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Abstract: The most motile phototrophic organisms exhibit photo-induced behavioral responses
(photobehavior) to inhabit better light conditions for photosynthesis. The unicellular green alga
Chlamydomonas reinhardtii is an excellent model organism to study photobehavior. Several years ago,
we found that C. reinhardtii cells reverse their phototactic signs (i.e., positive and negative phototaxis)
depending on the amount of reactive oxygen species (ROS) accumulated in the cell. However,
its molecular mechanism is unclear. In this study, we isolated seven mutants showing positive
phototaxis, even after the induction of negative phototaxis (ap1~7: always positive) to understand the
ROS-dependent regulatory mechanism for the phototactic sign. We found no common feature in the
mutants regarding their growth, high-light tolerance, and photosynthetic phenotypes. Interestingly,
five of them grew faster than the wild type. These data suggest that the ROS-dependent regulation of
the phototactic sign is not a single pathway and is affected by various cellular factors. Additionally,
the isolation and analyses of mutants with defects in phototactic-sign regulation may provide clues
for their application to the efficient cultivation of algae.

Keywords: Chlamydomonas; phototaxis; photosynthesis; photoprotection

1. Introduction

For motile phototrophic organisms, photo-induced behavioral responses (photobehav-
ior) are important to maintain optimal light exposure for their photosynthetic activities. The
unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studying
photo responses because it exhibits striking photobehavior immediately after photorecep-
tion [1,2]. The typical photobehavior in C. reinhardtii includes phototaxis and photoshock
response. Phototaxis is a behavior in which cells swim toward or away from incident light
(called positive or negative phototaxis, respectively). Photoshock response is a behavior in
which cells stop swimming or swim backward for a short period after a sudden change in
light intensity.

Both behaviors are regulated by the following two organelles: the eyespot and cilia.
The eyespot is a directional photoreceptive organelle [3,4]. The eyespot constitutes two
parts, namely, the carotenoid-granule layers (CGLs) and the photoreceptor protein channel
rhodopsins (ChRs). The CGLs function as a quarter-wave stack and reflect light [5–7].
These layers line ChRs in the plasma membrane. ChRs function as cation channels upon
photoreception [8–10]. Due to the light reflection at the CGLs, ChRs sense light only
when illuminated from the eyespot side. Cellular Ca2+ concentration is suggested to be
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modulated by photoreception. Ca2+-sensitivities of the two cilia are distinct: the cis-cilium,
closest to the eyespot, beats stronger than the other when [Ca2+]i < ~10−7 M, and the
trans-cilium, the other one, beats stronger than the other when [Ca2+]i > ~10−7 M [11].
By this regulation, the forces generated by the two cilia become imbalanced, and the cell
changes its swimming direction to exhibit phototaxis.

How, then, do cells reverse their phototactic sign (or direction)? Several signals have
been reported to regulate the phototactic signs, such as photosynthetic activity, circadian
rhythm, and light intensity [12–14]. Among these signals, the cellular reactive oxygen
species (ROS) level strongly affects the phototactic sign. After treatment with membrane-
permeable ROS reagents, cells show positive phototaxis, whereas after treatment with
membrane-permeable ROS-scavenging reagents, cells show negative phototaxis [15]. Even
the negatively phototactic strain agg1 (a wild-type strain CC-124) shows positive phototaxis
after treatment with ROS, suggesting that the ROS signal can override other effects [16].

However, this ROS-dependent sign switching of phototaxis is contradictory. ROS is
a hazardous byproduct of photosynthesis [17]. Light energy higher than the level that
saturates photosynthetic reactions produces excess reductive power, producing ROS. ROS
damages various essential cellular materials, including proteins and lipids, and thus, pho-
totrophic organisms have different defense mechanisms against ROS [18]. If C. reinhardtii
cells show positive phototaxis when the cellular ROS amount increases, the light intensity
may increase, and more ROS would be produced; this seems like a suicide. Simultaneously,
the induction of positive phototaxis by ROS is highly reproducible [7,16,19,20].

The questions that arise are how and why C. reinhardtii cells show ROS-dependent
positive phototaxis. For answering these questions, forward genetics will be a strong
strategy because the molecular basis for this pathway is difficult to predict. This study
introduced random mutations to wild-type C. reinhardtii to screen for mutants showing
positive phototaxis, even after treatment with ROS scavengers that induce negative pho-
totaxis. Phenotypic analyses of the mutants suggested that the molecules affecting the
phototaxis pathways vary.

2. Results
2.1. Mutant Screening for Phototactic Signs

To generate mutants with defects in the pathways that regulate phototaxis in an
ROS-dependent manner, we induced random insertional mutagenesis to wild-type (WT)
C. reinhardtii using a paromomycin-resistant vector (pSI103-1) [21]. After selection with
paromomycin, the mutant library was subjected to phototaxis screening (Figure 1A). Usu-
ally, WT cells show negative phototaxis after treatment with membrane-permeable ROS-
scavenging reagents such as dimethylthiourea (DMTU) or TEMPOL [15] (Figure 1B,C). We
treated the mutagenized cells with DMTU and then screened for mutants showing positive
phototaxis (Figure 1A). We repeated this screening twice against seven independent mu-
tant libraries, isolating one mutant from each library that showed positive phototaxis after
treatment with DMTU. After backcrossing the mutants with WT twice, we named them ap
(always positive phototaxis) 1~7.

On the basis of the results of the phenotypic analysis described later, we selected ap2
and ap7 for more detailed phototaxis analysis. In light conditions where the parental WT
strain cells tended to show negative phototaxis, both the ap2 and ap7 cells showed positive
phototaxis. DMTU induced negative and t-BOOH, a membrane-permeable ROS reagent,
induced positive phototaxis in WT cells (Figure 1C) [15]. DMTU sufficiently induced
negative phototaxis at 75 mM in the WT cells, but even after treatment with 150 mM
DMTU, the ap2 and ap7 cells showed positive phototaxis (Figure 1C).

After the backcross, the phenotypic and genotypic analyses showed that the progenies
containing an insertion of the pSI103-1 vector did not always show an ap phenotype
(Figure S1). These data suggest that the ap phenotypes of all seven mutants were caused by
the insertion of short DNA fragments derived from the vectors or genomic DNA of dead
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cells during electroporation. Therefore, the causative genes of ap1~7 could not be easily
traced at this moment.
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and green light was illuminated from the right side. WT cells showed negative phototaxis without any treatment, positive 
phototaxis after treatment with 0.2 mM t-BOOH, and negative phototaxis after treatment with DMTU. The ap mutants 
showed positive phototaxis in any condition. (C) (Left) Schematic of cell-level phototaxis assay. Cell swimming angle (θ) 
was measured for 1.5 s following 15 s of illumination with a green LED. (Right) Cell-level phototaxis assay of WT and 
representative ap mutants, ap2 and ap7. Polar histograms depicting the percentage of cells moving in a particular direction 
relative to light illumination from the right (12 bins of 30°; n = 30 cells per condition). Cells were observed after treatment 
with no reagent (top), 0.2 mM t-BOOH to induce positive phototaxis (second from the top), 75 mM (third from the top), 
or 150 mM DMTU to induce negative phototaxis (bottom).  
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Figure 1. Isolation of ap mutants. (A) Schematics showing the screening methods for ap mutants. After
introducing the pSI103-1 vector containing the APHVIII gene that confers paromomycin resistance,
transformants were inoculated onto the selection agar plate. After collecting colonies, transformant
cells (a mutant library) were subjected to phototaxis assay after treatment with 75 mM DMTU that
strongly induces negative phototaxis. Cells showing positive phototaxis were collected, cultured
again, and subjected to the second phototaxis assay. A mutant constantly showing positive phototaxis
was isolated from a library and named ap mutant. (B) Phototaxis of WT and ap mutant cells. Cells
were put in a Petri dish, and green light was illuminated from the right side. WT cells showed
negative phototaxis without any treatment, positive phototaxis after treatment with 0.2 mM t-BOOH,
and negative phototaxis after treatment with DMTU. The ap mutants showed positive phototaxis
in any condition. (C) (Left) Schematic of cell-level phototaxis assay. Cell swimming angle (θ) was
measured for 1.5 s following 15 s of illumination with a green LED. (Right) Cell-level phototaxis assay
of WT and representative ap mutants, ap2 and ap7. Polar histograms depicting the percentage of cells
moving in a particular direction relative to light illumination from the right (12 bins of 30◦; n = 30
cells per condition). Cells were observed after treatment with no reagent (top), 0.2 mM t-BOOH to
induce positive phototaxis (second from the top), 75 mM (third from the top), or 150 mM DMTU to
induce negative phototaxis (bottom).
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2.2. Morphology and Motility of ap Mutants Are Normal

To analyze which pathway affects ROS-dependent phototaxis regulation, we examined
several phenotypes of ap mutants other than phototaxis. First, we tested the morphology
and motility of these mutant cells. The cell size (diameter approximated as a sphere), ciliary
length, and ciliary beating frequency were measured (Table 1). In each parameter, there
was no significant difference between the strains, including WT.

Table 1. Morphological and motility phenotypes of ap mutants.

WT ap1 ap2 ap3 ap4 ap5 ap6 ap7

Cell size (µm) * 7.5 ± 0.1 7.0 ± 0.1 7.1 ± 0.2 7.3 ± 0.3 7.0 ± 0.1 7.0 ± 0.2 6.9 ± 0.1 7.4 ± 0.1

Ciliary length
(µm) ** 13.2 ± 1.5 13.9 ± 1.6 13.6 ± 1.7 13.2 ± 1.6 13.7 ± 2.0 13.6 ± 1.6 13.3 ± 1.5 13.5 ± 1.4

Ciliary beating
frequency (Hz) * 57.4 ± 0.5 56.0 ± 1.6 57.4 ± 1.1 56.1 ± 2.0 59.0 ± 0.6 53.1 ± 1.1 55.2 ± 1.2 54.7 ± 1.3

No significant difference between any two groups was found in each parameter (p > 0.05, one-way ANOVA and Tukey’s honest significance
difference (HSD)). * Mean ± S.E.M. of three independent experiments, ** mean ± S.D. of 20 cilia.

Next, we examined the growth rate under normal light conditions (white light,
~30 µmol photons m−2 s−1). Interestingly, five of the seven ap mutants showed faster
growth than WT (Figure 2).
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Figure 2. The growth phenotype of ap mutants. Precultured cells were collected and suspended in a
fresh medium at 1 × 106 cells/mL (day 0) and subjected to culture under 30 µmol photons m−2 s−1

white light. Cell density was measured every day and means ± S.E.M. (n = 3) are shown. Different
letters indicate significant differences (p < 0.05, one-way ANOVA and Tukey’s honest significance
difference (HSD)).

These results were somewhat surprising. We assumed that ROS accumulation is more
significant in the ap mutant cells than in WT because of the effects of ROS-scavenger treat-
ment on the phototactic sign, which were inhibited in these mutants. ROS accumulation
may be hazardous to the cells, and treatment with ROS decreases the ciliary beating fre-
quency of C. reinhardtii [22]. Contrary to these expectations, many ap strains showed high
growth rates, suggesting that increased intracellular ROS levels are not directly responsible
for the ap phenotype.

2.3. Photosynthesis Phenotypes of ap Mutants

We then measured photosynthesis-related parameters such as chlorophyll content,
photosynthetic efficiency (ϕII), and nonphotochemical quenching (NPQ) (Table 2). How-
ever, again, there were no significant differences between the strains in each parameter.
We also measured survivability under high-light stress conditions. The cells were treated
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using low light (white, 50 µmol photons m−2 s−1) or high light (white, 1000 µmol photons
m−2 s−1). The results suggested that ap1 and ap7 had a slightly weaker high-light tolerance
than WT (Figure 3).

Table 2. Photosynthesis-related phenotypes of ap mutants.

WT ap1 ap2 ap3 ap4 ap5 ap6 ap7

Chlorophyll
(pg/cell) * 0.78 ± 0.10 0.73 ± 0.13 0.82 ± 0.05 0.75 ± 0.07 0.83 ± 0.06 0.81 ± 0.14 0.70 ± 0.05 0.97 ± 0.07

Photosynthetic
efficiency
(ϕII) **

0.59 ± 0.01 0.61 ± 0.02 0.59 ± 0.01 0.59 ± 0.02 0.57 ± 0.01 0.58 ± 0.02 0.59 ± 0.02 0.57 ± 0.01

NPQ ** 0.30 ± 0.02 0.30 ± 0.02 0.31 ± 0.01 0.29 ± 0.04 0.29 ± 0.03 0.28 ± 0.01 0.29 ± 0.01 0.28 ± 0.01

300 µmol photons m−2 s−1 white light was irradiated as actinic light. No significant difference between any two groups was found in
each parameter (p > 0.05, one-way ANOVA and Tukey’s honest significance difference (HSD)). * Mean ± S.E.M. of four independent
experiments, ** mean ± S.E.M. of three independent experiments.
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Figure 3. High-light tolerance of ap mutants. Cells were grown under low light (LL; white, 50 µmol
photons m−2 s−1) or high light (HL; white, 1000 µmol photons m−2 s−1) for 18 h. A 70-microliter
aliquot was put in a well of a 96-well plate.

Summarizing the results thus far, phenotypes in ap1~7 other than positive phototaxis
after treatment with DMTU are not necessarily consistent. Most of them grew faster than
WT, but not all. There were no significant differences from WT in the photosynthetic
parameters. Two of the mutants seemed to exhibit a weaker high-light tolerance than WT.
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2.4. Detailed Photosynthesis Phenotype Analyses of ap2 and ap7

In the photosynthesis analyses above, we fixed the light conditions to assess the seven
mutants simultaneously. For detailed analyses, we selected ap2 and ap7. Ap2 represents
the strains with higher-growth than WT (Figure 2), and ap7 represents the strains with
lower-growth than WT (Figure 3). We treated the cells with low light or high light before
the analyses using a pulse amplification modulation and measured the photosynthetic
parameters under various light intensities. The values of ϕII and NPQ change in almost
the same manner among the strains (Figure 4A,B). In contrast, both ap2 and ap7 showed
a lower ETR than WT when pretreated with low light and measured using high light
(Figure 4C). Furthermore, only ap7 showed a lower ETR than WT when pretreated with
high light (Figure 4C).
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Figure 4. Photosynthetic parameters of ap2 and ap7 after treatment with low or high light. (A) ϕII,
(B) NPQ, and (C) ETR of WT, ap2, and ap7 cells after treatment with low light (LL; white, 50 µmol
photons m−2 s−1) or high light (HL; white, 1000 µmol photons m−2 s−1) (n = 3, mean ± S.E.M.). In
(C), different letters indicate significant differences (p < 0.05, one-way ANOVA and Tukey’s honest
significance difference (HSD)). PAR: photosynthetically active radiation.

Next, we examined the high-light tolerance of ap2 and ap7 under 700 µmol photons
m−2 s−1 red light or 300 µmol photons m−2 s−1 blue light. The former conditions induce
a slow and the latter conditions cause a fast induction of NPQ [23,24]. Under high red
light, similar to the white-light conditions (Figure 3), ap2 showed a slightly higher and ap7
showed a slightly lower tolerance than WT (Figure 5A,B). In contrast, under high blue light,
ap2 and ap7 showed an almost comparable tolerance to WT (Figure 5A,B). With the data
showing that mutants exhibit normal NPQ (Figure 4), the difference in high-light tolerance
in ap2 and ap7 may not be due to NPQ.
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ap2, and ap7 cell culture (2.5 × 107–1 × 108 cells/mL) were illuminated with either red high light (left;
λ = 640 nm, 800 µmol photons m−2 s−1) or blue high light (right; λ = 470 nm, 300 µmol photons m−2

s−1) for two days. (B) The density of each well was measured, and the ratio of the value at 48 h per
that at 0 h was calculated. Each dot represents the individual result, and mean values (black bars) ±
S.E.M. (red bars) (n = 3) are shown. Different letters indicate significant differences (p < 0.05, one-way
ANOVA and Tukey’s honest significance difference (HSD)).

3. Discussion

In this study, to understand the mechanisms underlying the ROS-dependent regulation
of the phototactic sign in C. reinhardtii, we isolated new mutants ap1~7 showing positive
phototaxis, even after negative phototaxis by a ROS-scavenger DMTU. However, the
causative genes of these mutants could not be traced at this moment because the insertion
of the generated vectors did not cause ap phenotypes. Instead, we characterized these
mutants in various ways.

3.1. Phenotypic Discrepancy among ap Mutants

Unexpectedly, the phenotypes of the ap mutants were not completely consistent. As
for the growth rate, ap1 and ap3 were significantly faster, and ap7 was slightly slower than
WT (Figure 2). As for the red high light tolerance, ap2 was slightly higher and ap7 was
slightly lower than WT (Figure 5). From their common positive-phototaxis phenotype,
we assumed that all ap mutant cells might accumulate higher levels of ROS, and 75 mM
DMTU is not enough to quench them. If all mutants accumulate high ROS levels, some
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phenotypes would be shared, such as a low tolerance of high light, slow growth, and
low ciliary beating frequency [22,25,26], but our data showed that the ap mutants did
not share such phenotypes commonly. These data suggest that the reasons to show an
ap phenotype are variable and complex. The function of ROS or ROS scavengers in the
phototaxis pathway is still unknown. ROS generation, ROS quenching, and ROS sensing
pathways in the cell may be involved in this regulation, and further genetic analysis of ap
mutants will provide clues to which proteins play essential roles in the ROS-dependent
phototactic-sign regulation mechanisms.

3.2. Growth Phenotype

Notably, five of the seven ap mutants showed a significantly faster growth than WT
(Figure 2). It has been reported that C. reinhardtii mutants that have acquired resistance to
singlet oxygen by gain-of-function mutations that grow faster than wild-type strains under
oxidative stress conditions [27]. Such mutations may occur in fast-growing ap mutants.
Recently, microalgae, including C. reinhardtii, have attracted attention as a platform for
producing valuable materials [28]. Further analyses to clarify how the ap phenotype and
fast-growing phenotype are linked will contribute to the application for the improvement
in microalgae cultivation.

3.3. High-Light Tolerance

In plants and algae, photoprotective mechanisms are activated under high-light condi-
tions, in which ROS-scavenging or excitation-energy-dissipation systems protect cells from
photodamage [29,30]. The C. reinhardtii mutants lacking these photoprotective systems
exhibit a significantly lower tolerance against high light than WT [31,32]. Both the ap2 and
ap7 strains showed a similar level of tolerance to the wild-type strain under blue high-
light conditions, which rapidly induce NPQ through the expression of LHCSR proteins
(Figure 5) [23]. Alternatively, under red light conditions, ap2 and ap7 showed a slightly
higher and lower light tolerance, respectively (Figure 5). The LHCSR protein expression
level is lower in red light than in blue light, which leads to lower NPQ [33]. Thus, ap7
may have defects in photoprotection pathways other than NPQ, correlated with lower ETR
under high-light conditions and a lower-growth rate (Figures 2 and 4D).

4. Conclusions

We isolated new mutants showing positive phototaxis after the induction of negative
phototaxis (ap1~7). Though we expected that these mutant cells contain higher ROS levels
than WT, five of them showed higher-growth phenotypes without significant morphologi-
cal, motility-related, or photosynthetic phenotypes. The absence of phenotypes other than
phototaxis common to the seven mutants suggests the diversity of the biological parameters
involved in the ROS-dependent regulation of phototaxis. Further genetic analyses of the
mutants will shed light on the enigmatic ROS-dependent phototaxis regulation.

5. Materials and Methods
5.1. Cell Culture and Strains

Chlamydomonas reinhardtii strains CC-124 (nit1− (nitrate reductase), nit2−, agg1−, and
mt− (mating type)) [16] and CC-125 (nit1−, nit2−, and mt+) were used. For the elimination
of agg1 mutation, agg1+ progenies (mt+ and mt−) from the mating of CC-124 and CC-125
were used as wild-type. Cells were grown in a tris-acetate phosphate medium (TAP)
medium with aeration at 25 ◦C on a 12 h/12 h light/dark cycle [34]. For the photosynthetic
parameter measurement, cells were collected after culturing in TAP medium, resuspended
in high-salt (HS) minimal medium [35], and grown under the same light conditions as
above without aeration for one day.
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5.2. Mutagenesis and Screening for ap Mutants

Wild-type (mt−) cells were mutagenized by the random insertion of pSI103-1 vector
(linearized by EcoRI) that confers paromomycin resistance via electroporation (NEPA21,
NEPAGENE) [21,36]. After collecting colonies on the selection agar plates, those cells
(a mutant library) were subjected to the phototaxis assay after treatment with 75 mM
DMTU (Sigma-Aldrich), which strongly induces negative phototaxis [15]. After green light
illumination (λ = 525 nm, 30 µmol photons m−2 s−1), cells showing positive phototaxis
were collected. After culturing those mutant candidates for a few days, the same phototaxis
assay was repeated. Cells showing positive phototaxis were inoculated onto a TAP agar
plate, and grown single colonies were inoculated independently in a TAP medium in a
96-well scale. Cultures were subjected to the phototaxis assay again, and a strain showing
positive phototaxis after the DMTU treatment was selected as an ap mutant. These assays
were conducted against seven mutant libraries.

5.3. Cell-Level Phototaxis Assay

Cell-level phototactic motion was tracked based on a previously described method [15]
with modifications. Briefly, cells were washed with experimental practical solution (5 mM
Hepes (pH 7.4), 0.2 mM EGTA, 1 mM KCl, and 0.3 mM CaCl2) with or without treatment
with DMTU or t-BOOH (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) and
kept under dim red light for 15 min before the phototaxis assays. The behavior of the
cells was observed and video-recorded under a dark-field microscope (BX-53, Olympus)
with dim red light under unidirectional illumination using a green light-emission diode
(λ = 525 nm, 30 µmol photons m−2 s−1). The angle (θ) between the light direction and the
swimming direction was measured during 1.5 s, following illumination with a green LED
for 15 s. Images of swimming cells were auto-tracked using Image Hyper software (Science
Eye). The angles were calculated from the cell trajectories.

5.4. Ciliary Beating Frequency Measurement

Ciliary beating frequency was measured based on a previously described method [37]
with modifications [22]. Briefly, a photodetector was set on the top of a microscope
equipped with a dark-field condenser (BX-53; Olympus). Cells were observed under a
microscope with a dim red light (λ > 630 nm) to avoid the accumulation of cells caused
by phototaxis. The photodetector detected signals derived from cell body vibration, trans-
ferred to the computer soundboard, and fast-Fourier transformed using SIGVIEW (Signal-
Lab). Transformed signals were averaged for ~20 s, and the peak value was regarded as
the mean ciliary beating frequency.

5.5. Cell Density and Cell Size Measurement

Cell culture was mixed with an equal volume of deciliation solution (1 mM CaCl2 and
40 mM sodium acetate). Cell density was measured using an automatic cell counter (model
R-1, Olympus, or Cell Drop BF, DeNovix). Additionally, the cell size (diameter when a cell
is approximated to a sphere) was simultaneously measured using the same cell counter.

5.6. Growth Rate Assay

Cells were grown in the TAP medium for three days under 30 µmol photons m−2 s−1

white light, adjusted to 1 × 106 cells/mL in a fresh TAP medium (day 0), and then grown
again under the same light conditions. The cell density of each strain was measured every
day as described above.

5.7. Chlorophyll Amount Measurement

Cell culture was collected and resuspended in an HS medium, and cell density was
measured. Cell suspension (200 µL) and acetone (800 µL) were mixed using a vortex mixer
and spun down, and Abs750, Abs663.6, and Abs646.6 of the supernatants were measured.
Chlorophyll contents were calculated according to the equations shown in [38].
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5.8. High-Light Tolerance Assay

A 700-microliter culture in HS medium was placed in a microtube and illuminated
with low light (white, 50 µmol photons m−2 s−1) or high light (white, 1000 µmol photons
m−2 s−1) for 18 h (Figure 2), or with red light (λ = 640 nm, 800 µmol photons m−2 s−1)
or blue light (λ = 470 nm, 300 µmol photons m−2 s−1) for 48 h (Figure 5). A 70-microliter
aliquot was put in a 96-well plate and pictured. The cell density of each well was quantified
using Image J in Figure 5.

5.9. Photosynthetic Parameter Analyses

The chlorophyll amount of the cell culture in an HS medium was measured, and cell
density was adjusted to ensure that the cells contain 2.5 µg/mL chlorophyll. Chlorophyll
fluorescence-based photosynthetic analysis was performed as follows. Maximum yields
(Fm) were measured under dark conditions (after weak far-red (<5 µmol photons m−2

s−1) treatment for 30 min using Dual-PAM (WALZ, Germany) for Table 2 or Imaging
PAM (WALZ, Germany) for Figure 4. Following the method of [39], the maximum and
steady-state fluorescence yields under light (Fm′ and F, respectively) were measured after
actinic irradiation at each light intensity for 90 s. The effective PSII quantum yield Y(II)
(or ϕII) was estimated using the equation, Y(II) = (Fm′ − F)/Fm′. Nonphotochemical
quenching capability (NPQ) was estimated using the equation, NPQ = (Fm − Fm′)/Fm′.
The ETR was estimated using ETR = Y(II) × 0.84 × 0.5 × light intensity.

5.10. PCR against Tetrad Progenies

Tetrad progenies were subjected to PCR to determine the presence of the APHVIII
gene using the method of [40].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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