominent risk

factor for coronary heart disease and stroke (23). Our results

showed that the presence of diabetes mellitus would reduce the

probability of hematoma self-absorption. We considered that

diabetes mellitus might weaken the neovascularization on the

hematoma wall, leading to a gradual increase in hematoma

growth due to continuous leakage greater than absorption.

Similarly, Pang et al. (24) reported that the diabetes mellitus was

related to an increased likelihood of recurrence.

Statins, also known as selective HMG-CoA reductase

inhibitors, have previously been applied to treat hyperlipidemia.

They have been widely used in the treatment of cardiovascular

disease. Currently, some studies had proved that atorvastatin

could promote the absorption of CSDH and prevent the

recurrence of CSDH (25–27). Our previous RCT study, which

was completed by 25 Chinese neurosurgery centers indicated

that the hematoma volume reduction in the atorvastatin group

was 12.55ml more compared with the control group after

low-dose (20 mg/days) and long-term (8 weeks) treatment.

Neurologic symptoms in most patients improved significantly

after drug therapy. The transfer to surgery rate of the

atorvastatin treatment group was also found to be significantly

reduced (6).

The hematoma capsule is very important in which

both bleeding and reabsorption occur. El-Kadi et al. (28)

demonstrated that the larger the CSDH was, the lower the

capsule/volume ratio would appear. Therefore, hematoma

volume is the negative factor for self-absorption. Basal ganglia

compress is accompanied by hematoma volume enlargement, so

their effects are consistent. We have considered the interaction

between hematoma volume and basal ganglia compress in the

nomogram. Conversely, a CSDH with septate hematoma has

a greater surface/volume ratio. It followed that the existence

of septate hematoma was a positive factor for self-absorption,

which was consistent with previously reported results (29).

The most important part of using the nomogram is the

requirement to explain operations clearly based on individual

need. The difficulty we face lies in being unable to capture

the clinical consequences of a particular level of discrimination

or degree of miscalculation (30, 31). Therefore, we assessed

whether the nomogram-assisted decision-making would reduce

unnecessary surgery and further enhance patient prognosis

to confirm clinical utility. At this moment, multi-institutional

prospective validation of the nomogram is very necessary.

But it is difficult to implement due to the heterogeneity of

clinical data collection and CT image acquisition in different

centers. As a result, this study used decision curve analysis.

This new approach pays attention to clinical consequences

according to threshold probabilities, from which a net benefit

can be expressed. The net benefit is calculated by subtracting

the proportion of false positives from the proportion of false

positives and weighted based on the relative harm of false

positives and false negative results (13). In the case of a patient’s

threshold probability of>40%, the decision curve suggested that

the nomogram in the current study could be used to predict

hematoma absorption. This approach added more support than

the hypothesis that all patients had self-absorption or no patients

had self-absorption.

Some limitations should be considered in this paper. First,

to maximize the enrollment of clinical trials (Efficacy of

Atorvastatin on Chronic Subdural Hematoma), which as the

primary cohort, we selected CSDH patients with relatively small

baseline hematoma volume. Hematoma volume is known as

the main influenced factor of hematoma absorption (28), which

was similar in our study. Hence, our results might have bias

because the proportion of good absorption was approximately 3

times more than poor absorption in the primary cohort. Second,

patients in the primary cohort was absent from anticoagulant

drugs, which is a known predictor of hematoma growth (32).

This prediction model was only applied for CSDH patients

without the usage of anticoagulant drugs, while we suggested

that operation was the first choice for CSDH patients with the

usage of anticoagulant drugs after correcting the coagulation

function. Third, this prediction model was developed based on

Chinese patients, so whether it could be used to other races may

need further studies.

In conclusion, this study proposed a nomogram that

combined clinical features and CT image features, which could

be conveniently used to predict the probability of CSDH self-

absorption and reduce unnecessary manipulation.
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