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RHD variants in D� Chinese pregnant women arose difficulties in management during
pregnancy. Therefore, this study aims to precisely manage D� pregnant women by
evaluating the spectrum of RHD mutations in D�pregnant women and getting insight into
the possible rare alleles of RHD. A total of 76 D�pregnant women were analyzed by performing
polymerase chain reactions with sequence-specific primers (PCR-SSP), the 10 RHD exons
Sanger sequencing, RHD zygosity detection, and mRNA sequencing (mRNA-seq). About
40% of alleles are variations of RHD, including RHD 1227A homozygous, RHD-CE(2-9)-D,
et al. Therefore, we developed amolecular diagnostic strategy for Chinesewomen, andmost D�
pregnant women can be diagnosed with this simple decision tree. After RHD genotyping for D�
pregnancy women, we eliminated at least 15% unnecessary ante- and postpartum injections
of Rh immunoglobulin (RhIG). As the first pedigree study and the first functional analysis under
physiological conditions, mRNA-seq revealed that c.336-1G>A mutation mainly led to the
inclusion of the intron 2, which indirectly explained the D�phenotype in this family. We also
developed a robust protocol for determining fetal RhD status from maternal plasma. All 31
fetuses were predicted as RhD positive and confirmed the RhD status after birth.
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INTRODUCTION

The D antigen is one of the most immunogenic, diverse, and clinically crucial protein-based blood
groups. Anti-D is still the leading cause of the hemolytic disease of the fetus and the newborn (HDN)
(Flegel et al., 2009). Therefore, Rh immunoglobulin (RhIG) treatment was recommended for D�
pregnant women for the prevention of HDN (Qureshi et al., 2014). However, RHD genotyping
identified that approximately 40% of the D�pregnant women with weak, discrepant, or inconclusive
D�phenotype are not candidates for RhIG treatment (Londero et al., 2020). Thus, RHD genotyping is
critical for the precise management of D�pregnant women (Sandler et al., 2015). RHD genotyping is
also crucial for avoiding alloimmunization in blood transfusion. Evidence has confirmed that someD�
blood donors have variant RHD alleles, which might cause alloimmunization in D� recipients.
Therefore, genotyping for RHD in D�donors was suggested as a routine procedure in blood centers
(Krog et al., 2011; Perez-Alvarez et al., 2019).

RHD genotyping is more critical for D�Chinese people, for about 40% of them have RHD variants
instead of RHD deletion (Colin et al., 1991; Zhang et al., 2019). However, few studies get insights into
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the mRNA product of RHD variations in China (Liu et al., 2010).
Moreover, Most RHD variants studies rely on the bioinformatics
tools in silico and plasmid construct (Fichou et al., 2015; El Wafi
et al., 2017). Very little functional data under physiological
conditions is available to characterize the effect of the
mutation at the molecular level.

At the same time, due to the high frequency of RHD variants in
D� Chinese pregnant women, the high-throughput method,
automated real-time quantitative polymerase chain reaction
(PCR), is not eligible for non-invasive prenatal testing (NIPT)
for predicting fetal RhD status in D�Chinese people (Clausen
et al., 2019). Therefore, a more flexible method needs to be
developed for D�Chinese pregnant women.

Thus, to precisely manage D� pregnant women, this study
elucidated the molecular basis of D�pregnant women in Shaoxing
and established a simple molecular diagnostic strategy for
Chinese D� pregnant women. In addition, we investigate the
first family study and the first mRNA sequencing (mRNA-seq)
for c.336-1G>A alleles under physiological conditions to analyze
the mechanism of intronic mutation. We also developed a robust
protocol for determining fetal RhD status from maternal plasma.

MATERIALS AND METHODS

Test Subjects
This study was approved by the Shaoxing Maternal and Child
Health Hospital (approval n. 277). A total of 76 RhD-negative
pregnant women underwent polymerase chain reactions with
sequence-specific primers (PCR-SSP), 10 RHD exons Sanger
sequencing, RHD zygosity detection, and mRNA-seq between
November 2018 and June 2020.

Test Method
DNA extraction
Nucleic acid extraction or purification was performed using
commercial reagents (Tianjin Super Biotechnology Developing
Co., Ltd., Tianjin, China; Lot No.: 201808001). Sample DNA was
extracted according to the instructions of the DNA Extraction Kit,
and the DNA concentration was measured and diluted to a final
concentration of approximately 30 ng/μL (A260/280: 1.6–1.9). If the
samples could not be tested immediately, they were stored at -20°C.

Polymerase Chain Reactions with Sequence-Specific
Primers
The Human Erythrocyte RHD Genotyping Kit (PCR-SSP)
(Tianjin Super Biotechnology Developing Co., Ltd., Tianjin,
China; Lot No. 190830001) was used to detect eight common
RHD genotypes: RHD-positive, RHD deletion, RHD-CE(2-9)-D,
DVa (Hus), DVI III, weak D15, DEL RHD 1227A homozygous,
and DEL RHD 1227A heterozygous. Reaction parameters were
set according to the Human Erythrocyte RHD Genotyping Kit
instructions, and amplification was performed on a Hema 9600
Gradient Thermal Cycler (Hangzhou Bioer Technology Co., Ltd.,
Zhejiang, China). The method is briefly described as follows. The
PCR amplification system consisted of dNTP-Buffer working
solution 80 μL, Taq enzyme 0.8 μL, DNA 10 μL, and 10 μL of

the above-mixed solution was added into each of the eight wells
coated with primers. PCR amplification procedure: pre-
denaturation at 96°C for 2 min; 96°C for 20 s, 68°C for 1 min,
5 cycles; 96°C 20 s, 65°C 50 s, 72°C 45 s, 10 cycles; 96°C 20 s, 62°C
50 s, 72°C 45 s, 18 cycles; Finally, it was extended at 72°C for
5 min. PCR products were visualized on a gel imager after 2.5%
agarose gel electrophoresis, and the results were interpreted
according to the instructions provided with the kit.

Zygosity Detection and Sanger Sequencing
RHD zygosity detection and the 10 RHD exons Sanger sequencing
were commissioned to Tianjin Super Biotechnology Developing
Co. (China). RHD zygosity was assessed by the PCRmethod. Two
pairs of primers were designed to amplify the hybrid Rhesus box
of RHD- (2,700 bp) and internal control (1009 bp), respectively. If
a hybrid Rhesus box is detected, there is a complete deletion of the
RHD gene. The Sanger dideoxy method performed direct
Sequencing of all the 10 RHD exons and flanking intron
regions. Sequence analysis was performed by DNAMAN v9
(Lynnon Biosoft Co., United States) and ChromasPro v1.2
(Technelysium Pty. Ltd., Australia), and the reference allele
was RHD*01 (NG_007494.1)

RHD mRNA-seq
RHD mRNA-seq was commissioned to Beijing Beikang Medical
Laboratory Co. (China). First, the total RNA of whole blood was
extracted, and the mRNA with polyA tail was enriched by Oligo
(dT) magnetic column. Subsequently, the obtained mRNA was
randomly interrupted with divalent cations in NEB
Fragmentation Buffer, and the library was constructed by the
standard NEB library construction method. NEBNext® UltraTM
RNA Library Prep Kit for Illumina® was used for the library
construction. The first strand of cDNA was synthesized in the
M-MuLV reverse transcriptase system with the fragmented
mRNA as templates and random oligonucleotides as primers,
and then the RNA strands were degraded with RNaseH.

Moreover, dNTPs were used to synthesize the second strand of
cDNA under the DNA polymerase Ⅰ system. After purifying the
double-stranded cDNA, end-repair, A-tailing, and ligation of
sequencing adapter were performed. Next, the 250–300 bp
cDNA was screened with AMPure XP beads, PCR
amplification was performed, and the PCR product was
purified again with AMPure XP beads to obtain the library.
Qubit® 2.0 Fluorometer (Thermo Fisher Scientific, Walsham,
United States) was used for preliminary quantification after the
library was constructed. Then the library was diluted to 1.5 ng/μL,
and Agilent 2,100 bioanalyzer was used to detect the insert size of
the library. Then qRT-PCR was used to measure the effective
concentration of the library whose insert size was in line with the
expectation. Accurate quantification by qRT-PCR (the effective
concentration of the library was higher than 2 nM) was to ensure
the quality of the library. Then the library was pooled and finally
analyzed on the Novaseq 6,000 sequencer.

Non-Invasive Fetal RHD Genotyping
Cell-free fetal DNA (cffDNA) extraction from maternal plasma
(200 μL) was performed using the BGISP-300 (BGI, Shenzhen,
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China) and the Nucleic Acid Extraction (BGI, Shenzhen, China)
kits. First, the DNA amplification products were quantified on a
Qubit® 2.0 Fluorometer (Thermo Fisher Scientific, Walsham,
United States) using the QubitTM dsDNAHS Assay kit (Thermo
Fisher Scientific, Walsham, United States). Then use the Human
Erythrocyte RHD Genotyping Kit (PCR-SSP) (Tianjin Super
Biotechnology Developing Co., Ltd., Tianjin, China; Lot No.
190830001) to detect exon 1, 5, 6, 7, 9. The PCR amplification
system consisted of dNTP-Buffer working solution 80 μL, Taq

TABLE 1 | Genotyping results of RHD by PCR-SSP method in 76 pregnant
women in Shaoxing.

Genotype Number of samples Proportion (%)

RHD deletion 48 63.2
RHD-CE(2-9)-D 11 14.5
RHD 1227A homozygous 12 15.8
RHD VI III 2 2.6
Undetectable 3 3.9
Total 76 100

FIGURE 1 | Three cases in which the genotype could not be confirmed by PCR-SSP method were found to have point mutations after RHD Sanger sequencing:
Sample a. RHD*10.08 partial D type (exon 3 c.340C>T); Sample b. RHD*01EL.02 type (exon 1 c.3G>A); Sample c. RHD*01N.25 type (intron 2 c.336-1G>A).
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enzyme 0.8 μL, DNA 10 μL, and 10 μL of the above-mixed
solution was added into each of the eight wells coated with
primers. PCR amplification procedure: pre-denaturation at
96°C for 2 min; 96°C for 20 s, 68°C for 1 min, 8 cycles; 96°C
20 s, 65°C 50 s, 72°C 45 s, 11 cycles; 96°C 20 s, 62°C 50 s, 72°C 45 s,
30 cycles; Finally, it was extended at 72°C for 5 min. PCR
amplification products were imaged on a gel imager after 2.5%
agarose gel electrophoresis, and the results were interpreted
RhD+ when any of the exons (1, 5, 6, 7, 9) were positive for
RHD deletion women, and any of the exons (5, 6, 7, 9) were
positive for RHD-CE(2-9)-D women.

RESULTS

RHD Genotypes in D�Pregnancy Women
The PCR-SSP results indicated 63.2% (48/76) RHD deletion
homozygous, 15.8% (12/76) RHD 1227A homozygous, 14.5%
(11/76) RHD-CE(2-9)-D, 2.6% (2/76) RHD VI III, and 3.9% (3/
76) genotypes could not be identified by PCR-SSP (Table 1).

Three Cases of RHD Point Mutation
The first case was RHD*10.08 partial D type (exon 3 c.340C>T)
(Figure 1, Sample a). The second was RHD*01EL.02 type (exon 1
c.3G>A) (Figure 1, Sample b), and a mutation at the splicing site
was found as RHD*01N.25 type (intron 2 c.336-1G>A) (Figure 1,
Sample c) in the third case.

Family Study of 336-1G>A Mutation
Two other RhD-negative family members (III-1, III-3) were
identified in the family of the patient with RHD*01N.25
(intron 2 c.336-1G>A) (Figure 2). PCR-SSP and RHD
zygosity analysis confirmed the proband’s mother (II-4)
and uncle-in-law (II-1) had the hybrid Rhesus box
detected, with RHD+/RHD- genotype (Supplementary
Figures S1–S2). In comparison, proband’s father (II-3),
aunt (II-2) (Supplementary Figure S3) have the same
genotype RHD+/336-1G>A, which speculated the zygosity
of the proband and her cousin (III-1) as RHD-/336-1G>A.

RhD serological results and RHD genotype of this family are
shown in Table 2.

mRNA Sequence Analysis
The sequencing results (Figure 3) verified 336-1G>A mutation
site and revealed the multiple splicing products of different
lengths with the intron 2 residue. In addition, the number of
reads in intron 2 was significantly higher than other introns
(Supplementary Figures S4–S6), suggesting that intron 2 was
improperly spliced after c.336-1G>A mutation.

Non-invasive Fetal RHD Genotyping
Fetal RhD status in 28 cases of maternal homozygous RHD
deletion and 3 cases of maternal RHD-CE(2-9)-D were
predicted (Table 3). All predicted results were consistent with
the newborn RhD status. Two cases showed RhD negative in the
first samples but confirmed positive in the second samples.

DISCUSSION

RHD Genotypes of D�Pregnant Women in
Shaoxing and the Molecular Diagnostic
Strategy for Chinese D�Pregnant Women
RhD-negative frequencies show vast racial differences (Xu et al.,
2003; Flegel et al., 2009; Polin et al., 2009; Cruz et al., 2012; Crottet
et al., 2014; Perez-Alvarez et al., 2019) (Table 4). Thus, for diverse
ethnic populations, it is necessary to adopt different RHD
genotyping strategies to the spectrum of prevalent alleles. In
our study, the main genotypes of RHD in D�pregnant women
in Shaoxing were RHD deletion, RHD 1227A homozygous type,
and RHD-CE(2-9)-D type. The profile of our survey was in
concordance with that of another study in China (Zhang
et al., 2019), indicating minor differences in the RHD
genotypes of D� pregnant women across different regions in
China. Using the PCR-SSP method, designed for eight
common Chinese RHD genotypes: RHD-positive, RHD
deletion, RHD-CE(2-9)-D, DVa (Hus), DVI III, weak D15,

FIGURE 2 | Family pedigree of the patient with RHD*01N.25 type (intron 2 c.336-1G>A), with ABO blood group, RhD antigen phenotype, and genotype (some
family members were tested), labeled sequentially below each case in the pedigree.
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DEL RHD 1227A homozygous, and DEL RHD 1227A
heterozygous, we found that about 96.1% of D� women can
identify RHD genotype, and the rate rises to above 99% when

adding the 10 RHD exons sequencing. Therefore, we established a
simple molecular diagnostic strategy for Chinese D� pregnant
women (Figure 4).

TABLE 2 | RhD serological results and RHD genotype of the family of the case with RHD*01N.25 (intron 2 c.336-1G>A).

Subject RhD saline
test

Irregular
antibodies

DAT (Modified) IAT Absorption and
elution

test (absorbed by
IgG anti-D in
a ratio of

1:1)

Serological RhD
phenotype

RHD
GenotypeIgG

anti-D
IgG + IgM
anti-D①

IgG + IgM
anti-D②

Ⅱ-1 4+ 0 0 - - - - D+ RHD+/RHD-
Ⅱ-2 4+ 0 0 - - - - D+ RHD+/

336-1G>A
Ⅱ-3 4+ 0 0 - - - - D+ RHD+/

336-1G>A
Ⅱ-4 4+ 0 0 - - - - D+ RHD+/RHD-
Ⅲ-1 0 0 0 0 0 0 0 D− RHD-/

336-1G>A
Ⅲ-3 0 0 0 0 0 0 0 D−
Ⅲ-5(proband) 0 0 0 0 0 0 0 D− RHD-/

336-1G>A
Ⅲ-7 + 0 - - - - - D+
RHD deletion
homozygous

0 0 0 0 0 0 0 D−

RHD 1227A
homozygous

0 0 0 0 0 0 1+ Del

RHD+ homozygous 4+ 0 0 4+ 4+ 4+ 3+ D+

Note: a The samplewith RHD deletion homozygous and the sample with RHD+ homozygouswere used as negative control and positive control for each test, respectively. The samplewith
RHD 1227A homozygous was used as weak positive control for absorption and elution test. b The results of III-7 were obtained from the records of delivery in our hospital, and the intensity
of agglutination was not determined. c IgG + IgM anti-D① and IgG + IgM anti-D② are reagents of different batches from the same manufacturer. Abbreviations: DAT, direct antiglobulin
test; IAT, indirect antiglobulin test.

FIGURE 3 | mRNA-seq results using the Integrative Genomics Viewer in a web browser (IGV-Web app version 1.6.3) (Robinson et al., 2011), showing multiple
splicing products with different lengths (31 bp - 197 bp) of intron 2 sequences residue which are much longer than the 28 bp predicted by Fichou (Fichou et al., 2015),
verifying that a cryptic site upstream of the constitutive acceptor site was activated in the presence of c.336-1G>A (green). To avoid the possibility of paralogs of
transcript isotype, we BLAT the read’s sequences in different regions and confirm that 197 bp intron 2 sequences residue near the mutation site is unique and has
no isotypes.
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The Precise Guide of RhIG use for D�
Pregnant Women
The occurrence of alloimmunity in D�pregnant women is related
to several factors, such as maternal RHD genotype and RhD
antigen epitope (Flegel, 2011); quantity of D-positive fetal red
blood cells entering the body (Woodrow, 1971); and other factors
such as ABO blood type, maternal HLA class, or fetal sex (Hadley
and Soothill, 2002). However, the main factor is maternal RHD
genotype and RhD antigen epitope. Therefore, our study guides
RhIG use according to the different RHD genotypes in D�
pregnant women (Table 5).

TheRHD (c.1227G>A) allele, named the DEL type or AsianDEL
type, is the most prevalent DEL allele in Asians. Asian DEL is always

mistyped as D-negative by routine serological assays (Kim et al.,
2020). Therefore, RHD genotyping is the gold standard for detecting
DEL (Nuchnoi et al., 2014). The RHD (c.1227G>A) should be
managed as D-positive for RhIG administration or selection of
blood components for transfusion (Chun et al., 2020). In 2015, a
study revealed that erythrocytes carrying the 1227Amutation might
express very low “normal”Dantigen levels (Fichou et al., 2015). This
theory explains why “Asian DEL types” do not cause hemolytic
disease in newborns and fetuses. Thus, at least 15% of D�pregnant
women in China, typed as the RHD (c.1227G>A) allele, will benefit
from RHD genotyping and be free from unnecessary RhIG use. At
the same time, to avoid transfusion of DEL RBC units to D�
recipients, RBC units carrying c.1227G>A mutation should be
transferred into the D＋ pool (Flegel et al., 2009).

RHD-CE(2-9)-D is a hybrid allele that replaces exons 2 to 9
by RHCE. Lacking D antigen expression, RBCs of RHD-CE(2-
9)-D will not risk D�recipients (Flegel et al., 2009). At the same
time, women with RHD-CE(2-9)-D should be managed as D�
and be given RhIG for D immunoprophylaxis in pregnancy
(Table 5).

DVI is the most common partial D that produces anti-D, and
newborns born to DVI mothers with anti-D may develop
hemolytic disease. DVI III is named a D-Ce(3-6)-D hybrid
and DVI III erythrocytes carry relatively high RhD antigen

TABLE 3 | Fetus RhD status predicted results of 33 samples of NIPT plasma in 31 pregnant women.

Maternal RHD-Deletion Maternal RHD-CE(2-9)-D

Plasma samples Number 28 3

Predicted fetus RhD status RhD-positive 28 3
RhD-negative 0a 0
Uncertain 0 0

Newborn RhD status RhD-positive 28 3

a2 cases show negative results in 12-16th gestation week, but results in the second samples after few weeks later show positive.

TABLE 4 | Frequency of RHD alleles in serologic RhD-negative blood donors.

Country Frequency (%) Reference

German 0.21 Flegel et al. (2009)
Austrian 0.4 Polin et al. (2009)
Swiss 0.47 Crottet et al. (2014)
United States 0.94 Perez-Alvarez et al. (2019)
Brazilian 9.2 Cruz et al. (2012)
China 19.9 Xu et al. (2003)

FIGURE 4 | A simple decision tree for the molecular diagnosis of D– pregnancy women in China.
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densities. Therefore, DVI III recipients should be transfused with
RhD negative blood, while DVI III donor should be managed as
D+ (Wagner et al., 1998).

Our study characterized two point mutations in exons:
c.340C>T and c.3G>A. According to the guideline (Flegel
et al., 2020), both should be managed as D� and given RhIG
for D immunoprophylaxis. More interesting, a recent study
showed that weak-D and Asia-type DEL alleles’ coexistence
would completely express the D-antigen (Chun et al., 2020),
which means free from RhIG administration.

For our study’s 336-1G>Amutation, the mRNA products of the
proband showed long intronic segment retention, which will induce
DEL or D-negative phenotypes (Fichou et al., 2015). The serological
study for familymembers reveals D�phenotypes inRHD-/336-1G>A
heterozygote and D positive in RHD+/336-1G>A heterozygote
(Table 2). However, lacking the detailed evidence for no
D-antigen in red blood cells, we still suggested these individuals
with RHD-/336-1G>A heterozygote should be managed as RhD
positive donors in transfusion in an abundance of caution.

Thus, in our study, RHD genotyping for D�pregnant women
eliminates at least 15% unnecessary ante- and postpartum
injections of RhIG and gave a detailed guide of RhIG use for
these D�pregnant women.

c.336-1G>A Mutation Analysis and Family
Study
More than 300 variant alleles of RHD have been reported
(Kawano et al., 1998; Ye et al., 2007; Fichou et al., 2015; Chen
et al., 2016; Ogasawara et al., 2016; ElWafi et al., 2017; Chun et al.,
2018; Raud et al., 2019), including single-nucleotide
polymorphisms (SNPs), small or large fragment deletions,

gene rearrangements, and complete RHD deletions. The intron
mutation disrupts a constitutive splice site, resulting in improper
retention of an intron or activation of a cryptic splice site in the
vicinity of the mutant. Thus, this mutation will induce DEL or
D-negative phenotypes by minute to no expression of the D
antigen at the surface of RBCs. As many intronic mutated alleles
of RHD were identified in Sequencing, several bioinformatics
tools were used to predict the defect resulting from a genetic
variation in silico. However, very few functional data are available
to confirm these predictions. Furthermore, lacking fresh blood
samples for RNA extraction, many functional studies mainly
relied on recombinant plasmids. Hence, clinical transcriptome
data and protein analysis are urgently needed to investigate
genotype-phenotype mechanisms (Liu et al., 2010; Fichou
et al., 2015; El Wafi et al., 2017).

We found a family with 336-1G>A intron mutation in our
study. The mutation site of 336-1G>A is an intron 2 acceptor.
The 336-1G>Amutation was first reported in Korea in 2005 (Kim
et al., 2005) and first identified in Chinese blood donors in 2009
(Ye et al., 2009), named as the RHD*01N.25 type (IVS2-1G>A) by
ISBT. In 2015, The first functional analysis by plasmid
recombination experiments revealed that the cryptic splicing
site of c.336-1G>A was activated, and mRNA product was
either increased by 28 base pairs (bp) (from intron 2) or
decreased by 21 bp (exon 3) (Fichou et al., 2015).

Our serological D-negative proband was an RHD-deletion/
336-1G>A heterozygote in our study. SpliceAI showed a 94%
decrease in the probability of acting as a splice acceptor in the
336-1G>A site. Our mRNA products of the 336-1G>A mutation
under physiological conditions confirmed the prediction. A
cryptic site upstream of the constitutive acceptor site was
activated in the presence of c.336-1G>A, which resulted in

TABLE 5 | RHD alleles and guidance for managing transfusion or RhIG administration.

Detected alleles in
our study

ISBT allele designation Candidate for RhIG Suggested RhD phenotype
as a donor

Suggested RhD phenotype
as a recipient

RHD deletion RHD*01N.01 Yes Negative Negative
RHD-CE(2-9)-D RHD*01N.03 Yes Negative Negative
RHD(c.1227G>A) RHD*01EL.01 No Positive Positive
RHD VI III RHD*06.03.01 Yes Positive Negative
RHD(c.340C>T) RHD*10.08 or RHD*01W.17 Yes Positive Negative
RHD(c.3G>A) RHD*01EL.02 Yes Positive Negative
RHD(c.336-1G>A) RHD*01N.25 Yes Positive Negative

Alleles managed as D positive type in guidance (Flegel et al., 2020)

c.809T>G RHD*01W.1 No Positive Positive
c.52C>G RHD*01W.1.1 No Positive Positive
c.712G>A RHD*01W.1.1 No Positive Positive
c.1154G>C RHD*01W.2 No Positive Positive
c.301T>A RHD*01W.2.1 No Positive Positive
c.916G>A RHD*01W.2.2 No Positive Positive
c.932A>G RHD*01W.2.2 No Positive Positive
c.8C>G RHD*01W.3 No Positive Positive
c.178A>C RHD*01W.3.1 No Positive Positive
c.602C>G RHD*09.03.01 Yes Positive Negative
c.667T>G RHD*09.03.01 Yes Positive Negative
c.819G>A RHD*09.03.01 Yes Positive Negative
c.48G>C RHD*09.04 No Positive Positive
c.819G>A RHD*09.04 No Positive Positive
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insertion of an intronic sequence within the mature transcript.
The retentional intronic segments (31 bp–197 bp) are much
longer in our study than the 28 bp predicted by Fichou
(Fichou et al., 2015), which suggests that the mRNA product
under physiological conditions is different from the plasmid
recombination experiments. This mature RHD transcript with
intronic segments might be translated into a protein with an
additional 10–66 amino-acid sequence, which may alter the
structure of the second extracellular loop of RhD. We didn’t
identify the active cryptic splice site in intron 2. However, we
supposed the intronic retention inducing in-frame shift because
the intron 3 seems correctly splicing in our study. All reported
RHD-/336-1G>A cases are completely serological D-negative,
which means no antigens can be detected (Kim et al., 2005; Ye
et al., 2009; Fichou et al., 2015). Our results first revealed that the
336-1G>A intron mutation induces the retention of intron 2,
which will generate improper peptides.

Fetal RHD Genotyping in Maternal Plasma
Prenatal detection of the fetal RhD status is helpful to assess the
risk of hemolytic disease in fetus. Non-invasive prenatal testing
for predicting fetal RhD status is available in many countries
(Finning et al., 2008; Akolekar et al., 2011; Wikman et al., 2012;
Chitty et al., 2014; Clausen et al., 2014). The standard quantitative
PCR method is based on the assumption of homozygous RHD
deletion in D�pregnant women. RHD variants in D�women will
yield high false-positive results (Yang et al., 2019). Therefore,
Non-invasive fetal RHD genotyping is only feasible for D�women
with total or partial deletion of the RHD (Clausen et al., 2019;
Yang et al., 2019).

Unlike the high-throughput quantitative PCR method widely
used in European countries, we use the PCR byproduct from
routine NIPT for aneuploidy as DNA template, then amplified by
PCR-SSP method. Because most Chinese pregnant women choose
NIPT for aneuploidy after 12 gestational weeks, our NIPT + PCR-
SSP protocol for D�pregnant women is cost-effective and suitable
for the small number of D�samples in China. In addition, the results
of routine NIPT for aneuploidy can provide good quality control
data, such as fetal fraction concentration.

Many research chooses the exons 5, 7, 10 as the targeted exons
to predict fetal RhD status (Finning et al., 2008; Akolekar et al.,
2011; Chitty et al., 2014; Clausen et al., 2014), while Wikman
(Wikman et al., 2012) choose exon 4 as target exon. However, our
study found that any one of exon 1, 5, 6, 7, and 9 positive can
predict fetal D＋ status. Furthermore, all our predicted results
were consistent with the newborn RhD status.

Our study also emphasized the importance of resampling for
the first negative results. Two cases showed negative results in the
first sample but were later confirmed as positive in the second
sample, which was likely due to the lower fetal fraction content or
PCR bias (Sabina and Leamon, 2015). Thus, we argued the second
sampling after a few weeks to confirm the first negative results
(Table 3).

No fetuses were predicted as RhD negative in our study. Asian
D-negative pregnant women have a 96% possibility of having a
D-positive fetus (Chun et al., 2020). Predicting fetal RhD status is
not cost-effective in China, whatever methods are used.

Limitation of Our Study
To our knowledge, our study used the mRNA-seq to analyze the
splicing products of the 336-1G>A under physiological
conditions at the first time. However, there has a significant
limitation by using an inappropriate sample type, whole
peripheral blood, instead of enriched reticulocytes. Hence the
reads numbers are relatively small in mRNA-seq. The active
cryptic site upstream of the constitutive acceptor site is not
identified in our study.

CONCLUSION

In conclusion, we established a pathway to precisely manage
Chinese D� pregnant women, including using the PCR-SSP
method and Sanger sequencing to provide precise RhIG
administration and promote transfusion safety. The robust
protocol for determining fetal RhD status from maternal
plasma is suitable for Chinese D� women. In addition, the
detailed study on rare alleles will help us investigate the
molecular mechanisms between genotype and phenotype of
RHD variations.
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