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Computational methods can increase productivity of drug discovery pipelines, through
overcoming challenges such as cardiotoxicity identification. We demonstrate prediction
and preservation of cardiotoxic relationships for six drug-induced cardiotoxicity types
using a machine learning approach on a large collected and curated dataset of
transcriptional and molecular profiles (1,131 drugs, 35% with known cardiotoxicities,
and 9,933 samples). The algorithm generality is demonstrated through validation in an
independent drug dataset, in addition to cross-validation. The best prediction attains an
average accuracy of 79% in area under the curve (AUC) for safe versus risky drugs, across
all six cardiotoxicity types on validation and 66% on the unseen set of drugs. Individual
cardiotoxicities for specific drug types are also predicted with high accuracy, including
cardiac disorder signs and symptoms for a previously unseen set of anti-inflammatory
agents (AUC = 80%) and heart failures for an unseen set of anti-neoplastic agents (AUC =
76%). Besides, independent testing on transcriptional data from the Drug Toxicity
Signature Generation Center (DToxS) produces similar results in terms of accuracy and
shows an average AUC of 72% for previously seen drugs and 60% for unseen
respectively. Given the ubiquitous manifestation of multiple drug adverse effects in
every human organ, the methodology is expected to be applicable to additional tissue-
specific side effects beyond cardiotoxicity.

Keywords: machine learning, cardiotoxic adverse effect, safety pharmacology, bioinformatics and computational
biology, in silico analysis
INTRODUCTION

Drug cardiotoxicity significantly limits the application of numerous therapies, and also slows down
the drug research and development process (Cook et al., 2014; Onakpoya et al., 2016). As the
attrition rate due to cardiotoxicity remains high, the need and importance of novel approaches
capable of efficient safety testing has been widely emphasized, but not solved (Cook et al., 2014;
Waring et al., 2015). Human-based approaches exploiting in silicomethods have been postulated as
the most promising alternative to costly animal experiments (Lawrence et al., 2008; Vicente et al.,
2018), which frequently exhibit limited translation ability to human (Mak et al., 2014; Rodriguez
et al., 2016).
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In this regard, great progress has been made for example to
evaluate the ability of in silico models to assess and predict the
clinical risk of drug-induced arrhythmias (Lancaster and Sobie,
2016; Passini et al., 2017; Dutta et al., 2017). However, less
attention has been paid to the prediction of other forms of drug-
induced cardiotoxicity, such as cardiomyopathies, heart failure,
myocardial ischemia or myocarditis (Mladěnka et al., 2018).
Novel approaches are therefore needed to account for the wider
spectrum of possible cardiovascular drug side effects beyond
those mainly linked to adverse electrophysiological interactions.

Machine learning methods are gaining recognition in
biological data analysis (Mamoshina et al., 2016; Lin and Lane,
2017; Lo et al., 2018). However, less than a handful of studies
have addressed drug cardiotoxicity prediction beyond drug-
induced arrhythmias. Huang and colleagues used protein-
protein interactions to predict general cardiotoxicity for 578
drugs, using a support vector machine method (Huang et al.,
2011). Using transcriptional profiles and fingerprints of 251
drugs, Wang et al. focused on prediction of gastrointestinal,
liver and kidney toxicities, and myocardial infraction, a single
form of cardiotoxicity, using an extra trees algorithm for multi-
label classification (Wang et al., 2016). Messinis et al. (2018)
developed a transcriptomic-based predictor of drug-induced
cardiomyopathy with 31 drugs. Importantly, although all these
studies reported relatively good accuracies (0.68 (Huang et al.,
2011), 0.80 (Wang et al., 2016) and 1 (Messinis et al., 2018),
respectively) under different cross-validation strategies (random
split of samples or leave-one-drug out), none of them conducted
an independent validation on drugs previously unseen by the
trained model. This is crucial to ensure the translatability of
proposed approaches to real-world applications, and thus an
important limitation of previous work. In addition, none of the
previous algorithms was developed to predict all major forms of
drug cardiotoxicity.

Our hypothesis is that molecular and structural properties of
drugs combined with their associated transcriptional changes in
gene expression represent a suitable strategy to characterize their
cardiac safety. The goal of this work is therefore to tackle four
main challenges in cardiotoxicity prediction, namely prediction
of six cardiotoxicity types, addressing the class imbalance
problem, robust validation with independent datasets, and
combination of transcriptional data and molecular descriptors.
Our aim is to develop an independently-validated supervised
machine-learning-based approach for the simultaneous
prediction of all major forms of drug cardiotoxicity in human,
using a substantial dataset of transcriptional and molecular
descriptors compiled from diverse publicly-available data
repositories. Our proposed approach specifically accounts for
independent validation, the challenges of severe safety class
imbalance and the preservation of relationships between
different drug-induced cardiotoxicities. Addressing class
imbalance is crucial as available datasets are usually heavily
unbalanced (i.e., unequal distribution between drug types and/
or cardiotoxic classes) (Banerjee et al., 2018), especially in large
datasets curated automatically. This limits the generalization
ability of data-driven methods, and in particular of
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unsupervised ones. In this work, we overcome these challenges
by the application of supervised classifiers, as they generally
demonstrate higher predictive performance on unbalanced
biological data (Miller et al., 2008). Importantly, we
demonstrate prediction of all six main forms of cardiotoxicity
related to drug action in human. Through this work, we therefore
significantly increase the domain of applicability and translation
capabilities of machine-learning for cardiotoxicity prediction in
preclinical drug evaluation. The findings and methodologies are
expected to be generalizable to other organ-specific side effects.
MATERIALS AND METHODS

Data Preparation
The first step was to curate a database of cardiotoxic and
matching safe drugs (Figure 1B and Table 1), using diverse
publicly-available knowledge and data repositories, including
DrugBank (Wishart et al., 2008) (www.drugbank.com),
Connectivity map Project (https://clue.io/cmap) (Subramanian
et al., 2017), SIDER(Kuhn et al., 2016) (sideeffects.embl.de),
MedDRA (https://bioportal.bioontology.org/ontologies/
MEDDRA) and MESH (https://www.ncbi.nlm.nih.gov/mesh).

Names and IDs were retrieved from the MedDRA dictionary
for all cardiac (MedDRA ID 10007541) and vascular (MedDRA
ID 10047065) disorders. Interactions of chemicals in the form of
STITCH compound identifiers and their MedDRA terms of side
effects were downloaded from the publicly available SIDER
database. We used PubChem Compound Identifiers (CIDs) to
match this list to the information on drug targets, drug status
(‘approved', ‘investigational', etc.), and drug SMILES notations
obtained from the Drugbank database. For drug target
information, only experimentally verified interactions (such as
inhibition, activation and intercalation between drugs and
proteins or other molecules, like DNA) as provided by
Drugbank were considered for this work. Compounds linked
to the MedDRA term ‘cardiac disorders' were labeled as drugs
with cardiotoxicity reports and were considered as ‘positive cases'
in further model contraction. Compounds with same targets and
no record of cardiac disorders in the database were considered as
safe and as ‘negative cases' in further model contraction. Safe
compounds were additionally filtered by their status, and only
approved compounds currently on the market were used for
analysis, resulting in 26 (out of 759) drugs being removed from
the analysis. This was performed to prevent possible unreported
toxicities in drugs considered safe but withdrawn from the
market. The unsafe group includes both marketed and
withdrawn drugs, including drugs withdrawn due to cardiac
side effects. Information about therapeutic classes of drugs were
collected from the MESH medical vocabulary.

In this work, we used the Connectivity map project as a
source of gene expression cell responses to drugs, or drug
transcriptional profiles. These were measured using an L1000
high-throughput profiling method. The L1000 fluorescent assay
allows the detection and quantification of the expression of up to
978 landmark and 80 control transcripts simultaneously in each
May 2020 | Volume 11 | Article 639
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TABLE 1 | Summary of databases and knowledge portals used in the study.

Name Type of data Link Reference

DrugBank Drug structure, list of targets www.drugbank.com (Wishart et al., 2008)
MedDRA Side effect hierarchy https://bioportal.bioontology.org/ontologies/MEDDRA
SIDER Drug safety information sideeffects.embl.de (Kuhn et al., 2016)
MESH Pharmacological classes information https://www.ncbi.nlm.nih.gov/mesh
Connectivity map Project Transcriptional profiles https://clue.io/cmap (Subramanian et al., 2017)
DToxS Transcriptional profiles https://martip03.u.hpc.mssm.edu/index.php
Frontiers in Pharmacology | www
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FIGURE 1 | Proposed approach for drug-induced cardiotoxicty prediction. (A) In silico prediction of multiple forms of drug-induced cardiac adverse reactions. (B)
The design of the proposed machine learning model builds on a comprehensive database of drugs linked to their transcriptional profiles, molecular descriptors,
fingerprints and safety information. Our database was collated using several publicly-available knowledge and data repositories, as detailed in Table 1. The rcdk
package was used to calculate the set of molecular descriptors and fingerprints. After collation, the whole dataset was split into training and testing sets of unique
sets of drugs in each. Using training data, the set of the most predictive features was selected. Those features were later used to train multi-label models (chain of
classifiers with nested stacking vs sets of individual classifier). Training was performed with two cross-validation strategies: random vs leave-drug-out. (C) Proposed
chain of classifiers with nested stacking model for multi-label prediction of drug cardiac safety. Each classifier L in the chain is trained on a set of F features and the
L-1 labels predicted by the previous L-1 classifiers. (D) Considered cross-validation approaches. Random cross-validation results in validation and testing sets
having profiles of drugs from training sets, which leads to inflated performance on validation and low generalisation abilities on unseen test data compared to leave-
drug-out cross-validation.
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well of 384-well plate, where each well can contain a separate
drug profile. This massive scale expression data is available in
multiple levels starting from raw fluorescent intensity values
from each well to replicate collapsed scores for drugs. In this
work, we used well-established ‘core' human cell lines with drug
transcriptional profiles available. We explored the provided
transcriptional profiles (normalized across each scan plate) of
the 977 ‘landmark genes' (Level 3a—NORM, as described in
detail in https://clue.io/connectopedia/data_levels), for six cell
lines (A549 and MCF7 for training and validation and PHH,
SKB, SKM1, A673 for sensitivity testing), two incubation times
(6 and 12 h), and multiple drug concentrations. To link the drug
transcriptional profiles provided by the Connectivity map project
to the information about their side effects, targets and status, we
utilized the Chemical Translation Service (http://cts.fiehnlab.
ucdavis.edu/) to match PubChem CIDs to their corresponding
Broad IDs. In total, we collected a database of 1,131 drugs (fully
analyzed for relationships across cardiotoxicity types), 357 of
which had transcriptional profiles (used for prediction), with a
total of 9,933 samples. Samples refer to independent
transcriptional profiles of a drug at a given cell line, incubation
time or concentration.

Calculation of Molecular Descriptors
and Fingerprints
We used the ‘rcdk' package (Guha et al., ) to calculate seven
molecular descriptors widely used in drug property prediction
(Dong et al., 2015; Zhang et al., 2016): molecular weight (MW),
partition coefficient (XLogP), atomic polarisabilities (apol),
topological polar surface area (TopoPSA), polar surface area
expressed as a ratio to molecular size (tpsaEfficiency), Ghose-
Crippen LogKow (ALogP) and molar refractivity (AMR). We
also calculated the commonly used 79-bit ‘estate' fingerprint.
These are widely used descriptors in drug property prediction
and have been shown to characterize drug properties, including
safety (Dong et al., 2015; Zhang et al., 2016).

Selection of Transcriptional Features
In order to evaluate the predictive power of individual
transcriptional profiles to cardiac safety prediction, following
(Cai et al., 2018) two selection methods (correlation-based,
wrapped-based) were considered. Correlation-based methods
aim to identify transcriptional features (genes) highly
correlated with each cardiotoxicity form. Wrapped-based
methods use predictive models to score all combinations
of feature subsets for each form of cardiotoxicity. As a
correlation-based method, the ‘select.cfs' function from the
Biocomb R package (Novoselova et al., 2018) was used, while
the Boruta algorithm implemented in the Boruta R package
(Lagani et al., 2017) was used as a wrapper-based method. This
way, for each cardiotoxicity form, we identify two subsets
of genes.

Cohen's Kappa scores (Cohen, 1960), calculated by the
‘Kappa.test' function from the fmsb R package, were used (i) to
estimate the accuracy of classifiers, and (ii) to evaluate the
similarities between vectors. The evaluation of similarities
Frontiers in Pharmacology | www.frontiersin.org 4
between vectors was applied to binary vectors of cardiotoxicity
types, and between transcriptional features vectors selected using
either correlation-based or wrapper-based methods, as described
above. The Kappa scores are given by:

k = 1 −  
1 − po
1 − pe

(1)

where po is the relative observed agreement between two binary
vectors, and pe is the expected agreement between predicted and
actual values. Values smaller than 0 demonstrate poor agreement
and values from 0.81 to 1 correspond to almost perfect
agreement. To analyze whether the chosen genes were
associated with the same or different biological functions, we
also intersected the lists of determined genes with the Reactome
database of pathways (Fabregat et al., 2018).

Training, Validation and Testing
Set Design
Models were trained on the expression values of relevant genes,
seven molecular descriptors values and 79 fingerprint values,
calculated as detailed above (340 features in total). We randomly
split the entire drug dataset by protein targets (information
obtained from the Drugbank) into unique training (291 drugs,
8,237 samples) and testing (66 drugs, 1,696 samples) sets. By
such design, both datasets only overlap by a set of protein targets,
but drugs on the testing phase are completely unseen during
training, therefore facilitating preclinical translation to novel
chemicals. This strategy was also enforced during model
development, where for each cardiotoxicity label its respective
training and validation sets were preserved completely non-
overlapping by drugs with leave-drug-out cross-validation
strategy (Figure 1D). We collapsed samples, so each drug
profile referred to gene expression values for each individual
drug with one cell line, incubation time and concentration.
Models were trained on matrices size of 340 × 1,154 and tested
on 340 × 746.

To benchmark the performance of models and select the best
set of parameters, we used leave-drug-out cross-validation in
contrast to random cross-validation (Figure 1C). This cross-
validation strategy is crucial to accurately assess the performance
of the model on unseen drugs, and therefore evaluate its
translational potential into real-world practice. We performed
the synthetic minority over-sampling technique (SMOTE)
(Chawla et al., 2002), implemented in the DMwR R package
(Torgo, 2013), on the training set in cross-validation to avoid
overfitting at any stage. To determine the generalisation ability of
methods for novel drugs, we assessed the best-performing
models on the selected testing set of 66 unique drugs.

Chain of Classifiers With Nested Stacking
To predict cardiovascular safety we employed a chain classifier
with nested stacking, which takes into account label
dependencies (Figure 1C). The chain of classifiers with nested
stacking (Senge et al., 2019) is a model that receives a feature
vector and maps it to a set of labels. Each classifier in the chain is
trained on a set of features and the set of labels predicted by the
May 2020 | Volume 11 | Article 639
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previous classifiers. We used cardiotoxicity types as labels and
gene expression values along with molecular descriptors and
fingerprints as features. We used the following order of
cardiotoxicity types obtained from MedDRA (see ‘Data
Preparation'): ‘Vascular disorders', ‘Cardiac disorder signs and
symptoms', ‘Cardiac arrhythmias', ‘Heart failure', ‘Coronary
artery diseases', ‘Pericardial disorders' and ‘Myocardial
disorders'. This order was based on the number of drugs
related to those side effects. Because the first model will not
receive the information from other cardiotoxicity types, we
introduced vascular disorders (which is also related to cardiac
disorders) as the first disorder for prediction, in order to
minimize the effect of the first position for ‘Cardiac disorder
sign and symptoms'. However, the accuracy of ‘Vascular
disorder' prediction was not used in the evaluation of the
model performance. This way, the chain of classifiers takes a
set of features (transcriptional, molecular descriptors and
fingerprints) and is tasked to predict whether the drug has
cardiotoxicity reports (‘positive case') or not (‘negative case'),
for six cardiotoxicity types.

To determine which algorithm accounts best for the observed
data, we adapted several supervised binary classification
algorithms widely used in bioinformatics: elastic net logistic
regression (glmnet R library by Friedman et al. (Friedman
et al., 2010)), random forest (ranger R library by Marvin et al.
(Wright and Ziegler, 2017)), gradient boosting (gbm R library by
Ridgeway et al. (Greenwell et al., 2007 )) and categorical boosting
(catboost R library by Prokhorenkova et al. (Prokhorenkova
et al., 2018)). All models were optimized with Latin hypercube
sampling of parameters (clhs R library by Roudier (Minasny and
McBratney, 2006)) towards maximum Matthews correlation
coefficient (MCC):

MCC = otp�otn −ofp�ofnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
otp +ofp
� �

otp +ofn
� �

otn +ofp
� �

otn +ofn
� �q (2)

where tp (true positives) and tn (true negatives) are the number
of unsafe and safe compounds predicted correctly, respectively,
and fp (false positives) and fn (false negatives) are the number of
safe and unsafe drugs predicted wrongly, respectively. An MCC
of 0 indicates that the prediction is not better than a random
prediction, an MCC of 1 indicates perfect prediction or total
agreement, and an MCC of −1 indicates total disagreement.

The optimized parameters are supplied in Supplementary
Table 4. We trained models with five-fold cross-validation
selected to leave drugs out to compensate for overfitting, and
to receive more robust performance metrics. Once trained, to
predict the cardiac safety of any unseen chemicals, the model
only receives as inputs their transcriptional features, molecular
descriptors, and fingerprints.

Model Comparison
In this study, our proposed chain of classifiers with nested
stacking for multi-label classification of drug cardiotoxicity is
compared against a set of independent binary classifiers by
cardiotoxicity types (meaning the drug has at least one side
effect). We adapted the same four classification algorithms
Frontiers in Pharmacology | www.frontiersin.org 5
(elastic net logistic regression, random forest, gradient boosting
and categorical boosting) for this task. We adjusted the set of
hyperparameters and validation and tested models as described
in the previous section. The optimized parameters for each
model are supplied in Supplementary Table 4.

Model Evaluation
In addition to MCC, the following metrics were used to evaluate
model performance for each cardiotoxicity forms:

Accuracy = otp +otn

otp +otn +ofp +ofn
, (3)

where tp is a number of correctly predicted drugs with
cardiotoxicity reports, tn is a number of correctly predicted
drugs without cardiotoxicity reports, fn is a number of
incorrectly predicted drugs with cardiotoxicity reports and fp is
a number of incorrectly predicted without cardiotoxicity reports.
Accuracy shows the ratio of correctly predicted drugs to a total
number of drugs.

F1 = 2� precision� recall
precision + recall

(4)

or F1 score, where

precision = otp

otp +ofp

and

recall = otp

otp +ofn
;

where tp is a number of correctly predicted drugs with
cardiotoxicity reports, tn is a number of correctly predicted
drugs without cardiotoxicity reports, fn is a number of
incorrectly predicted drugs with cardiotoxicity reports and fp is
a number of incorrectly predicted without cardiotoxicity reports.
Precision equals the fraction of correctly predicted unsafe
compounds in all compounds predicted as unsafe, whereas
recall shows the sensitivity of a model and equals the fraction
of correctly predicted unsafe compounds out of all real
unsafe compounds.

External Validation
As external validation data, we downloaded gene expression drug
profiles from the Drug Toxicity Signature Generation Center
(DToxS) website (https://martip03.u.hpc.mssm.edu/index.php).
This website provides access to expression data of PromoCell
cardiomyocytes (up to four lines) incubated with FDA approved
drugs. In total, we obtained 1,338 samples, which were collapsed
in the same manner as Connectivity map data, so each drug
profile referred to gene expression values for one cell line,
incubation time and concentration. As a result, models were
tested on 654 profiles of 51 drugs, 18 of which were for the same
drugs used for training and validation of models. We used ‘rcdk'
package to calculate the same fingerprints and set of molecular
descriptors as for the drug dataset that training and testing.
May 2020 | Volume 11 | Article 639
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AUC =
Z ∞

−∞
TPR(T) −FPR 0 (T)dT

� �
(5)

or area under the receiver operating characteristic (ROC)
curve, where TPR is the true positive rate (identical to
recall) and FPR is the false positive rate. AUC measures the
diagnostic ability of a predictor, where an AUC of 0.5
indicates that the prediction is not better than a random
prediction, and an AUC of 1 indicates perfect prediction.
The pROC R library by Robin et al. (2011) was used to
calculate AUC values for the classifiers.
RESULTS

Enriched Analysis and Prediction of Six
Drug-Induced Cardiotoxicity Forms Using
Transcriptional and Molecular Data
Figure 1 describes the computational and dataset framework
defined through this study. The six main drug-induced
cardiotoxicity forms were identified from MedDRA as the
focus for prediction: ‘Cardiac disorders signs and symptoms',
‘Cardiac arrhythmias', ‘Heart failure', ‘Coronary artery
disease', ‘Pericardial disorders', and ‘Myocardium disorders'
(Figure 1A).

Then, a large dataset of drugs was collected from diverse
publicly-available data repositories (Figure 1B), including two
sources of information: transcriptional profiles and derived
molecular descriptors and fingerprints. This yielded
information on 1,131 drugs, 357 of which had transcriptional
Frontiers in Pharmacology | www.frontiersin.org 6
profiles with a total of 9,933 samples. As a strategy for validation,
these were split into unique training (291 drugs, 8,237 samples)
and testing (66 drugs, 1,696 samples) sets. Training was blinded
to drugs on the testing set, hence facilitating preclinical
translation to novel unseen chemicals (Figure 1C).

Transcriptional and molecular descriptors for the drugs
were used as inputs to the machine learning algorithms
(Figure 1D). All machine-learning models were evaluated in
performance on the blinded testing dataset, also considering
two independent (random and leave-drug-out) cross-
validation strategies (Figure 1D). Further details on study
design are provided in Methods.

Figure 2A shows the number of drugs labeled as unsafe for
the six groups of cardiotoxicity forms considered. Notably,
49% (46 out of 93) of antineoplastic drugs are reported to
cause ‘cardiac disorders and signs and symptoms', indicating a
high prevalence across cardiotoxicity forms and drug classes
(Supplementary Table 1). On the other hand, 24% of CNS,
21% of CV, and 27% of antineoplastic agents produced cardiac
arrhythmias, and 23% of CV and 25% of antineoplastic agents
induced coronary artery disease (Supplementary Table 1).
The prevalence of heart failure, myocardial disorders and
pericardial disorders was lower for all drug classes,
although still significant in some cases (for example, 14%
of ant ineop las t i c agent s produc ing hear t f a i lu re ;
Supplementary Table 1). We also evaluated the level of
association between cardiotoxicity forms in terms of
Cohen's Kappa (Figure 2B) . ‘Cardiac arrhythmias '
demonstrate a substantial association with both ‘cardiac
disorder signs and symptoms' and ‘coronary artery
A B

FIGURE 2 | Prevalence and association of different cardiotoxicity forms in the drug database. (A) Proportion of drugs labeled as unsafe for given cardiotoxicity forms
out of all unsafe drugs (numbers in black) and all drugs (numbers in white). (B) Levels of association between cardiotoxicity forms, measured in terms of Cohen's
Kappa. Symbols represent statistical significance level by Z-test (*p <0.05, **p <0.01). ‘Cardiac dis S&S' is the MedDRA term for cardiac disorder signs and
symptoms, ‘dis' is for disorders.
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disorders', with Cohen's Kappa values of 0.61 and 0.60
respectively. Interestingly, ‘heart failure' demonstrates a
lower agreement with ‘cardiac disorder signs and symptoms'
compared to ‘cardiac arrhythmias' and ‘coronary artery
disorders' but higher agreement with ‘myocardial disorders'.

Based on the strong associations observed between drug-
induced cardiotoxicity forms, we concluded that a prediction
model should leverage dependance between side effects, and be
able to re-use the information learned about the molecular basis
of one side effect to better understand the molecular basis of
others. This motivates our formulation of the cardiotoxicity
prediction task as a multi-label classification problem, and our
proposed machine-learning architecture as a chain of classifiers
(Figure 1D), in order to preserve such relationships between
drug-induced cardiotoxicity forms.

Candidate Genes and Pathways
Associated With Cardiotoxicity
We then evaluated whether the association between
cardiotoxicity forms identified in Figure 2 was also evident
from transcriptional data, either in terms of genes or
pathways. We hypothesized that transcriptional data would
reveal underlying information on cardiotoxicity types when
genetic pathways, rather than individual genes, are considered
in the analysis. Figures 3A, B show the comparison of the
gene vectors ranked as important by two feature selection
methods for the different cardiotoxicity forms. Similarly,
Frontiers in Pharmacology | www.frontiersin.org 7
Figures 3C, D show this comparison in terms of the
Reactome pathways to which those genes are related.

Analysis of the list of genes showed little to no intersection
between them (Supplementary Table 2). Conversely, the
consideration of pathways significantly improved the
agreement (Supplementary Table 3). Gene and associated
pathways for ‘cardiac disorders', ‘cardiac arrhythmias' and
‘heart failure' identified by both methods display moderate to
high agreement, whereas for pericardial disorders no
significant agreement was found. Interestingly, cardiac
arrhythmias and coronary artery diseases show high
similarity in both selected vectors of genes and pathways,
and of label vectors of drugs.

Interestingly, G protein-coupled receptor transduction was
selected as important by both methods for the prediction of
cardiac disorder signs and symptoms (‘G alpha (q) signaling
events' and ‘G alpha (s) signaling events') and heart failure
(‘G-alpha (i) signaling events'). IGF1R and IGF1R-related
signaling were also among the genes and Reactome terms
selected by both methods for cardiac disorder signs and
symptoms and for pericardial disorders. MAMLD1 gene,
included in the Notch signaling pathways, was the only one
ranked as important for predicting cardiac arrhythmias by
both selection procedures. This further suggests association
between different cardiotoxicity forms also at the feature level,
which again motivates us to use a chain of classifiers to keep
relations between cardiotoxicity forms during prediction.
A B

C D

FIGURE 3 | Similarities in the list of selected genes identified by (A) the correlation feature selection, and (B) the Boruta wrapper-based algorithm. Similarities in the
list of pathways associated with genes identified by correlation-based feature selection (C), and the wrapper-based algorithm (D). Levels of association between
cardiotoxicity forms are measured in terms of Cohen's Kappa. Symbols represent statistical significance level by Z-test (*p <0.05, **p <0.01). ‘Cardiac dis S&S' is the
MedDRA term for cardiac disorder signs and symptoms, ‘dis' is for disorders.
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Machine Learning Prediction of Drug-
Induced Cardiotoxicity Forms: The
Importance of Leave-Drug-Out Cross-
Validation
Using transcriptional and molecular features, all investigated
forms of drug-induced cardiotoxicity were predicted with
relatively good accuracy using the proposed chain of classifiers
model with nested stacking trained with leave-drug-out cross-
Frontiers in Pharmacology | www.frontiersin.org 8
validation, and for all algorithms considered (elastic net logistic
regression, gradient boosting, categorical boosting, and random
forests). The best results were obtained for the chain of random
forest classifiers, with an average AUC of 0.79 and an average
MCC of 0.38 across all cardiotoxicity forms on validation, and
0.66 and 0.15 on testing (Figure 4A, Table 2, Supplementary
Figure 1 and Supplementary Table 4). The second best results
were obtained with a chain of gradient boosting classifiers, with
A

B C D

FIGURE 4 | Prediction of cardiotoxicity forms using the chain of classifiers with nested stacking (CC) versus a set of binary classifiers (BC). (A) AUC of best
performing CC and BC in safety drug prediction on validation (val) and testing sets (test) for each independent cardiac disorder. (B) Average AUC across all cardiac
disorders for CC versus BC in validation and test sets. (C, D) Comparison between random vs leave-drug-out cross-validation strategies. Average performance
across all labels is shown for the best performing chain of classifiers (CC) model, trained with leave-drug-out vs random cross-validation strategies, and for a set of
independent binary classifiers (BC). Random cross-validation significantly inflates the accuracy of the trained models compared to leave-drug-out validation. Cardiac
dis S&S': cardiac disorder signs and symptoms, ‘dis': disorders, ‘arrhyt': arrhythmias.
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TABLE 2 | The performance of multi-label classification models trained on transcriptional profiles and molecular descriptors and fingerprints of drugs on the validation
and the testing set. The values are reported for Area under the receiver operating characteristic (ROC) curve (AUC; upper value), % and Matthews correlation (MCC;
lower value).

Cardiotoxicity form Set Cardiac dis S&S Cardiac
arrhythmias

Heart failures Coronary
artery dis

Pericardial dis Myocardial dis Mean ± 0.5 SD

Leave drug out cross-validation strategy
Chain of classifiers with nested stacking
Dual feature set
RF Validation AUC 63 88 79 91 64 88 79 ± 6

MCC 0.21 0.50 0.29 0.68 0.13 0.46 0.38 ± 0.10
Testing AUC 70 64 58 54 83 87 66 ± 9

MCC 0.33 0.37 0.04 0.10 0.14 −0.08 0.15 ± 0.9
ELNET Validation AUC 62 67 65 55 71 65 64 ± 3

MCC 0.20 0.23 0.19 −0.03 0.6 0.37 0.17 ± 0.07
Testing AUC 67 65 63 49 66 70 63 ± 4

MCC 0.28 0.28 −0.08 −0.08 −0.03 0.01 0.06 ± 0.09
GBM Validation AUC 67 87 74 90 60 86 77 ± 6

MCC 0.29 0.55 0.35 0.66 0.16 0.54 0.42 ± 0.09
Testing AUC 66 62 51 55 60 64 60 ± 3

MCC 0.22 0.26 −0.08 0.03 0.12 −0.04 0.08 ± 0.07
CATBOOST Validation AUC 64 84 64 88 65 53 70 ± 7

MCC 0.30 0.68 0.32 0.65 0.24 0.02 0.37 ± 0.13
Testing AUC 67 63 59 57 67 49 60 ± 3

MCC 0.27 0.18 −0.07 0.09 0.35 0.0 0.14 ± 0.08
Transcriptional features only
RF Validation AUC 63 83 82 90 61 89 78 ± 6

MCC 0.24 0.47 0.4 0.66 −0.02 0.62 0.4 ± 0.13
Testing AUC 69 65 58 64 71 67 66 ± 2

MCC 0.22 0.19 0 0.21 0.11 0.11 0.14 ± 0.04
Descriptors and molecular fingerprints only
RF Validation AUC 66 83 82 86 48 81 74 ± 7

MCC 0.24 0.55 0.37 0.51 −0.08 0.19 0.3 ± 0.12
Testing AUC 63 72 42 56 62 58 59 ± 5

MCC 0.21 0.22 0.01 0.16 −0.08 −0.07 0.08 ± 0.07
A set of independent binary classifiers
RF Validation AUC 57 62 61 61 57 53 58 ± 2

MCC 0.14 0.12 0.06 −0.03 0.0 0.17 0.08 ± 0.04
Testing AUC 64 63 59 59 45 58 58 ± 3

MCC 0.21 0.18 −0.02 0.12 −0.01 −0.01 0.08 ± 0.05
ELNET Validation AUC 60 58 61 55 72 64 62 ± 3

MCC 0.12 0.15 0.10 −0.08 0.06 0.17 0.09 ± 0.05
Testing AUC 65 67 61 52 64 65 62 ± 3

MCC 0.19 0.25 −0.03 −0.08 −0.04 −0.05 0.04 ± 0.07
GBM Validation AUC 59 61 50 49 58 66 57 ± 3

MCC 0.11 0.22 −0.02 −0.03 −0.14 0.37 0.08 ± 0.09
Testing AUC 67 61 54 57 50 63 59 ± 3

MCC 0.21 0.20 −0.02 0.04 −0.03 0.05 0.08 ± 0.05
CATBOOST Validation AUC 62 60 61 56 54 70 60 ± 3

MCC 0.23 0.26 0.20 0.28 0.07 0.37 0.24 ± 0.05
Testing AUC 72 66 66 60 55 61 63 ± 3

MCC 0.37 0.22 0.0 0.11 0.0 0.06 0.13 ± 0.07
Random cross-validation strategy
Chain of classifiers with nested stacking
RF Validation AUC 92 96 93 95 94 92 94 ± 1

MCC 0.70 0.77 0.53 0.72 0.44 0.26 0.57 ± 0.10
Testing AUC 68 62 52 50 73 79 64 ± 6

MCC 0.21 0.28 −0.09 −0.04 0.27 −0.07 0.09 ± 0.09
A set of independent binary classifiers
RF Validation AUC 90 88 74 83 86 77 83 ± 3

MCC 0.67 0.61 0.25 0.57 0.56 0.16 0.47 ± 0.11
Testing AUC 66 63 59 56 45 58 58 ± 4

MCC 0.20 0.20 0.03 −0.09 −0.01 −0.01 0.05 ± 0.06
Frontiers in Pharmacolo
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net logistic regression, GBM is for gradient boosting machines, CATBOOST is for categorical boosting. Cardiac dis S&S is for cardiac disorders signs and symptoms MedDRA term,dis is
for disorders. Results for testing are shown in italics.
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average AUC of 0.71 and average MCC of 0.24 on validation, and
0.66 and 0.15 on test set. The chain of categorical boosting
classifiers showed average AUC of 0.77 and average MCC of 0.51
on validation, with average AUC of 0.65 and average MCC of
0.13 for testing. Finally, elastic net demonstrated the most
modest performance among the trained set of chain classifiers,
achieving an average AUC of 0.66 and average MCC of 0.16 on
validation, with average AUC of 0.60 and average MCC of 0.11
for testing. Following these results, we selected a chain of random
forest classifiers as the best model and evaluated its performance
in detail, including validation on new cell types, external
independent dataset and across cardiotoxicity types and
pharmacological classes of drugs.

Importantly, cardiotoxicity types predicted with the best
performing chain of classifiers model kept similar relationships
to the ones shown in the original data (Figure 2 and
Supplementary Figure 2). This was particularly clear for the
predominant associations between cardiac disease signs and
symptoms, cardiac arrhythmias and coronary artery disease.

With individual binary predictors, the best set of random
forest classifiers only obtained an average AUC of 0.67 and an
average MCC of 0.08 across cardiotoxicity types on validation,
with an average AUC of 0.62 and average MCC of 0.16 on testing
(Figure 4A , Table 2 , Supplementary Figure 1 and
Supplementary Table 4). Therefore, while cardiotoxicy types
were predicted with different accuracies, the inclusion of
information about other cardiotoxicities improved prediction
accuracy for all cardiotoxicity types (Figure 4B). This was also
observed on five different partitions of the entire dataset
(Supplementary Figure 3), where the chain of classifiers
Frontiers in Pharmacology | www.frontiersin.org 10
outperformed the sets of individual binary classifiers. In line
with that, the exclusion of cardiotoxicity forms resulted in
a decreased prediction accuracy of sequential labels
(Supplementary Table 4).

On the contrary to leave-drug-out, in the case of random
cross-validation, samples using the same drugs may be present in
training and testing datasets, and thus predictors learn
associations between individual drugs and their safety rather
than general features related to cardiotoxicity forms. This may
produce unrealistically high results, indeed overestimating the
accuracy of prediction.

To investigate these aspects in further detail, we compared
predictions with our proposed chain of random forest classifiers
with nested stacking and a set of independent random forest
classifiers, both trained with either leave-drug-out or random
cross-validation strategies. When validated and optimized with
random cross-validation, both models demonstrate almost
perfect accuracy on validation (averages for all cardiotoxicity
types: AUC = 1, MCC = 0.95 for chain of classifiers; AUC = 1,
MCC = 0.97 for independent predictors; Figures 4C, D, Table 2
and Supplementary Table 4) . Although apparently
outperforming the models trained with leave-drug-out cross-
validation, models trained with random cross-validation were
however less accurate when predicting cardiotoxicity types of
previously unseen drugs (Figures 4C, D, Table 2 and
Supplementary Table 4). Quantitatively, the chain of
classifiers trained and optimized with a random cross-
validation strategy exhibited an AUC of 0.67 and MCC of 0.13,
compared to an AUC of 0.70 and MCC of 0.16 for leave-drug-
out cross-validation (average values for all cardiotoxicity types).
A B

FIGURE 5 | Sensitivity of predictive accuracy to feature types, cell lines and incubation times. (A) Merging of molecular descriptors and fingerprints and
transcriptional features results in increased average performance across all drug classes. (B) The best performing model demonstrates similar predictive accuracy
across different cell lines (A549, MFC7) and incubation times (6 and 24 h) incubation times. For new cell lines (PHH, SKB, SKM1, A673), the model discriminates
more accurately seen drugs with unseen cell lines (‘New val') than unseen drugs (‘New test'). For new data type (DToxS), the model also discriminates more
accurately seen drugs (‘DToxS val') than unseen drugs (‘DToxS test').
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Similarly, a set of individual classifiers with random cross-
validation showed an AUC of 0.62 and MCC of 0.09,
compared to an AUC of 0.62 and MCC of 0.15 in the case of
leave-drug-out cross-validation.

To further explore the predictive value of individual feature
sets, we compared for the entire dataset the proposed chain of
random forest classifiers with nested stacking separately trained
Frontiers in Pharmacology | www.frontiersin.org 11
on each feature set. Models trained on both feature types
outperformed models trained only on one feature, showing on
validation an AUC of 0.80 for both feature types vs an AUC of
0.62 for molecular descriptors and fingerprints, or an AUC of
0.76 for transcriptional features only (Figure 5A, Table 2,
Supplementary Table 4). Similarly, the dual transcriptomic
and molecular classifier is more accurate on testing. The model
FIGURE 6 | Predictive accuracy across drug classes, cardiotoxicity forms and feature types. The best performing model trained on either molecular descriptors and
fingerprints, transcriptional features or both demonstrates different performance in predicting types of agents. For each drug class, the top bar plot shows the AUC
of the best predictor and the bottom bar plot displays the number of safe and unsafe drugs. CV for cardiovascular agents, CNS for Central nervous system agents.
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trained only on molecular descriptors and fingerprints achieves
0.65 AUC, being 0.66 AUC when trained only for
transcriptional features.

External Validation
To further investigate the predictive power of the developed
predictor and to assess its performance on different source of
transcriptional data, we additionally analyzed the DToxS dataset
(https://martip03.u.hpc.mssm.edu/index.php).

Notably, while DToxS provides gene expression data
measured with a different technique (RNAseq) and with
different cell lines (PromoCell cardiomyocytes), the proposed
chain of random forest classifiers with nested stacking still
achieved good accuracy when discriminating previously seen
drugs (average AUC of 72%, Figure 5B). The accuracy partially
drops when predicting cardiotoxicity forms for unseen drugs
(average AUC of 60%, Figure 5B). Interestingly, while the model
trained on molecular descriptors and fingerprints only shows
superior accuracy in predicting seen drugs (average AUC of 90%,
Supplementary Table 4), the dual transcriptomic and molecular
classifier is still more accurate on testing for unseen drugs. For
example, it is able to differentiate safe from drugs with reports of
cardiac arrhythmias with an AUC of 70% (vs 58% for molecular
descriptors and fingerprints, Supplementary Table 4). The
transcriptional feature only model shows less accuracy when
tested on new data, with an average AUC for all labels of 57%
(Supplementary Table 4). However, this model is more accurate
in predicting cardiac disorder signs and symptoms (AUC of 65%
vs 56% and 52%, for dual and molecular descriptors and
fingerprints models, respectively; Supplementary Table 4).

Predictive Accuracy Across Drug Classes
and Cardiotoxicity Forms
The best model (chain of random forest classifiers with nested
stacking) demonstrated different predictive accuracy across
cardiotoxicity forms and drug classes (Figure 6 and
Supplementary Table 4). For example, for antineoplastic
drugs, the best model predicted ‘pericardial disorders' more
accurately (Figure 6; AUC = 0.95) than the average across all
drugs, also achieving high accuracy in the prediction of ‘heart
failure' (AUC = 0.76). ‘Cardiac disorder signs and symptoms',
‘cardiac arrhythmias' and ‘heart failure' were also more
accurately predicted in the case of anti-inflammatory drugs
compared to other cardiotoxicity types (Figure 6; AUCs of
0.86, 0.78 and 0.76, respectively).

High accuracy was also achieved in the prediction of
‘myocardial disorders' by cardiovascular agents, as well as for
‘heart failure' induced by central nervous system agents (both with
AUC = 0.77, Figure 6). On the contrary, predictions for ‘cardiac
arrhythmias' were close or worse than random guessing for
cardiovascular and central nervous system agents (AUCs of 0.51
and 0.46, respectively) and for cardiovascular agents (AUC =
0.51). Greater error in the prediction of ‘coronary artery disorders'
was found for antineoplastic agents (AUC = 0.35). Some of these
cases of limited performance may be partially explained by a small
frequency of side effects for specific drug types. For example, only
Frontiers in Pharmacology | www.frontiersin.org 12
16 out of 56 total cardiovascular agents in our dataset are known to
cause cardiac arrhythmias and coronary artery diseases (Figure 6).
However, for antineoplastic drugs the frequency of coronary artery
disease (7/33) is the same than for cardiac arrhythmias (7/33) and
bigger than for heart failure (3/33), but the predictor performs
better in predicting the latter two than coronary artery disease,
indicating a possible dependency on feature types.

Interestingly, the model trained individually on molecular
descriptors and fingerprints demonstrated higher accuracy than
the transcriptomic or dual predictors in safety predictions of
‘cardiac arrhythmias' for cardiovascular, antineoplastic and
central nervous system agents, but not for anti-inflammatory
agents (Figure 6). For central nervous system agents, in general,
the molecular descriptor-based predictor is more accurate.
Notably, for ‘coronary artery disorders', a combination of the
two feature types leads to a decrease in accuracy compared to
individual feature set predictors.

For interpretability of these prediction differences, we
analyzed the feature space in testing against the best model
predictions when trained on either individual or combined
feature types (Supplementary Table 5 and Supplementary
Figures 4–8). Different transcriptional features and molecular
descriptors were associated with the accuracy of prediction. For
instance, drug samples with higher expression values of Alpha-
Synuclein (SNCA) or Heat Shock Protein 8 (HSPA8) genes were
more often predicted incorrectly by all three predictors
(Supplementary Figures 4 and 5). Drugs with a higher
number of atomic bonds (nAtomBond) (Supplementary
Figure 6) were classified less correctly when training on the
combined feature set or only on molecular descriptors. The same
was observed for drugs with higher values of polar surface area to
molecular size ratio (tpsaEffiency) or topological polar surface
area based on fragment contr ibut ions (TopoPSA)
(Supplementary Figures 7 and 8).
DISCUSSION

This study presents the first machine learning approach capable
of predicting six forms of drug-induced cardiotoxicity from both
gene expression and molecular descriptors data. Importantly, the
algorithm (based on a chain of classifiers) is specifically
developed to incorporate relationships between cardiotoxicity
forms, identified in our data analysis, and to tackle class
imbalance between cardiotoxic and safe drugs. We
demonstrate high accuracy with the strictest validation strategy
using drug datasets not used in training, and its importance
compared to random cross-validation on samples. A further
specific contribution of this study is the large comprehensive
dataset of 1,131 drugs curated and collected from publicly
available resources. This can provide a useful benchmark for
future studies. Thus, we propose a novel and robust solution for
preclinical drug safety testing that can potentially be expanded to
other organs' toxicities.

To implement this solution, we first collected and analyzed a
large dataset of 1,131 drugs from publicly available databases.
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They include both safe and cardiotoxic drugs, 357 of which with
cellular transcriptional profiles and a total of 9,933 samples
available. Secondly, we proposed and implemented a chain of
classifiers with nested stacking approach that classifies drugs by
their risk, able to relatively accurately predict up to six forms of
cardiotoxicity. Our method achieves a 0.80 average AUC across
all cardiotoxicity types on a leave-drug-out cross-validation
strategy on 291 drugs (8,237 samples). Further validation of
the method on new and previously unseen 66 drugs (1,696
samples) with multiple mechanisms of action demonstrated
that the proposed model holds high generalisation abilities
compared to sets of individual classifiers. Models trained with
leave-drug-out cross-validation were able to discriminate
between safe and unsafe drugs with a 0.70 average AUC across
all cardiotoxicity types. The model demonstrated higher
accuracy for specific adverse drug effects and type of agents,
and in particular for pericardial disease, cardiac disease and
symptoms, heart failure and myocardial disease for
antineoplastic, anti-inflammatory, cardiovascular and central
nervous system agents, respectively. These results suggest the
translational potential of the proposed approach towards
applications in a pre-clinical context.

The combined dataset collected in this study demonstrated
associations between forms of drug-induced cardiac
complications, which are in agreement with the known
literature on cardiac comorbidities. Clinical reports have
evidenced a significant association between heart failure and
other cardiovascular comorbidities, such as atrial fibrillation,
ischemic heart disease and arrhythmias (Lawson et al., 2018;
Kendir et al., 2018). Patients with a history of coronary heart
disorders have been also shown to have a higher incidence of
atrial fibrillation, one of the most common forms of cardiac
arrhythmias (Naser et al., 2017). In our work, coronary artery
disorders, which include ischemia and myocardial infarction,
demonstrated a significant similarity to cardiac arrhythmias in
terms of the drugs they are related to. We showed the same for
heart failure and cardiac disorders, which displayed a moderate
and substantial agreement to cardiac arrhythmias.

Notably, the list of genes identified as most important features
(obtained by using two completely distinct feature selection
methods while counting distinct genes for each label)
demonstrates a significant amount of intersection at the level
of associated pathways. For example, pathways related to Notch
signaling were ranked as important for cardiac arrhythmia
prediction by both methods. Previous evidence has shown the
importance of Notch signaling in heart development and cardiac
disease, including malignant congenital arrhythmias (D'Amato
et al., 2016). IGF signaling and IGF1R were also selected
consentaneously by both algorithms for cardiac disorder signs
and symptoms and pericardial disorders, evidencing their key
role in heart tissue functioning (Troncoso et al., 2014). In spite of
being profiled using cancer cell lines, the selected features seem
biologically relevant to cardiotoxicity, given their human origin.
This emphasizes the potential benefits of using the combined
approach for feature selection. At the same time, further detailed
investigation of the feature importance list could help evaluate
Frontiers in Pharmacology | www.frontiersin.org 13
the proposed genes as possible therapeutic targets for
cardiovascular therapies.

Our method takes advantage of the chain of classifiers
approach. This approach significantly outperformed binary
classification approaches that treat each label independently,
with an improvement of 12.9% in terms of AUC (from AUC
of 0.62 to 0.70). This highlights the importance of incorporating
information about related adverse reactions in predicting drug
safety. While demonstrating good generalisation abilities on
unseen data, the model showed different performance across
cardiotoxicity types depending on the type of agents. Cardiac
arrhythmia-related safety was predicted more accurately for
cancer and anti-inflammatory agents than for cardiovascular
and central nervous system agents. This might be improved by
the introduction of information more relevant to specific
mechanisms of arrhythmogenesis.

The accumulated body of evidence suggests that gene
expression signatures alone could also be used as a biomarker
of cell response to drugs (Aliper et al., 2016; Xie et al., 2018). Our
results, in line with previous studies (Wang et al., 2016),
demonstrate that coupling of transcriptional profiles and
molecular descriptors indeed improves the predictive power of
algorithms. Thus, the combination of both feature types indeed
increases the mean accuracy of a chain of classifiers by 8% (AUC
of 0.65 to 0.70).

Previous research (Wang et al., 2016; Messinis et al., 2018)
reported good accuracy in the prediction of multiple adverse
reactions and myocardial infarction. However, such approaches
were evaluated using drugs included in the training, rather than
in an independent dataset as in our study, and neglected existing
dependencies between various forms of cardiotoxicity, as
demonstrated here. Indeed, our findings suggest that the
retention of the information about cardiotoxicity types
dependencies results in greater accuracy (Figures 4A, B). At
the same time, we show that models trained with random cross-
validation may display a significantly inflated performance on
validation (Figures 4C, D), however becoming less accurate
when predicting previously unseen drugs. In general, a leave-
drug-out cross-validation strategy demonstrated a more robust
performance compared to random cross-validation, the latter
evidencing inflated accuracy metrics, which in turn may
complicate model optimisation and overstate their expected
generalization ability. Our proposed chain of classifiers model
with nested stacking has indeed better generalization for multi-
label predictions than previous models such as that by Wang and
colleagues (Wang et al., 2016), and demonstrates a superior
performance compared to models based on sets of
individual classifiers.

Our model can predict both acute (cardiac arrhythmias) and
chronic (coronary artery disorders and heart failures) effects of
drugs, based on clinical human responses collected via SIDER.
Chronic drug-induced cardiac changes are often irreversible and
their effect is delayed. Therefore their prediction poses a
challenge, as they require long-term animal experimentation
and the drug effect on the animal cardiac system is highly
variable and hard to translate into the human clinic (Lamberti
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et al., 2014). Another key advantage of our approach is the use of
perturbation databases such as LINCS and Connectivity map.
They constitute great resources for preclinical applications
(Musa et al., 2018) and even have been used extensively to
identify novel drug candidates that confirmed their effectiveness
experimentally (Han et al., 2018). Providing a cheaper alternative
to animal models, computational methods that integrate
transcriptional responses of drugs and their molecular
characteristics, such as proposed, can be used prior to animal
experiments identifying drug cardiotoxicity early in the pre-
clinical phase.

Using transcriptional signatures, molecular descriptors and
fingerprints, the general methodology proposed in this study
could be further applied to other tissue-specific side effects and
organs. We presume that our approach can be also extended to
other areas including drug target prediction, where information
about the multi-label properties of drugs or multi-target
properties plays a vital role (Ramsay et al., 2018).

A current limitation of the database used in this study is the
absence of isomers (drugs with similar chemical structure, and
hence similarmolecular descriptors and fingerprints) with different
safety profiles. While we expect such chemicals to have different
transcriptional profiles, and therefore to be discriminated by their
transcriptional features, further analysis is required to test this
hypothesis. Our model demonstrated good generalisation
properties under completely new cell lines (Figure 5B). However,
cross-platform differences in the acquisition of transcriptome data
pose additional challenges for future use, and validation on an
external dataset of RNAseq expression samples showed amoderate
loss of prediction accuracy (Figure 5B). In addition, a limiting
factor in the number of drugs used in this study was the availability
of drug transcriptional profiles (rather than information on drug-
induced cardiotoxicities), and the release of additional datasets
would be a valuable resource for future studies. This study is also
constrained by the feature space explored, with only 971 of
landmark genes analyzed, seven molecular descriptors, and one
type of fingerprints used for model contraction. Inclusion of
information about expression values of other genes or more
comprehensive descriptors and fingerprints might increase the
predictive power of models and bring more insights. Machine-
learning algorithms, however, are known to be limited in their
ability to provide an interpretation of learnt associations.
Mechanistic models coupled with machine-learning-based
approaches represent an alternative attractive approach, with the
Frontiers in Pharmacology | www.frontiersin.org 14
potential to shed light on aspects of the underlying cardiotoxicity
mechanisms (Lancaster and Sobie, 2016). Whereas these aspects
fall beyond the goal of our study in presenting our proposed
approach, they deserve future consideration in order to refine its
predictive power, so it does comparison against other multi-target
machine-learning algorithms.
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