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Adult hippocampal neurogenesis (AHN) has been widely confirmed in mammalian brains.

A growing body of evidence points to the fact that AHN sustains hippocampal-dependent

functions such as learning andmemory. Impaired AHN has been reported in post-mortem

human brain hippocampus of Alzheimer’s disease (AD) and is considered to contribute

to defects in learning and memory. Neurofibrillary tangles (NFTs) and amyloid plaques

are the two key neuropathological hallmarks of AD. NFTs are composed of abnormal

tau proteins accumulating in many brain areas during the progression of the disease,

including in the hippocampus. The physiological role of tau and impact of tau pathology

on AHN is still poorly understood. Modifications in AHN have also been reported in

some tau transgenic and tau-deleted mouse models. We present here a brief review

of advances in the relationship between development of tau pathology and AHN in AD

and what insights have been gained from studies in tau mouse models.
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INTRODUCTION

AD has two neuropathological hallmarks, amyloid plaques, and NFTs. Amyloid plaques are
composed of amyloid ß peptides (1) derived from successive cleavages of amyloid precursor protein
(APP) (2). NFTs are constituted of microtubule-associated protein tau (MAPT) (3). In a family of
neurodegenerative diseases called tauopathies including AD, tau undergoes hyperphosphorylation
and aggregation to develop pathological forms of tau species such as oligomers or highly insoluble
filaments that form NFTs. The levels of NFTs are highly correlated with cognitive decline (4).
Tauopathies include frontotemporal lobar degeneration (FTLD) with tau positive inclusions with
or without gene mutation in MAPT, Pick disease, progressive supranuclear palsy, corticobasal
degeneration, and others (5). In AD brains, tau deposition occurs in a stereotypical manner,
with the hippocampus, limbic structures, brain stem, and the basal nucleus of Meynert being
most affected at the early stages (6). The hippocampus is a crucial brain structure for the
acquisition of new memories and retrieval of older memories. Afferent pathways to the dentate
gyrus (DG) are affected by NFTs developing in the entorhinal cortex (6), and NFTs develop in
the granule cell layer (GCL) (7, 8) in the DG in AD and in some tau transgenic mouse models
(Figures 1A–D). Tau pathology in the DG might play a role in memory impairment. Whereas,
abnormalities in AHN have been extensively investigated in AD mouse models based on APP or
PSEN1/2 familial AD mutations (13, 14), the impact of tau pathology on AHN remains largely
unclear in AD and other tauopathies. We provide here a brief overview of recent advances on
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the relationship between development of tau pathology and AHN
in AD and what insights have been gained from studies in tau
transgenic mouse models.

NORMAL AHN

Since its discovery in mammalian brain in 1965 (15), AHN
has been documented in many species (16–20). In placental
mammals and marsupials, adult neurogenesis is mainly limited
to two areas: the subventricular zone (SVZ) along the lateral
ventricles and the subgranular zone (SGZ) of the dentate gyrus
(DG). AHN is necessary for spatial memory and specific learning
tasks and is related to mood regulation (21, 22).

Neural stem cells found in the SGZ of the hippocampus
generate new neurons for the DG (23). The identity of adult
neural stem cells remains still controversial. Growing evidence
suggests that they have an astrocytic phenotype (24, 25) or
they may be radial glial cells, able to give rise asymmetrically
either to a glial cell or a neuron (26). There are five principal
developmental stages of AHN starting from the radial glia-
like cells, progenitor cells, neuroblast cells, immature neurons,
and finally mature neurons as granular cells (27). These stages
can be identified by specific markers such as GFAP, BLBP,
SOX2, Nestin, Doublecortin (DCX), tau with three-repeats (3R)
or four-repeats (4R) of microtubule-binding repeat domains
(RD), NeuN, and Calbindin (Figure 1E) (23, 28). Newborn
cells can be experimentally traced using exogenous cell tracers
such as thymidine analogs that are incorporated into dividing
cells during DNA synthesis (29). Newborn neurons can be also
identified by other mitotic markers such as Ki67 in combination
with neuronal markers (30). Studies have provided compelling
evidence for the persistence of AHN in humans and non-human
primates (31, 32). There are some contradictory findings pointing
to hardly detectable levels of AHN in human brains due to a
sharp decrease in childhood (33, 34). A breakthrough was made
when a study provided evidence for the birth of ∼700 newborn
neurons a day per one adult human hippocampus by measuring
the concentration of nuclear bomb test-derived 14C in genome
DNA (35). By a similar approach, striatum has also been recently
identified as a neurogenic zone in the adult human brain (36).
Annual turnover rates are estimated as 1.75% of neurons in the
hippocampus and 2.7% in the striatum in the human adult brain
(35, 36). Although observed in other species than human (37, 38),
the role of adult striatal neurogenesis remains largely elusive (39).

Stress, aging, and disease have a negative impact on AHN
(40). On the contrary, AHN can be enhanced in rodents by
lifestyle factors such as environmental enrichment (EE) (41),
physical activity (e.g., running) (42, 43), anti-depressants (44), or
electroconvulsive seizures (45).

TAU PROTEINS. “CANONICAL” AND
“NON-CANONICAL” FUNCTIONS

Tau is a cytosolic protein predominantly expressed in neurons.
Tau has physiological roles, the most studied being the regulation
of the axonal transport and of the cytoskeleton by maintaining

the stability of microtubules (46). HumanMAPT gene is located
on chromosome 17 and contains 16 exons. Exons 2, 3, and 10
are alternatively spliced to give rise to six different isoforms
in the adult human central nervous system (Figure 1F) (47).
Alternative splicing of exon 10 results in generating either
tau with 3R or 4R microtubule-binding sequences in the half
carboxyl domain. 3R and 4R tau isoforms include sequences of
exon 2, exons 2 and 3, or none of them in their amino domain.
Tau regulates axonal microtubule assembly but has also other
functions (48) by interacting with many partners in addition to
microtubules (49, 50). Among other functions, tau is implicated
in pathways regulating synaptic plasticity, cell signaling, and
DNA integrity (51). Tau is also secreted via several pathways
(52), a process that is thought to play a role in the “Prion-like”
propagation of tau pathology (53) but that is not well-understood
in physiological conditions. This multifunctional aspect of tau
might be involved in the regulation of AHN.

DEVELOPMENTAL EVOLUTION OF TAU
PROTEIN EXPRESSION AND ROLE OF TAU
IN AHN

While six isoforms are expressed in adult human brain, only 4R
isoforms are predominantly detected in the mature neurons of
mouse brains. During brain development, only the 0N3R isoform
(fetal isoform) is expressed in human and rodent brains (54, 55).
Owing to the lack of one microtubule-binding domain, 3R tau
isoforms have less affinity for microtubules and consequently
less efficiency to promote microtubule assembly compared to
4R isoforms (56). Expression of 3R tau isoforms is thus related
to plasticity in neuronal development in neonatal stage and in
neurogenesis for dynamic process formation, neurite elongation,
and neuronal polarity (57–59). 3R tau isoform lacking exon
2 and 3 is also expressed in the adult brain in the immature
neurons in the SGZ (60) and can be used as a specific marker to
detect newborn neurons and newly generated axons in the adult
mouse hippocampus (28, 61). The number of cells expressing
3R tau isoforms in the SGZ decreases with age in mice, but
they are still detectable at 12 months (Figure 1G) (12). Tau in
immature neurons in the SGZ shows a higher phosphorylation
seemingly through activated GSK-3 (62), reducing its affinity for
microtubules and providing these cells with a more dynamic
microtubule network during dendritic and axonal outgrowth. In
these immature neurons, tau is abundant in the somatodendritic
domain (as during development) and appears to be at least
partly in a microtubule-unbound form (63). Increased tau
phosphorylation is associated with increased proliferation of
newborn neurons (62).

AHN IN AD

Emerging evidence suggests that overall AHN (e.g., generation
of fully functional new neurons) is reduced in AD (64). The
detection of AHN markers by immunohistochemistry on post-
mortem brain tissues has recently confirmed the existence of
AHN in aged healthy subjects and a significant reduction of
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FIGURE 1 | (A–C) Representative photos of tau pathology detected in the DG of post-mortem brain section of a 65-year-old male AD patient (Braak VI). Tau

pathology was detected by anti-total tau B19 antibody (9) (A), anti-phospho Ser396/404 tau PHF1 antibody (10) (B), or by Gallyas silver staining (11) (C).

(Continued)
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FIGURE 1 | (D) Representative photo of tau pathology detected by PHF1 in the DG of 12-month-old tau Tg30 mice (12). ML, molecular layer; GCL, granule cell layer;

SGZ, subgranular zone. (E) Specific markers for five different stages of AHN in the dentate gyrus of the hippocampus. GFAP, glial fibrillary acidic protein; BLBP, brain

lipid-binding protein; SOX2, SRY (sex determining region Y)-box 2; DCX, doublecortin; 3R tau, tau with 3 repeats of microtubule-binding sequences; NeuN, neuronal

nuclei; 4R tau, tau with 4 repeats of microtubule-binding sequences. (F) Schematic representation of the human 6 isoforms of tau protein. Exon 2, 3, and 10 (E2, E3,

and E10, respectively) are alternatively spliced. Alternative splicing leads to 0, 1 or 2 inserts near amino terminus (0N, 1N, or 2N, respectively) and 3 or 4 repeats (3R

or 4R, respectively) of microtubule-binding sequences near carboxyl terminus. The shortest 0N3R isoform is predominantly detected in immature neurons of fetal

brains and of adult hippocampus. While only 4R isoforms are principally expressed in adult mouse brains, all the 6 isoforms are expressed in adult human brains. (G)

Immunostaining of immature neurons by anti-3R tau RD3 antibody (Merck Millipore #05-803) in the dentate gyrus of the hippocampus in a 12-month-old wild-type

mouse. (H) Functional involvement of tau at different stages of AHN. Hematoxylin counterstaining for (A–D,G). Detailed protocol on histological analyses is available in

(12). Scale bars: 25µm.

DCX-positive immature neurons in AD brains (65, 66). AHN
drops sharply even at the early stage of cognitive decline in
the patients with mild cognitive impairment (66). These studies
imply that the reduction of AHN may directly compromise
cognitive functions (67). Importantly, SOX2-positive neural stem
cells were increased in some cognitively normal subjects but
with extensive AD neuropathological lesions (68), implying that
increased AHN may rescue cognitive deficits caused by AD
lesions. Numerous genetic factors and variants implicated in
AD (Apolipoprotein E, PSEN1, APP) have been identified with
a modulating role on AHN in human AD patients (69). This
observation is supported by the generalized decrease in newborn
neuron generation observed in various AD transgenic mouse
models overexpressing FAD-related mutant APP and/or PS1
(13) or overexpressing APP intracellular C-terminal domain
fragments (AICD) (70).

AHN IN TAU MOUSE MODELS

Studies of AHN in different tau transgenic mouse models have
suggested that tau has critical roles in proliferation, neuronal
differentiation/maturation, dendritic/axonal outgrowth,
neuronal plasticity and synaptic maturation in DG. Tau
is also involved in selective cell death of newborn granule
neurons in case of acute stress (71) (Figure 1H). However
there remain controversies in distinct tau models (Table 1).
Whereas tau knockout mice are viable and macroscopically
normal (72, 73, 92), behavioral studies have unraveled that they
exhibit abnormalities such as hyperactivity (93) and deficits in
short-time memory in an age-dependent manner (94). Deletion
of endogenous tau also leads to delayed neuronal maturation in
primary cultured neurons (73) and transcriptional repression of
neuronal genes in the hippocampus (95). A significant reduction
of DCX- and NeuroD- positive neuroblast cells in tau knockout
mice was observed (62). On the contrary, Criado-Marrero
et al. have recently reported that BrdU-positive newborn cells
and DCX-positive immature neurons were increased in the
DG and SVZ of tau knockout mice at 14 months (75). Yet,
other two independent studies have reported that DCX-labeled
neuroblast cell number was not altered in the DG of adult tau
knockout mice (71, 74). Moreover, tau has critical roles in both
stress-induced suppression of AHN and stimulatory effect of EE.
Unlike wild-type mice, tau knockout mice are insensitive to the
modulation of AHN by stress or EE (71).

Human non-mutant tau seems to have several roles
in AHN such as suppressing proliferation and promoting
neuronal differentiation. KOKI mice expressing human

2N4R tau isoform in the absence of murine tau (76) had an
increase in DCX-positive immature neurons, hippocampal
volume and cell number in DG and an improved cognitive
function (77). Nevertheless, other studies suggest negative
effect of human non-mutant tau on AHN in mouse brains.
hTau mice expressing the 6 isoforms of non-mutant wild-
type human tau (78) in the absence of murine tau had
reduced DCX-positive immature neurons at 2 and 6 months
(79). Hippocampal injection of soluble non-mutant 2N4R
human tau led to morphological changes of newborn granule
neurons without changing the total number of DCX-positive
neuroblast cells (80). Adeno-associated virus-mediated specific
overexpression of human tau in DG interneurons induced
deficits in AHN by suppressing GABAergic transmission
(81). Another recent study has reported an impact of glial
tau accumulation on AHN. Lentiviral-mediated 1N3R
tau accumulation in hilar astrocytes in mouse led to
reduction of AHN accompanied by impaired spatial memory
performances (82).

Abnormalities in AHN have been observed in FTLD-mutant
tau transgenic mouse models. In THY-Tau22 and Tg30 mice
that express a human 1N4R tau mutated at G272V and P301S
under a Thy1.2-promoter, Gallyas-positive NFTs are detectable
from 6 months in hippocampus (83, 85). An increase in AHN
was observed with the DCX and BrdU markers in 6-month-
old THY-Tau22 mouse (84). Nonetheless, Tg30 mice exhibited
an impaired AHN at 12 months, an age in which some of the
granule cells in DG have a severe somatodendritic tau pathology
(Figure 1D) (12). By crossing Tg30 with tau knockout mice
(72), we generated Tg30/tauKO mice that express only human
mutant tau in the absence of murine tau (86, 87). The reduction
of AHN observed in Tg30 mice at 12 months was rescued in
the Tg30/tauKO mouse model as measured by DCX-positive
cell number (12). Another independent study reported that
TauVLW mice carrying G272V, P301L, and R406W mutant tau
(88) also had decreased DCX-positive immature neurons (89).
Interestingly, EE significantly increased the number of DCX-
positive immature neurons in wild-type littermates but not in
TauVLW mice (89). To our knowledge, this is the first and only
report showing that tau pathology may inhibit the response to a
positive factor enhancing AHN.

The overall controversies may derive from the variation in
the age and from the heterogeneities of tau species in distinct
models. TauRDDKPP mice expressing anti-aggregant tau RD
showed increased number of DCX-positive cells in DG and a
larger volume of hippocampus unlike tauRDDK mice expressing
pro-aggregant mutant tau RD (91). The latter findings support
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TABLE 1 | Summary of neurogenesis changes in tau mouse models.

Mouse line Tau expression Neurogenesis assessment References

Tau knockout models

tau−/−

Tucker et al. (72)

– Decrease in the number of DCX- and NeuroD- positive

cells

(age not indicated)

(62)

tau−/−

Dawson et al. (73)

– No change in the number of BLBP, Sox2- and DCX

positive cells at basal conditions but reduction of

dendritic and synaptic maturation of newborn granule

neuron

(4 months)

(71)

tau−/−

Dawson et al. (73)

– No change in the number of DCX/BrdU double positive

cells (9 weeks)

(74)

tau−/−

Dawson et al. (73)

– Increase in the number of DCX- and BrdU- positive cells

(14 months)

(75)

Human non-mutant tau models

KOKI

Terwel et al. (76)

2N4R human non-mutant tau in the absence of

murine tau

Increase in the number of DCX- and BrdU-positive cells

(2 months)

(77)

hTau

Andorfer et al. (78)

6 isoforms of human non-mutant tau in the

absence of murine tau

Decrease in the number of DCX-, Ki67-, and

BrdU-positive cells

(2, 6, 12 months)

(79)

Injection of human tau-Cy5 in

WT mice

Endogenous murine tau and injected

monomeric 2N4R human non-mutant tau

No change in the number of DCX-positive cells but

change in the morphology of newborn granule cells

(80)

AAV-mediated expression of

human tau

Human tau overexpressed in DG interneurons Decrease in the number of BrdU-positive cells and

DCX-positive cells

(81)

Lentiviral expression of human

tau in hilar astrocytes

1N3R human non-mutant tau overexpressed in

hilar astrocytes in the presence of murine tau

Decrease in the number of DCX-positive cells (82)

Human FTLD-mutant tau models

THY-Tau22

Schindowski et al. (83)

IN4R human double mutant G272V/P301S tau

in the presence of murine tau

Increase in the number of DCX- and BrdU-positive cells

(6 months)

(84)

Tg30

Leroy et al. (85)

IN4R human double mutant G272V/P301S tau

in the presence of murine tau

Decrease in the number of DCX-, Ki67-, and tau

3R-positive cells (12 months)

(12)

Tg30/tauKO

Ando et al. (86, 87)

IN4R human double mutant G272V/P301S tau

in the absence of murine tau

Increase in the number of DCX-positive cells (12 months)

compared to Tg30 and wild-type mice

(12)

TauVLW

Lim et al. (88)

2N4R human triple mutant

G272V/P301L/R406W tau in the presence of

murine tau

Decrease in the number of DCX- and IdU- positive cells

(2 months)

(89)

Tau repeat-domain models

TauRDDK and tauRDDKPP

(90)

TauRDDK expressing pro-aggregant mutant tau

repeat domain and tauRDDKPP expressing

anti-aggregant mutant tau repeat domain

Decrease in hippocampal volume at 16 months in

tauRDDK. Increase in hippocampal volume at 16 months,

in hippocampal stem cell proliferation and in the number

of DCX-positive cells in tauRDDKPP

(91)

the idea that distinct tau species seem to have different effects
on neurogenesis.

DISCUSSION

There are conflicting reports as to whether AHN persists in late
age in humans. Controversies may be partially due to the limited
availability of adequately preserved post-mortem human brain
samples. The technical and methodological issues can further
add variability in detecting specific markers of neural stem and
progenitor cells in human autopsy tissues. Some of the conflicting
results are also presumably related to the heterogeneities in
individual life stories: age, sex, lifestyle, physical activities, with
or without previous disease histories, and medical status at

the end of life. There is a great variability in the post-mortem
delays and processing methods of human post-mortem brain
tissues. In general, fixation is known to play a critical role in
antigen preservation since some epitopes are more prone to
denaturation during the fixation. For example, the immature
neuron marker DCX undergoes rapid degradation during the
post-mortem period (96). Some difficulties could be overcome
by tightly documenting the brain samples and their processing,
optimizing the methodologies (65), and standardization of
detailed protocols (97).

Although tau seems involved in modulating AHN, there are
controversies among the different tau mouse models about the
effect of tau ablation or overexpression. As for human samples,
controversial reports may derive from distinct protocols and
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various parameters such as genetic background, age, gender,
and tau species. Distinct time point of analysis could lead to
data variation (98). A remarkable sex difference was observed
in AHN of rodent brains (75, 99). Furthermore, data variability
may be caused by the sensitivities of antibodies used for detection
(29). Besides, the methods of analysis and quantification have
significant impact on the results. One of themost commonly used
approaches is to measure total proliferating cell number using
optical fractionator, an unbiased stereological method, on serial
sections of the whole hippocampus (100). Since the distributions
of the proliferating cells are not homogeneous and are often in
the form of clusters in the SGZ of hippocampus (30), measuring
setup needs to be carefully optimized (101).

The mechanisms behind AHN impairment in AD are still
poorly understood. Numbers of independent studies have shown
that amyloid pathology, APP, and PSEN1/2 are involved in
modulating AHN in AD transgenic mouse brains (13). Since tau
pathology led to defects in AHN in several tauopathy mouse
models (12, 89, 91), we support the idea that tau pathology
impairs AHN independently from amyloid pathology. In this
context, it would be highly informative to study AHN in the post-
mortem human brains of primary tauopathies devoid of amyloid
pathology (e.g., FTLD with tau pathology, etc.). Yet, more
studies are necessary to better understand both physiological and
pathological roles of tau in AHN.

Given that increased AHN is associated with preservation
of cognitive functions in non-demented individuals with AD
lesions (68), stimulation of AHN should be beneficial. However,
tau pathology presumably plays a negative role in AHN: EE
led to increased AHN in wild-type mice but not in tauVLW

transgenic mice (89). Taking into consideration that an ablation
of murine tau rescued AHN impairment in Tg30 mice (12)
and stress-induced suppression of neurogenesis (74), reduction

of tau may be beneficial for AHN. Indeed, there is compelling
evidence showing the efficacy of tau reduction via anti-sense
oligonucleotides (ASOs) to prolong life expectancy, reduce tau
pathology, and rescue behavioral deficits in tau transgenic mice
(102). Cautions need to be taken as complete ablation of tau leads
to deficits in cognitive function in an age-dependentmanner (94).
Tau is a multifunctional protein and the net benefit of long-term
reduction of tau still remains unclear (48). There are numbers
of factors that can boost AHN such as EE, physical activities,
or pharmacological agents (44). Testing these in tau transgenic
models of tauopathies in combination with modulation of tau
expression may open a new window for future therapies.
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