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Abstract: Previous studies have suggested that polysaccharide from Enteromorpha clathrata (ECP)
could be used as a potential prebiotic to treat dysbiosis-associated diseases. However, whether it has
any therapeutic effects on obesity has not been investigated. In the present study, we explored the
anti-obesity effect of ECP and illustrated that it can significantly reduce the body weight and decrease
the serum levels of triacylglycerol and cholesterol in high-fat diet (HFD)-fed mice. As revealed by
16S rRNA high-throughput sequencing and bioinformatic analysis, HFD remarkably changed the
composition of the gut microbiota and promoted the growth of opportunistic pathogens such as
Mucispirillum, Desulfobacterota and Alphaproteobacteria in obese mice. Interestingly, ECP improved
intestinal dysbiosis caused by HFD and reshaped the structure of the gut microbiota in diseased mice
by increasing the abundance of butyrate-producing bacterium, Eubacterium xylanophilum, in the gut.
Altogether, we demonstrate for the first time an anti-obesity effect of ECP and shed new light into its
therapeutic mechanisms from the perspective of gut microbiota. Our study will pave the way for the
development of ECP as new prebiotic for the treatment of obesity and its associated disorders.

Keywords: Enteromorpha clathrata; polysaccharide; obesity; Eubacterium xylanophilum; gut microbiota;
prebiotic; gut dysbiosis; probiotic

1. Introduction

Enteromorpha clathrate or Ulva clathrate, a marine-derived green alga, has been widely
used as a natural herb in Asian countries [1–4]. Preceding studies have demonstrated a
beneficial role of E. clathrata for the management of chronic diseases and accumulating
evidence has indicated that E. clathrata polysaccharide (ECP) is a major bioactive con-
stituent [2,3]. Due to its high molecular weight, ECP is not absorbed after oral intake.
As such, when reaching the colon, it could be degraded and fermented by the gut micro-
biota [5,6]. Fermentation of ECP would change the structure of the gut microbiome and
therefore holds great potential for the treatment of dysbiosis-associated diseases [5].

We previously found that ECP could be used as a prebiotic to stimulate the growth
of beneficial microbes in the gut including Bifidobacterium spp., Lactobacillus spp. and
Akkermansia muciniphila [5]. However, as a novel gut microbiota modulator, whether ECP
has any therapeutic effects on obesity, a gut dysbiosis-associated chronic disease, has not
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been investigated. The prevalence of obesity has been dramatically increased globally
and marine algae-derived polysaccharides have been documented to be a good source
for the development of anti-obesity agents [7–10]. For example, fucoidan, a sulfated
polysaccharide from brown seaweed, have been illustrated to protect against high-fat diet-
induced metabolic syndrome and gut dysbiosis. Specifically, fucoidan could promote the
growth of beneficial bacteria, including Akkermansia muciniphila and Alloprevotella spp. in
the gut [9]. Additionally, laminarin, another prebiotic polysaccharide from seaweed could
also reduce the body weight in obese mice by favorably modulates the gut microbiota [10].

In the present study, we aim to explore the therapeutic effect of ECP on high-fat diet-
induced obesity in a mouse model and its beneficial mechanism from the perspective of
gut microbiota. Our study will pave the way for the development of ECP as new prebiotic
for the treatment of obesity and its associated gut dysbiosis.

2. Materials and Methods
2.1. Chemicals and Reagents

ECP used in the present study was extracted from the edible green alga E. clathrata
and prepared using the same method that has been previously described [5]. E. clathrata
and was obtained from Qingdao Seawin Biotech Group Co., Ltd. (Qingdao, China). The
obtained seaweeds were first washed, dried, and then powdered. The lipids and other
small molecules in the seaweeds were extracted 3 times with 85% ethanol (Sinopharm
Chemical Reagent Co. Ltd., Shanghai, China) at 75 ◦C for 6h. The resulted seaweeds
residues were further treated 3 times with hot water at 90 ◦C for 6h to obtain ECP. ECP
was precipitated using 95% ethanol and was lyophilized after dialysis. The molecular
weight, monosaccharide composition and sulfate content of ECP were determined using
the protocol described elsewhere [5,9]. ECP has a molecular weight of 11.67 kDa and a
sulfate content of 14.7%. ECP is primarily composed of rhamnose (49.7%) and glucose
(29.9%). All other chemicals used in the current research were of analytical grade and were
obtained from Sigma (Shanghai, China).

2.2. Animal Treatment and Sample Collection

The animal experiment in the present study were approved and supported by the
Ethical Committee of Ocean University of China, School of Medicine and Pharmacy (Per-
mission No. OUC-2021-0301-01) and complied with the Guide for the Care and Use of
Laboratory Animals (National Academies Press, 8th edition, 2011). Briefly, a total of 18 six-
week-old male C57BL/6J specific pathogen-free (SPF) mice with an average body weight of
about 22 g were purchased from Beijing Vital River Laboratory Animal Technology Co. Ltd.
(Beijing, China) (Certificate No. SCXK (Jing) 2016-0011). After a short one-week adaptation
period, all mice were randomly allocated into 3 experimental groups (n = 6 mice per group):
normal control group (NC), model group (MD) and ECP treatment group (ECP). ECP was
dissolved in normal saline and was given by gavage at a dosage of 400 mg/kg/day. The
NC and MD group were given an equal volume of normal saline. NC mice were fed with a
normal chow diet (D12450B, Research Diets Inc., New Brunswick, NJ, USA). MD mice and
ECP mice were fed a HFD (D12492, Research Diets Inc.).

After about 4 weeks of treatment, all mice were humanely sacrificed. The serum
concentrations of triacylglycerol and cholesterol were analyzed and determined using
commercially available biochemical kits (Jiancheng, Nanjing, China). The contents in the
cecum of each experimental mouse were aseptically collected.

2.3. 16S rRNA High-throughput Sequencing and Bioinformatic Analysis of Sequencing Data

The gut microbiota metagenomic DNA was extracted and purified from the cecal
contents using a well-established QIAamp-DNA mini-kit for stool samples (Qiagen, Hilden,
Germany). After quality checking of the DNA by gel electrophoresis, the hypervariable V3
to V4 regions of the 16S gene were then specifically and efficiently amplified using a pair
of widely-used universal primers (338F and 806R) [10,11]. The amplicons were quality-
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checked and sequenced using an Illumina MiSeq platform (Illumina PE300, San Diego, CA,
USA) from Majorbio Bio-pharm Biotechnology Co., Ltd. (Shanghai, China). Raw fastq files
data generated from the high-throughput sequencing processes were further analyzed with
QIIME pipeline. The obtained sequences and reads were then denoised and the operational
taxonomic units (OTUs) were generated by clustering at 97% similarity using UPARSE
7.1. Bioinformatics including α-diversity analysis, clustering and PCA were conducted
using the online Majorbio Cloud platform (https://cloud.majorbio.com (accessed on 25
September 2021)) using the protocols previously described [11]. The metabolic functions of
the gut microbiota were analyzed and predicted using PICRUSt based on COG database
and KEGG database.

2.4. Statistical Analysis

Data were expressed as mean ± SEM. Statistical analyses between NC vs. MD and MD
vs. ECP were conducted using ANOVA with post-hoc Tukey’s tests (GraphPad Prism 8.00,
La Jolla, CA, USA). The linear discriminant analysis (LDA) effect size (LEfSe) analysis with
an LDA score of above 3 was performed to visualize and compare the compositional and
structure discrepancies between different microbial communities. Pearson’s correlation
analysis was used to study the associations between gut microbiota and pathological
features of obesity.

3. Results and Discussion
3.1. Dietary ECP Reduced the Body Weight and Decreased the Serum Levels of Triacylglycerol and
Cholesterol in High-Fat Diet (HFD)-Fed Mice

We first explored the anti-obesity effect of ECP using an HFD-induced obesity mouse
model. Oral administration of ECP (400 mg/kg) significantly decreased the body weight
of HFD-fed mice (Figure 1A). Biochemical analysis indicated that dietary ECP could also
re-duce the serum levels of triacylglycerol and cholesterol (Figure 1B,C). Collectively, these
results demonstrate a favorable anti-obesity effect of ECP on HFD-fed mice.
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3.2. Dietary ECP Changed the Overall Structure of the Gut Microbiome in HFD-Fed Mice

Previous studies from our lab indicated that dietary ECP could change the structure
of the gut microbiota by increasing the abundance of probiotic bacteria, including Bifidobac-
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terium spp., Lactobacillus spp. and A. muciniphila [5]. HFD-induced obesity is associated
with intestinal dysbiosis and preceding studies have illustrated that the gut microbiota is a
good target for the management of obesity and metabolic diseases [12–14]. In this regard,
we further explored the effects of ECP on the gut microbiome. 16S rRNA high-throughput
sequencing and bioinformatic analysis indicated that dietary ECP could remarkably change
the structure of the gut microbiota in HFD-fed mice (Figure 2A,B). Interestingly, although
ECP reshaped the composition of the microbiome, it did not change the α-diversity of the
intestinal microbiota (Figure S1).
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mice. Clustering analysis of the gut microbiota (A). PCA score plot of gut microbiota (B).

3.3. Dietary ECP Modulated the Composition of the Gut Microbiota at the Phylum and
Genus Levels

We next investigated the effect of ECP on the gut microbiota at the phylum level.
The gut microbiota of the NC mice was dominated by Bacteroidota and Firmicutes but
that of the HFD-fed mice was characterized by Bacteroidota, Firmicutes and Deferribacterota
(Figures 3 and S2). Besides, in line with previous results [10,15,16], HFD significantly
increased the abundance of dysbiotic bacteria including Desulfobacterota and Proteobacteria
in obese mice (Figures 3 and S2).
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We further explored the modulatory effect of ECP on the gut microbiota at the genus
level (Figures 4 and S3). Heatmap analysis indicated that HFD and ECP significantly
changed the composition of the gut microbiota. The population of Prevotellaceae UCG-001,
Butyricimonas, Rikenellaceae RC9, and Odoribacter were remarkably altered in response to
HFD and ECP treatment.
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3.4. Dietary ECP Significantly Increased the Intestinal Abundance of E. xylanophilum in
HFD-Fed Mice

To investigate the global regulatory effect of ECP on the intestinal microbiome, we
then performed the LEfSe analysis. At the genus level, the microbiota of the NC group was
primarily dominated by short-chain fatty acid producers, including Prevotellaceae UCG-001,
Muribaculaceae, Lachnospiraceae NK4A136 and Eubacterium ventriosum. These bacteria are
critically important for the maintenance of intestinal hemostasis (Figures 5A and S4). In
accordance with preceding results, HFD significantly decreased the abundance of beneficial
microbes in the gut [10,15,16]. Additionally, HFD promoted the growth of opportunistic
pathogens such as Mucispirillum, Alistipes, Desulfobacterota and Alphaproteobacteria [10,15,16].
Interestingly, HFD-induced dysbiosis in the gut was reversed by ECP treatment. Oral
in-take of ECP significantly increased the population of probiotic bacteria, including
E. xylanophilum, and Prevotellaceae (Figures 5B and S5).
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Given that ECP significantly changed the structure of the gut microbiota, we further
explored the effect of ECP on the metabolic functions of the gut microbiome (Figure S6A).
Clusters of orthologous genes (COG) function analysis indicated that HFD remarkably
modified the metabolic capabilities of the gut microbiota including carbohydrate transport
and metabolism, energy production and conversion, amino acid transport and metabolism,
lipid transport and metabolism and secondary metabolites biosynthesis, transport, and
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catabolism (Figure S6B). Dietary ECP tended to increase carbohydrate transport and
metabolism and decrease energy production and conversion of the gut microbiota but did
not reach statistical significance (p < 0.05) in this short-term study (Figure S6B).

3.5. E. xylanophilum Is Negatively Associated with Body Weight and Serum Levels of
Total Cholesterol

Since dietary ECP significantly changed the compositions of the gut microbiota in
HFD-fed mice at both phylum and genus levels, we then questioned whether or not these
changes were associated with improved metabolic parameters of the obese mice. To address
this issue, we performed a Pearson’s correlation analysis between gut microbiota and the
pathological features of obesity including serum levels of total cholesterol, triacylglycerol,
and body weight. In line with previous research, at the phylum level, Deferribacterota and
Desulfobacterota were observed to be positively correlated with body weight and serum lipid
levels (Figure S7) [10,15]. Interestingly, at the genus level, we found that E. xylanophilum
and Prevotellaceae, two bacteria that were highly enriched by ECP treatment, were both
negatively associated with body weight and serum levels of total cholesterol (Figure 6).

Short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, are a
class of beneficial fermentation products produced by specific microbes in the gut [17–20].
Previous studies have demonstrated a beneficial role of SCFAs in the treatment of HFD-
induced obesity [21–23]. E. xylanophilum is a potent butyrate-producing bacterium in the
gut and preceding studies have illustrated that polysaccharides from wheat bran could
stimulate the production of butyrate of the human microbiota by promoting the growth
of E. xylanophilum [24,25]. In the present study, we demonstrate for the first time that
ECP could attenuate HFD-induced obesity and promote the growth of butyrate-producing
bacterium, E. xylanophilum in the gut. In light of the fact that E. xylanophilum is also
negatively associated with body weight and serum levels of total cholesterol, it is therefore
possible that ECP could have E. xylanophilum as its primary target during attenuation of
HFD-induced obesity. However, more detailed studies are warranted to test this possibility.

In the present study, we primarily focused on elucidating the modulatory effects of
ECP on the gut microbiota in HFD-fed mice. Due to the experimental design, relevant
in-formation about the food intake of the mice was missed. However, we previously found
that dietary ECP could decrease the food intake of healthy mice [5]. Therefore, it is possible
that ECP could also reduce the food intake of obese mice fed an HFD. However, further
studies are encouraged to explore this possibility and to find out if this is related to the
anti-obesity effect of ECP.

Collectively, our study demonstrates for the first time an anti-obesity effect of ECP on
HFD-fed mice. Coupled with 16S rRNA high-throughput sequencing and bioinformatic
analysis, we further confirmed that the anti-obesity activity of ECP is associated with its
modulatory effects on gut microbiota. Specifically, dietary ECP alleviates HFD-induced
gut dysbiosis by increasing the abundance of beneficial bacterium, E. xylanophilum, in the
gut, which is highly relevant for understanding its therapeutic effect.
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4. Conclusions

In conclusion, we demonstrate an anti-obesity effect of ECP on HFD-fed mice. ECP
could significantly reduce the body weight and decrease the serum levels of triacylglycerol
and cholesterol in obese mice. Additionally, ECP supple-mentation remarkably improved
intestinal dysbiosis in HFD-fed mice by increasing the abundances of probiotic bacteria
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including E. xylanophilum in the gut. Our study will pave the way for the development of
ECP as new prebiotic for the treatment of obesity and its associated gut dysbiosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13193286/s1, Figure S1: α-diversity analysis of the gut microbiota. Shannon index (A),
Ace (B) and Chao index (C)., Figure S2. Gut microbiota composition analysis of the experimental
mice at the phylum level. Figure S3. Composition of the gut microbiota at the genus level. Figure S4.
LEfSe analysis of the gut microbiota between NC and MD groups. Only taxa with an LDA score of
above 3.5 are shown. Figure S5. LEfSe analysis of the gut microbiota between MD and ECP groups.
Only taxa with an LDA score of above 3.0 are shown. Figure S6. Clusters of orthologous genes
(COG) function analysis of the gut microbiota (A). Different COG functions including carbohydrate
transport and metabolism, energy production and conversion, amino acid transport and metabolism,
lipid transport and metabolism and secondary metabolites biosynthesis, transport and catabolism
were analyzed (B). Different alphabetic characters in panel B indicate significant differences (p < 0.05)
between groups. Figure S7. Pearson’s correlation analysis of different gut bacteria at the phylum
level with triacylglycerol, body weight and cholesterol. Correlations with R > 0.4 or R < −0.4 were
identified by asterisks. * p < 0.05, ** p < 0.01, *** p < 0.001.
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