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Abstract: Enzyme engineering is an indispensable tool in the field of synthetic biology, where
enzymes are challenged to carry out novel or improved functions. Achieving these goals sometimes
goes beyond modifying the primary sequence of the enzyme itself. The use of protein or nucleic
acid scaffolds to enhance enzyme properties has been reported for applications such as microbial
production of chemicals, biosensor development and bioremediation. Key advantages of using
these assemblies include optimizing reaction conditions, improving metabolic flux and increasing
enzyme stability. This review summarizes recent trends in utilizing genetically encodable scaffolds,
developed in line with synthetic biology methodologies, to complement the purposeful deployment
of enzymes. Current molecular tools for constructing these synthetic enzyme-scaffold systems are
also highlighted.

Keywords: protein shells; synthetic enzymology; synthetic biology; protein scaffold; nucleic
acid scaffold

1. Introduction

Synthetic biology is largely focused on controlling and repurposing cellular and bio-
chemical phenomena, generally at the molecular level, for applications that are potentially
beneficial to society [1]. The study of enzymes is of particular interest to synthetic biologists,
as enzymes can and have been utilized for the production of plant-derived pharmaceutical
ingredients in microbial hosts (e.g., biosynthesis of opiates, cannabinoids, and taxanes) [2–4],
environmental remediation (e.g., degradation and upcycling of plastic waste) [5,6], curbing
antimicrobial resistance (e.g., biosynthesis of novel antimicrobial polyketides and non-
ribosomally synthesized peptides) [7,8], and diagnostic purposes (e.g., glucose oxidase
for monitoring glucose levels) [9]. The exponential increase in genomic and protein se-
quences made freely available has aided the search for enzymes to carry out chemical
transformations that might find use in the areas of applications mentioned, among oth-
ers [10]. Common bottlenecks in the translation of this wealth of genomic enzymological
information into biotechnological applications include enzyme instability, lower activity
when expressed in heterologous hosts, interference from host metabolism, and suboptimal
metabolic flux [11]. Two established strategies to overcome these limitations are (i) rational
design and (ii) directed evolution of enzymes to identify sequence variants that confer de-
sired properties. Such properties include stability against denaturation induced by elevated
temperatures, organic solvents or non-physiological pH, higher catalytic efficiency, and
utilizing or generating noncanonical metabolites. The considerable list of achievements in
using sequence space exploration for improving enzyme function and properties has been
documented in other reviews [11–13].
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In recent years, there has been a growing awareness that regulating the microen-
vironment where enzymes and enzymatic pathways are deployed through the use of
biomolecular scaffolds can also assist in relieving the aforementioned bottlenecks, pro-
viding a complementary approach to sequence space exploration [14]. Encapsulation of
recombinant enzymes in thermostable protein shells has been demonstrated to confer resis-
tance on the enzymes against chemical and physical insults [15–18]. Corralling of enzymes
in a heterologous biosynthetic pathway into subcellular compartments has been reported
to result in higher product(s) titers, conceivably due to improved substrate channeling
(Figure 1) [19–22]. More recently, strategic installation of energy and signal emitting
enzymes on scaffolds have improved their sensitivity and robustness for analytical ap-
plications [23]. While sequence space exploration has undoubtedly been successful in
producing more robust and efficient enzymes, insights gained from one successful example
are unlikely to be applicable to evolutionarily distant or unrelated enzymes due to the huge
diversity of protein folds and domains [24]. Utilizing biomolecular scaffolds can provide
a more generalizable route for imparting desired properties into enzymes. In addition,
scaffolded enzymes can be recovered more easily in a bioprocessing setting, reducing
cost in enzyme production [25]. The reductionist approach commonly taken in synthetic
biology, where biological systems are reduced to their components based on individual
function and recombined in a plug-and-play fashion, facilitates the juxtaposition between
enzymes and unrelated scaffolds to synthesize new systems [26].
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The information gleaned from decades of cellular and biochemical studies has shed 
some light on how and why cells spatially organize enzymes, in spite of the significant 
metabolic investment involved. Eukaryotic organelles have evolved to sequester special-
ized processes that might otherwise be incompatible with the bulk intracellular environ-
ment. Lipid-delineated organelles create a physicochemical boundary between the intra-
organelle space and the external environment, preventing passive diffusion of macromol-
ecules and most hydrophilic small molecules across the boundary. The endoplasmic re-
ticulum provides a lipid-rich environment suitable for supporting membrane-associated 
enzymes that participate in the metabolism of lipids, lipoproteins, and hydrophobic xe-
nobiotics [27]. The peroxisome, involved in the catabolism of fatty acids, encapsulates re-
active oxygen species (ROS), which are generated during this process, in close proximity 
to superoxide dismutases that detoxify ROS [28]. This protects the rest of the cell from 
oxidative damage. Not all eukaryotic organelles are bordered by lipid membranes. In re-

Figure 1. Enzyme compartmentalization or scaffolding has the potential to improve the efficiency of
enzymes or metabolic pathways. Such strategies can also reduce the impact of interference from the
external environment, either from the host cell or an ex vivo setting.

The information gleaned from decades of cellular and biochemical studies has shed
some light on how and why cells spatially organize enzymes, in spite of the significant
metabolic investment involved. Eukaryotic organelles have evolved to sequester spe-
cialized processes that might otherwise be incompatible with the bulk intracellular en-
vironment. Lipid-delineated organelles create a physicochemical boundary between the
intra-organelle space and the external environment, preventing passive diffusion of macro-
molecules and most hydrophilic small molecules across the boundary. The endoplasmic
reticulum provides a lipid-rich environment suitable for supporting membrane-associated
enzymes that participate in the metabolism of lipids, lipoproteins, and hydrophobic xenobi-
otics [27]. The peroxisome, involved in the catabolism of fatty acids, encapsulates reactive
oxygen species (ROS), which are generated during this process, in close proximity to super-
oxide dismutases that detoxify ROS [28]. This protects the rest of the cell from oxidative
damage. Not all eukaryotic organelles are bordered by lipid membranes. In recent years,
there has been an increasing recognition of protein condensates that phase separate from
the aqueous cytoplasmic environment, exhibiting bulk physicochemical properties more
akin to polar organic solvents than water [29]. These micron-scale proteinaceous conden-
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sates are termed membraneless organelles (MO) and are often found to harbor RNA and
small nuclear ribonucleoproteins, increasing the rate at which RNA is processed.

The spatial optimization of enzymes is not the sole prerogative of the eukaryotic
cell. Many bacterial and archaeal species produce supramolecular protein complexes,
ranging from tens to hundreds of nanometers in scale, to perform specialized physiological
functions, analogous to eukaryotic organelles. These include bacterial microcompartments
(BMC) and encapsulins, found in both bacteria and archaea [30,31]. BMCs have been found
to facilitate the carbon fixation step of photosynthesis and to catabolize short-chain alcohols,
amines, and other niche carbon sources [30]. Some encapsulin shells have been observed to
house enzymes involved in mitigating oxidative stress, suggesting these shells protect the
host from harmful ROS that are released during these processes [31]. Understanding the
characteristics and functions of naturally occurring compartments and scaffolds, present in
all domains of life, sets the platform for hosting enzymes and improving their properties
using either natural or engineered scaffolds.

The four main classes of biomolecules (proteins, nucleic acids, lipids, and carbohy-
drates) have been utilized, via synthetic biology and/or synthetic chemistry methodologies,
as scaffolds for improving enzyme functionality. In this review, we focus on scaffolds that
have been developed and enhanced using synthetic biology approaches. These are largely
protein and nucleic acid-based due to their direct genetic manipulability and modularity.
The in vivo use of lipid and polysaccharide scaffolds for hosting heterologous enzymes
generally involves the co-opting of endogenous organelles and cellular structures, with
limited modifications to these structures [20,32]. The in vitro use of lipid and polysaccha-
ride/carbohydrate scaffolds is largely under the purview of synthetic chemistry [33,34].
Hence, lipid and carbohydrate-based scaffolds will not be discussed here.

This review summarizes recent advances in repurposing genetically encodable
biomolecules as scaffolds for improving enzyme function for various applications in both
intracellular and extracellular settings. Emphasis is placed on novel developments in the
use of established scaffolds, and novel scaffolds with enzyme-related applications. Design
principles pertinent to the creation and functionalization of these scaffolds are discussed.
The studies highlighted demonstrate that modular biomolecular scaffolds are emerging
platforms for optimizing enzyme function.

2. Protein Shells and Scaffolds

Proteins offer diverse molecular architectures to avail the creation of self-assembling
structures that can encapsulate enzymes, as is the case for protein shells, or to spatially orga-
nize enzymes in a defined fashion, vis-à-vis protein scaffolds. A key advantage of protein
compartments and scaffolds over lipid-delineated organelles is that protein assemblies can
be expressed in heterologous hosts while retaining their biochemical properties. This pro-
vides a generalizable approach for harnessing their utility across various biotechnologically
relevant prokaryotic and eukaryotic cell lines regardless of the origin of the protein com-
partment/scaffold. For example, the cyanobacterial carboxysome has been expressed in the
tobacco plant to encapsulate the enzyme RuBisCO [35], while intrinsically disordered pro-
teins (IDP) derived from arthropods are able to form MO in Escherichia coli [36]. The modular
nature of protein shells and scaffolds offers tractability for bioengineering purposes.

Protein shells and scaffolds are supramolecular structures, generally constructed from
numerous polypeptide subunits (i.e., protomers), which span from approximately 10 to
1000 nm in size. Recent advances in structural determination of large protein complexes,
especially in cryo-electron microscopy (cryo-EM) [37], have accelerated the elucidation
of molecular interactions that contribute to the assembly of protein shells and scaffolds
(Figure 2), facilitating protein engineering efforts. This section serves as a primer for recent
developments in some of the myriad protein architectures that have been repurposed for
supporting enzyme function, each with their distinct size (Table 1), composition, method
of cargo loading (Figure 3), and biochemical properties.
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Figure 2. Structural models of some proteinaceous shells and scaffolds, from viruses and the three established domains of
life, that have been engineered to host foreign enzymes. Surface representations are used for protein shells with known
atomic-level structural models. For heteromeric shells, each component is colored differently to aid differentiation. For
homomeric shells, selected polypeptide chains are colored discretely before applying appropriate symmetries to construct the
intact shell. A hydrophobic surface representation is used for hydrophobins (cyan for hydrophilic, brown for hydrophobic).
Atomic-level structures are not known for MOs, and a schematic of aggregation of spherical globules representing MO
formation within a cell is shown. Models are not depicted to scale. The PDB accession codes used to generate these
models are: 1ZA7 (cowpea chlorotic mottle virus [38]), 6R7M (tobacco mosaic virus [39]), 5UU5 (P22 bacteriophage [40]),
5V74 (bacterial microcompartment [41]), 4PT2 (bacterial encapsulin [42]), 1HQK (lumazine synthase [43]), 1S3Q (archaeal
ferritin [44]), 2E0Z (archaeal encapsulin [45]), 1SHS (heat shock protein [46]), 4V60 (vault [47]), and 1R2M (hydrophobin [48]).
Models were generated using UCSF Chimera and PyMOL [49,50].

Table 1. Properties of some protein compartments and scaffolds that have been modified to host enzymes.

Protein Compartment/Scaffold Origin Cognate Function Diameter/Size (nm) Composition

Cowpea chlorotic mottle virus shell Cowpea chlorotic mottle
virus Packaging of viral nucleic acids 28 Homomeric

Tobacco mosaic virus shell Tobacco mosaic virus shell Packaging of viral nucleic acids 18 (exterior)
4 (interior) Homomeric

P22 bacteriophage head capsid P22 bacteriophage Packaging of viral nucleic acids 60 Homomeric
Bacterial

microcompartment—carboxysome
Cyanobacteria,

chemoautotrophic bacteria Inorganic carbon fixation ~80–200 Heteromeric

Bacterial
microcompartment—metabolosome

Various enteric and soil
bacteria species

Catabolism of short chain
carbon sources ~100–300 Heteromeric

Cellulosome Various anaerobic bacteria
species Lignocellulose degradation Highly variable Heteromeric

Encapsulin Various bacterial and
archaeal species Iron and redox metabolism ~25–30 Homomeric

Lumazine synthase Various bacterial and
fungal species Riboflavin biosynthesis ~15–35 Homomeric

Ferritin Bacteria, archaea, eukarya Iron storage ~10 Homomeric
Small heat shock proteins Bacteria, archaea, eukarya Aids in protein refolding ~10 Homomeric

Vault ribonucleoprotein Eukarya Nuclear pore assembly, but exact
function unclear 35 × 65 Homomeric

Hydrophobins Filamentous fungi Surface attachment,
spore dispersion - Homomeric

Membraneless organelles Eukarya RNA processing, stress response Highly variable Homomeric/
heteromeric
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Figure 3. Examples of various methodologies for loading cargo (depicted by the orange circle with
a missing slice) onto protein shells and scaffolds. Installation of a suitable encapsulation peptide
sequence (red wavy line) on the cargo can direct the cargo into a shell (e.g., encapsulins, BMCs) [51,52].
Cargo can be translationally fused to a protein subunit of a compartment to direct encapsulation (e.g.,
MO) [36]. Use of docking/protein–protein interaction domains can direct cargo to the scaffold (e.g.,
cellulosome) [53]. The protomer of a shell can be engineered to present protein conjugation domains,
such as SpyCatcher with SpyTag [54].

2.1. Virus-Derived Protein Shells

Viruses possess a protein coat—the capsid—that wraps around the viral nucleic acid.
Virus-derived structures that physically resemble viruses but lack the viral nucleic acid,
and are, therefore, non-infectious, are termed virus-like particles (VLPs). Capsid structure
can be broadly classified into those with regular geometries (e.g., icosahedrons and helices)
or irregular geometries (e.g., complex or lipid-enveloped capsids). VLPs that display high
symmetry and are not lipid-enveloped tend to be more suited for bioengineering purposes;
as such, protein complexes are more amenable toward atomic-scale structural elucidation.
Thus, the effects of chemical and biological modifications, be it on the interior or exterior of
the VLP, can be better predicted and understood [55].

The cowpea chlorotic mottle virus (CCMV) is a plant-derived icosahedral virus, con-
sisting of 180 copies of capsid protein (Figure 2). By chemically modifying glucose oxidase
(GOX) and gluconokinase (GCK) with DNA tags, Cornelissen and co-workers were able to
encapsulate these enzymes within CCMV to craft a nanoreactor containing an enzyme cas-
cade, in which glucose was oxidized to gluconic acid by GOX and then phosphorylated by
GCK to form gluconate-6-phosphate [56]. The in vitro assembly of CCMV with chemically
modified enzymes was made possible as the arginine rich N-terminal region of the CCMV
capsid protein initiates capsid assembly in the presence of a sufficient concentration of
negatively charged macromolecules, such as its cognate RNA cargo or DNA-modified pro-
teins [57]. Approximately 1 GOX molecule and 1–2 GCK were confined within the CCMV
shell. The apparent kcat values of both encapsulated enzymes were approximately twice
that of free enzymes, which the authors surmised was due to improved substrate channel-
ing in the confined system. The ability of the CCMV particle to disassemble at pH ≥ 7.5
and re-assemble at pH 5 or in the presence of negatively charged macromolecules permits
robust titration of the number of cargo protein to be confined within the CCMV [57]. This
property has been exploited to study enzyme mechanisms at a single-molecule level [58].

The head portion of the P22 phage particle (Figure 2) has been extensively engineered
for biotechnological utility, due to its stability and established protocols for recombinant
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production [59]. This VLP is made from 420 copies of a capsid protein that, with the
assistance of luminal scaffolding proteins, assemble into a T = 7 icosahedron measuring
approximately 58 nm in diameter [60]. P22 VLPs are also thermostable, retaining the
capsid structure at 75 ◦C for at least 20 min. Douglas’ group has shown that fusion of the
C-terminal residues of the scaffolding protein to fluorescent proteins and foreign enzymes
resulted in a large number (~80–300 molecules) of cargo contained within the P22 VLP
cage [60–62]. By concentrating an alcohol dehydrogenase within the shell to approximately
7 mM, Douglas’ group overcame substrate inhibition present in the free enzyme while
maintaining its catalytic efficiency [60]. Encapsulation of a glycosidase, CelB, within the
P22 shell also allowed it to retain its activity when immobilized in a polyacrylamide gel
matrix, even after the gel was dehydrated and rehydrated [62]. The P22 container has also
been repurposed for housing multi-enzyme biosynthetic reactions. It was used to sequester
a [NiFe]-hydrogenase complex, conferring resistance against proteolytic cleavage and
inactivation by heat and oxygen (Figure 4A) [63]. The ability to protect the hydrogenase
complex from oxygen inactivation is of great significance, as hydrogenases are generally
sensitive to inhibitory occupation of the metal cluster active site by O2 [64]. Under the
same ambient atmospheric condition, encapsidation of the hydrogenase complex in the
P22 capsid resulted in an approximately 100-fold increase in activity compared to the free
enzyme. More recently, the P22 capsid has been used to house two enzymes involved in
the biosynthesis of glutathione from its constituent amino acids—glutamic acid, cysteine,
and glycine [65]. Shells containing these enzymes were applied to HEK293 cells and
produced glutathione in situ, protecting the cells against induced oxidative stress. It can
be envisioned that modifying the shell exterior with appropriate cellular targeting motifs
would further improve its utility for translational therapeutic applications.

The biosynthesis of many natural products involves multiple enzymes that are often
localized together within the native producer [66]. Subcellular regions where biosynthetic
enzymes conglomerate are termed metabolons. Recapitulation of multi-enzyme pathways
in heterologous hosts often gives significantly lower titers of the desired product compared
to the native producer. A commonly cited reason is inefficient substrate channeling be-
tween the biosynthetic enzymes in the foreign host [11]. The tobacco mosaic virus (TMV)
(Figure 2) is a homomeric VLP that resembles an alpha-helix [39]. The TMV shell has been
tailored to serve as a synthetic metabolon for three enzymes involved in the synthesis of
amorpha-4,11-diene (Figure 4B), a sesquiterpene that is the precursor to the anti-malarial
drug artemisinin [67]. To localize the enzymes to the TMV scaffold, Xia and co-workers
utilized the SpyCatcher/SpyTag and SnoopCatcher/SnoopTag protein conjugation do-
mains/sequences that were genetically fused to the TMV scaffold and the enzymes [67].
The smaller SpyTag and SnoopTag sequences were installed on the C-terminus of the TMV
protomer, while the larger SpyCatcher and SnoopCatcher protein domains were fused
to the enzymes. They demonstrated that while free enzymes did not produce detectable
levels of amorapha-4,11-diene, likely due to the inherently low intracellular levels of the
isopentenyl pyrophosphate precursor, the scaffolded pathway could produce the target
molecule. Overall, the VLP platform offers solutions to longstanding issues encountered in
engineering biosynthetic reactions, namely poor metabolic flux, enzyme instability, and
suboptimal enzyme activity.
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house the oxygen-sensitive hydrogenase complex. Reprinted from Douglas and co-workers [63].
Copyright 2016 Springer Nature. (B) Conjugation of three enzymes involved in terpene biosynthesis
on the TMV capsid increases titers of the desired product, amorpha-4,11-diene. Reprinted from Xia
and co-workers [67]. Copyright 2020 American Chemical Society.

2.2. Encapsulins, Ferritins, and Small Heat Shock Proteins

Many bacterial and archaeal species that live in challenging environments express
protein shells that ameliorate oxidative stress, sequester minerals, or assist in protein
folding. These nanoscale protein shells (approximately 10 to 30 nm in diameter), which are
typically homomeric in composition, fulfil diverse physiological functions in their hosts.
Encapsulin shells are found in 2 archaeal and 15 bacterial phyla, and are postulated to act
as iron storage containers and to mediate redox processes, insulating the bulk intracellular
environment from reactive radical species that emerge during such processes [68]. At
least two distinct morphologies have been reported for encapsulin shells. The smaller
T = 1 icosahedral shell, such as the one from Thermotoga maritima, comprises 60 pentameric
protomers and is 24 nm in diameter, while the larger T = 3 icosahedral shells, such as
those from Pyrococcus furiosus and Myxococcus xanthus (Figure 2), comprise 180 protomers
and are about 31 nm in diameter [31]. Encapsulin shells contain pores measuring about
6 Å in diameter, allowing free diffusion of some small molecules [31]. Guest proteins
can be targeted into the shell using a conserved C-terminal sequence that interacts with a
hydrophobic pocket in the shell lumen (Figure 5A) [69]. The robust nature of encapsulin
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shell assembly and of shell luminal targeting has prompted the engineering of encapsulin
shells as bespoke nanoreactors.
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A T = 1 encapsulin shell from Mycolicibacterium hassiacum, a thermophilic mycobac-
terium, has been engineered to separately house four different enzymes—a bacterial
peroxidase, a laccase, a catalase, and a flavoenzyme [18]. In spite of each of the above-
mentioned cargo enzymes having distinctively different molecular sizes, oligomerization
states, cofactor requirements, and catalytic mechanisms, all the enzymes were successfully
targeted within the shell. Encapsulation had varying effects on the catalytic efficiencies
of the enzymes, underscoring the need to determine the effects of enzyme scaffolding
on a case-by-case basis. Nonetheless, the M. hassiacum encapsulin shell appeared to con-
fer thermostability on the heat sensitive peroxidase and flavoenzymes. The relatively
straightforward assembly of the encapsulin shell facilitates its recombinant production in
eukaryotic cells. The M. xanthus encapsulin was expressed in the budding yeast, Saccha-
romyces cerevisiae, to serve as an orthogonal organelle in this widely used eukaryotic cell
factory [51]. By fusing encapsulation peptides (EPs) to the two splits parts of a yellow fluo-
rescent protein (YFP), the shell was able to co-localize the two parts and restore fluorescence
(Figure 5C). As a proof-of-concept that biosynthesis could take place inside these shells, an
in vitro assay was carried out whereby the benzylisoquinoline alkaloid (BIA), norcoclau-
rine, was synthesized via a Pictet-Spengler reaction from 4-hydroxyphenylacetaldehyde
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(4-HPAA) and dopamine. The encapsulated decarboxylase enzyme, Aro10p, catalyzed the
in situ production of 4-HPAA from 4-hydorxyphenylpyruvate. There has been a strong
impetus to utilize yeast platforms for manufacturing diverse plant alkaloids, and recog-
nition that aldehyde intermediates such as 4-HPAA are channeled away by the yeast’s
endogenous enzymes [2,20,70]. The establishment of fully orthogonal intracellular com-
partments in yeast should help overcome the problem of byproduct generation in natural
product synthesis.

The M. xanthus encapsulin has also been produced in HEK293 cells for encapsulating
cargo that can serve as imaging or detection agents in mammalian cells [71]. Westmeyer
and co-workers targeted the tyrosinase enzyme inside the shell to limit the toxic effects of
melanin on the cell. Melanin has recently been reported as a photo-absorber for use in op-
toacoustic tomography [72]. This molecule is typically contained within lipid-enclosed or-
ganelles termed melanosomes, but endogenous organelles are difficult to engineer without
significantly affecting host physiology. Tyrosinase-containing encapsulin shells essentially
functioned as synthetic melanosomes that limited the effect of melanin on cell viability. As
further demonstrations of the broad utility of the encapsulin shell for bioimaging, the re-
porter enzymes ascorbate peroxidase APEX2 and cystathionine γ-lyase were also targeted
within the shell and generated the appropriate signals [73,74]. This study sets the stage for
using encapsulin nanoshells for exerting fine spatial control of enzymes in cellular imaging.

Ferritin shells are highly conserved in all three domains of life and function as iron
storage containers, sequestering approximately 2000 iron atoms in their core, as part of
cellular iron homeostasis [75]. The shell, which has a diameter of 12 nm, is formed using
24 protomers that assemble with an overall octahedral symmetry. The shells also show
intrinsic ferroxidase activity, oxidizing Fe2+ to Fe3+ using O2 as the electron acceptor [76].
Ferritins originating from extremophiles are exceptionally stable to heat, chemical denat-
urants, and ionizing radiation [77]. The ferritin cage from the archaeon Archaeoglobus
fulgidus (Figure 2) has been utilized to host an engineered GFP with 36 positive charges,
GFP(+36) [78]. This cargo was chosen as the interior of the ferritin cage has high affinity
for positively charged species, and indeed, approximately five GFP(+36) molecules were
encapsulated, corresponding to 70% of the theoretical maximum packing capacity within
this protein cage. Hilvert and Tetter then used GFP(+36) to mediate encapsulation of
three enzymes with disparate substrate profiles, carbonic anhydrase, retro-aldolase, and
Kemp eliminase. Around two to three copies of the fusion proteins were encapsulated
per shell, due to the increase in overall mass of the fusion cargo. The shells conferred
resistance against proteolytic and organic solvent-induced degradation on the enzymes,
and in the case of retro-aldolase, increased its Tm from 60 ◦C to 70 ◦C. In a similar vein,
Drum and co-workers utilized the A. fulgidus ferritin shell to stabilize several classical
reporter enzymes against thermal and biochemical denaturation [15]. A key limitation
in utilizing ferritin shells is paradoxically due to their robustness: harsh conditions are
needed to disassemble these shells and such conditions would almost invariably damage
the encapsulated biomolecules [79]. The authors overcame this problem by mutating one of
the residues in the shell protomer interface to histidine to make a pH-titratable switch that
controls shell assembly/disassembly. Below pH 5.8, the interfacial side chain of histidine is
predominantly protonated and the protomers electrostatically repel each other, resulting
in shell disassembly (Figure 5B). At pH 8, the histidine side chain is largely deprotonated,
and thus, the shell reassembles. The more pH-responsive shell is, therefore, more suited
for applications where physiological conditions need to be adhered to. Heddle and co-
workers extended the utility of the enzyme-loaded ferritin shells into nanofabrication by
incorporating T. maritima ferritin shells into gold nanoparticles (AuNP) lattices [80]. The
encapsulated lysozyme experienced a two-fold decrease in activity, likely due to reduced
access to substrate within the lattice. Nevertheless, the ability to introduce enzymes into
nanofabrication technologies, via encapsulation within robust ferritin shells, opens up
avenues for their use in domains that are typically limited to inorganic materials.
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Small heat shock proteins (sHSP) function to prevent nascent protein chains from
misfolding and to assist in refolding aggregated proteins [81]. Many sHSPs form oligomeric
complexes, consisting of 2 to 32 subunits, that are important for their chaperone activ-
ity. The Methanococcus jannaschii Hsp16.5 has been structurally characterized (Figure 2);
24 protomers assemble into a cage with an overall octahedral symmetry, with an external
diameter of 12 nm and 3 nm pores [75]. The M. jannaschii Hsp16.5 is stable between pH 5 to
11 and up to 70 ◦C, which is not unexpected since the native host is a thermophile [82]. Thus
far, this shell has been used to prevent aggregation of the heat-labile citrate synthase [83],
but no other reports of its use in tandem with non-cognate enzymes are known. Given the
thermostability of the M. jannaschii Hsp16.5 shell and its ability to stabilize proteins against
denaturation, this shell has the potential to be a platform for improving enzyme stability.

2.3. Bacterial Microcompartments

Most autotrophic and some heterotrophic bacterial species express bacterial micro-
compartments (BMCs) to carry out specialized metabolic processes [30]. BMCs are protein
shells, ranging from 40 to 400 nm in diameter, and can be divided into two main classes
based on their physiological roles. Shells that facilitate the fixation of inorganic carbon in
the light-independent stage of photosynthesis are termed carboxysomes. These are found
in virtually all cyanobacteria and certain chemoautotrophic bacteria. Shells involved in
the catabolism of alcohols, amino-alcohols, and other non-conventional carbon sources are
termed metabolosomes. Native BMCs shells are highly intricate, consisting of hundreds
to thousands of protomers of which there are three distinct types [84]. The BMC-H shell
protein assembles into hexamers that form the facets of the shell and are the stoichiomet-
rically major components (Figure 6A). The central pore that emerges in the hexameric
arrangement allows diffusion of small metabolites across the shell. The BMC-P shell
protein assembles into pentamers that cap the vertices of the shells and are a stoichiomet-
rically minor component. The BMC-T shell protein, which contains a tandem repeat of
the BMC-H domain, assembles into trimers that form a central pore, akin to the BMC-H
proteins. However, the central pores of BMC-T shell proteins can be dynamically gated
in response to changing concentrations of key metabolites, and when fully open, they are
considerably larger than the constitutively open pores in BMC-H hexamers, allowing influx
of larger molecules such at ATP [85]. While BMC shell architecture is more complicated
in relation to other homomeric prokaryotic protein shells, the heteromeric nature of BMC
shells presents avenues for multivalent enzyme scaffolding that may not be as feasible in
homomeric shells.

Initial efforts in repurposing BMCs involved the use of all or almost all of the shell-
encoding genes in the native BMC operon, due to the difficulty in deconvoluting the exact
role and essentiality of each component in the wild-type shell [86–88]. Warren’s group
recapitulated the PDU (propanediol utilization) metabolosome in E. coli by expressing
seven shell proteins—PduABJKNUT [86]. The natural capability of the PDU metabolosome
to sequester propionaldehyde, a volatile and reactive metabolite, encouraged the refashion-
ing of the shell to sequester acetaldehyde, an intermediate in the enzymatic reduction of
pyruvate to ethanol [52]. They identified that N-terminal sequences of two PDU luminal
enzymes (PduP and PduD) could serve as EPs to mediate encapsulation of non-cognate
cargo. By co-expressing the shell proteins, PduP1–18-PDC (first 18 residues of PduP fused
to pyruvate decarboxylate) and PduD1–18-ADH (first 18 residues of PduD fused to alcohol
dehydrogenase), Warren and co-workers were able to construct an ethanol nanoreactor
within E. coli. The strain expressing EP tagged enzymes with shells had approximately 50%
higher titers of ethanol than the strain expressing shells but with untagged enzymes. The
group built on this work to engineer the PDU shell for synthesis of 1,2-propanediol [89].
This was done by installing the PduP1–18 and PduD1–18 EP sequences to four enzymes
that sequentially converted glycerol to 1,2-propanediol. Surprisingly, the strain expressing
EP-tagged enzymes but without PDU shell co-expression produced around 40% more
1,2-propanediol than the strain expressing both tagged enzymes and shell. The strain ex-
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pressing EP-tagged enzymes only also produced about 4.5 times more 1,2-propanediol than
untagged enzymes. This led the authors to conclude that the EP tags induced aggregation
in the enzymes, leading to confinement within inclusion bodies in E. coli. Nevertheless,
the enzymes remained active and the higher metabolic flux due to enzyme co-localization
led to overall higher titers. These studies demonstrate that the use of protein shells for
enzyme scaffolding may not necessarily improve the overall effectuality of the enzyme(s),
and each design needs to be verified experimentally. This is due to the numerous factors
involved, such as the effect of EP on enzyme, metabolic investment in expressing the shells,
effectiveness of encapsulation, and activity of enzymes within the shells, among others.

Silver’s group has recapitulated the alpha-carboxysome from Halothiobacillus neapoli-
tanus in E. coli through transplantation of the H. neapolitanus cso operon, which encodes
10 genes [87]. The resultant E. coli strain gained the ability to fix CO2 due to encapsula-
tion of RuBisCO and carbonic anhydrase within the carboxysome shell. RuBisCO is a
catalytically inefficient enzyme that can be inhibited by O2, preventing it from binding to
CO2 [90]. The carboxysome shell increases the efficiency of RuBisCO by blocking ingress
of O2 while promoting the entry of HCO3

−, which is converted to CO2 within the shell by
the action of carbonic anhydrase. Building upon this work, Price and co-workers sought
to build the carboxysome in plants as a way of improving carbon fixation in C3 plants.
They replaced the tobacco plant’s endogenous RuBisCO in the chloroplasts with that from
the cyanobacterium Cyanobium, and co-expressed two carboxysome structural proteins,
CsoS1A and CsoS2 [35]. CsoS1A is a BMC-H protein while CsoS2 is a luminal scaffolding
protein that is critical for the formation of the alpha-carboxysome by tethering RuBisCO
with the shell proteins [91]. Shells resembling native carboxysomes formed in the plant’s
chloroplasts and could support plant growth. While the transgenic plants grew poorly
compared to the wild-type, and recombinant RuBisCO within the simplified carboxysomes
displayed lower kcat compared to native RuBisCO isolated directly from Cyanobium, this
study demonstrates that useful structural elements from ostensibly complex BMCs can be
used for supporting enzyme catalysis in higher organisms.

In recent years, there has been a focus on simplifying shell assembly to facilitate
more widespread adoption of BMC shells in various systems. This endeavor has been
actuated by the structural elucidation, at near-atomic resolution, of a BMC shell from the
myxobacterium Haliangium ochraceum (HO-BMC) by Kerfeld’s group (Figure 2) [41]. The
HO-BMC shell is a T = 7 icosahedron that is 40 nm in diameter and consists of 60 BMC-P,
360 BMC-H, and 60 BMC-T protomers. While the HO-BMC is smaller and simpler than
many other known BMC systems, the regular geometry and atomic-level details of its
structure has accelerated higher precision configuring of BMC shells as enzyme scaffolds.
Kerfeld’s group has grafted the SpyCatcher domain into a luminal loop region of the
HO-BMC-T protein to mediate covalent conjugation of SpyTagged proteins (Figure 6B) [54].
They have also circularly permuted structural elements within the HO-BMC-H protein
such that its amino and carboxy ends are facing into the shell [92]. This has allowed
protein cargo to be loaded into the HO-BMC by direct fusion to either ends of the permuted
HO-BMC-H. In both cases, the modified protomers did not significantly perturb the overall
structure of the HO-BMC. Liu and co-workers recently reported a simplified H. neapolitanus
alpha-carboxysome, consisting of six shell proteins (CsoS1ABCD and CsoS4AB) and CsoS2,
that served as a hydrogen-producing nanoreactor (Figure 6C) [93]. They encapsulated the
Chlamydomonas reinhardtii [FeFe]-hydrogenases and ferredoxin, along with E. coli ferredoxin
oxidoreductase into the simplified alpha-carboxysome by fusing these enzymes to CsoS2 C-
terminal sequences. Though [FeFe]-hydrogenases are highly sensitive to oxygen, even more
so than [NiFe]-hydrogenases [94], the strain co-expressing the hydrogenase complex with
the shell produced approximately three times more H2 compared to the strain expressing
just free enzymes, under the same aerobic culture conditions. These studies showcase
prospects in utilizing BMCs for directed loading of enzymatic cargo and for improving the
function of enzymes that are highly sensitive to their microenvironment.
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Some individual BMC shell components have been found to be able to support
enzyme catalysis even when not incorporated as part of a shell. Many BMC-H type pro-
teins, in the absence of other shell components, have a strong propensity to self-assemble
at high concentrations into nanoscale structures, such as rods, rosettes, or extended
sheets [84]. Warren’s group created PduA*, a variant of the BMC-H protein PduA, through
a serendipitous discovery. PduA* forms filaments that span across the E. coli cytoplasm
(Figure 6D) [95]. They utilized acid-base coiled-coil interactions to target the enzymes ADH
and PDC to the PduA* synthetic cytoskeleton and found that the strain with scaffolded
enzymes produced approximately two-fold ethanol compared to the strain expressing just
the enzymes. Another BMC-H type protein, EutM, has also been utilized as an enzyme
scaffold [96]. The SpyCatcher domain was installed on 12 EutM orthologs and the ADH
enzyme was fused to SpyTag. The resulting scaffold-enzyme conjugates displayed various
morphologies under TEM, with some appearing as fibrils and some as films. The EuM
scaffolds also had differing effects on the enzyme activity, which the authors credited to the
pH microenvironment created within the various EutM orthologs. Nonetheless, most of
the scaffolds conferred stability to the enzyme over a 48-h incubation period under ambient
conditions compared to the free enzyme.
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Figure 6. Repurposing BMCs and BMC components into scaffolds for enzyme catalysis. (A) Model of the HO-BMC,
with BMC-H colored blue, BMC-P yellow, and BMC-T green. Reprinted from Kerfeld and Kirst [97]. Copyright 2019
Springer Nature. (B) Grafting of the SpyCatcher (below, grey) domain into a loop region within the HO-BMC-T protein (top,
green) for covalent conjugation of protein cargo. Reprinted from Kerfeld and co-workers [54]. (C) The alpha-carboxysome
has been repurposed for hosting the hydrogenase enzyme, HydA, and a ferredoxin-NADP(+) oxidoreductase (FNR) to
produce molecular hydrogen. Reprinted from Liu and co-workers [93]. (D) PduA*, a variant of the PduA BMC-H protein,
forms elongated rod-like structures within E. coli, which can be modified to host enzymes. Reprinted from Warren and
co-workers [95]. Copyright (B) 2018, (C) 2020, and (D) 2017 Nature Research.
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2.4. Cellulosomes

Cellulosomes are multienzyme complexes, produced extracellularly by some anaero-
bic cellulolytic bacteria species, that break down lignocellulosic plant material into smaller
soluble molecules that can be consumed by the bacteria [98]. Cellulosomes serve to orga-
nize cellulolytic enzymes and are either attached to the bacterial cell wall or secreted into
solution. The multicomponent scaffoldin protein serves as the backbone of the cellulsome;
on it are carbohydrate binding modules (CBM) and cohesin modules that serve as dock-
ing sites for enzymes. The cellulolytic enzymes contain a dockerin domain that binds to
the cohesin modules with high affinity (KD~10−9–10−12 M) in the presence of Ca2+ [25].
The cellulosome has evolved for optimizing cascade enzymatic reactions [98]. The CBM
increases proximity of substrate to the enzymes, while docking of the various cellulolytic
enzymes, each with their own substrate specialty in the degradation of chemically complex
and recalcitrant lignocellulosic material, on the same scaffold, improves enzyme synergism.
Despite its intricacy, the modularity of the cellulosome scaffold has garnered attention for
accommodating cascade reactions.

Zverlov and co-workers have created a synthetic cellulosome with the aim of quickly
tuning and optimizing the enzymatic features and activities for various cellulosic sub-
strates [99]. They based their synthetic cellulosome on a thermostable variant from Clostrid-
ium thermocellum. The authors attempted to recombinantly express all 73 putative dockerin-
containing cellulosomal proteins in C. thermocellum and identified the glycoside hydrolases
(GH) Cel48S, Cel9K, and Cel5L as the minimal components required for digestion of soft-
wood pulp. They then combinatorially screened for mannases and xylanses to supplement
the aforementioned enzymes and found Man26A and Xyn10 to have increased the overall
activities of the synthetic cellulosome (Figure 7A). This minimized cellulosome reached 60%
of the activity of commercial cellulosome cocktail, which contains significantly more compo-
nents, many of which are not well characterized [100]. This study sets the stage for further
optimizing cellulosome function from known parts in a mixed semi-rational/combinatorial
screening methodology.

Genetically tractable yeast species, such as S. cerevisiae, Pichia pastoris, and Kluyveromyces
marxianus, offer a number of established tools for cell surface display of protein com-
plexes [101]. Consequently, yeast has been a relatively popular platform for cellulosome
engineering, especially in the view that the anaerobic bacteria from which these protein com-
plexes are derived can be challenging to culture and manipulate [102]. A mini-cellulosome
displaying three orthogonal cohesion domains was expressed in S. cerevisiae for attachment
to three enzymes—ADH, formaldehyde dehydrogenase, and formate dehydrogenase fused
with the partner dockerin domains [103]. This linear pathway oxidized methanol to CO2,
generating NADH for the yeast host. It was found that the strain with scaffolded enzymes
had a five-fold increase in NADH productivity than with free enzymes. Pichia pastoris, an
emerging yeast cell factory, has been recently engineered to display a mini-cellulosome
to convert cellulose to ethanol [104]. To extend the use of the cellulosome scaffold for
more complex enzyme pathways, Li and co-workers have engineered a cellulosome in K.
marxianus capable of housing up to 63 enzymes (Figure 7B) [53]. The ordered nature of the
cellulosome improved metabolic flux between enzymes, and its modular nature facilitated
introduction of accessory enzymes, such as laccases, that assisted in cellulose degradation.
Overall, the yeast host expressing this large cellulosome achieved 8.6 g/L of ethanol from
cellulose, which was the highest titer reported thus far for synthetic cellulosomes at the
time of writing.

2.5. Hydrophobins

Hydrophobins are small (<15 kDa) proteins, produced by filamentous fungi, that are
characterized by eight conserved cysteine residues that form four disulfide bridges [105].
These proteins have both hydrophobic and hydrophilic patches on their surfaces (Figure 2),
leading them to strongly cluster in solution and on surfaces due to the strong hydrophobic
effect present [106]. Hydrophobins are classified into two groups based on sequence
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similarity and biophysical properties. Class I hydrophobins form rodlet-like structures
resembling amyloid fibrils (Figure 8A) and remain insoluble even in boiling sodium
dodecylsulfate (SDS), while class II hydrophobins are soluble in SDS [107]. Hydrophobins
can be an attractive platform for enzyme immobilization in food and pharmaceutical
applications, as some variants are produced by generally regarded as safe (GRAS) fungi
that are consumed by humans.
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cyan, and red shapes. Reprinted from Li and co-workers [53]. Copyright 2020 National Academy of
Sciences (USA).

The class I hydrophobin from Pleurotus ostreatus (oyster mushroom), Vmh2, has been
utilized for immobilization of enzymes in biosensing applications. Giardina’s group fused
glutathione S-transferase (GST) to Vmh2, which served to increase the solubility of the
hydrophobin and also to act as a biosensor for the detection of the pesticides, molinate,
and captan [108]. GST catalyzes the electrophilic substitution of glutathione (GSH) to
1-chloro-2,4-dinitrobenzene (CDNB), forming a yellow CDNB-GSH adduct. Both molinate
and captan inhibit GST activity, and hence, decrease in GST activity, as determined by the
CDNB-GSH adduct, which correlates with increasing concentrations of the pesticides. A
key advantage of the Vmh2-GST fusion was that the biosensor enzyme could be easily
immobilized on commonly used polystyrene 96-well plates, facilitating prolonged or
multiple uses of the enzyme (up to 60 days or 50 cycles). Fusion of Vmh2 to GST also
increased the sensitivity of the enzyme, decreasing the limit of detection (LOD) by one
order of magnitude for molinate and two orders for captan compared to previous work.
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Another class I hydrophobin, Ccg2 from Neurospora crassa (red bread mold), was similarly
used to improve enzymatic detection of another pesticide, glyphosate [109]. In this case,
the sensor enzyme was 5-enolpyruvylshikimate-3-phosphate (EPSPS), which catalyzes
the reaction between phosphoenolpyruvate and 3-phosphoshikimate, with the release
of inorganic phosphate. This reaction is inhibited by glyphosate. While EPSPS is not
commonly reported as a fusion protein partner to increase the solubility of partner proteins,
in this case it was found that fusion to EPSPS was necessary to solubilize Ccg2. The
sensitivity of the EPSPS-Ccg2 assay for inorganic phosphate detection was comparable to
commercial ELISA kits. The key advantage of the developed assay was its applicability for
on-site testing with simple instrumentation.

A foray in exploiting hydrophobins for multi-enzyme catalysis was to utilize HFBI
(Hydrophobin I) from Trichoderma reesei for improving the catalytic efficiency of a cy-
tochrome P450 (CYP450) system [110]. The catalytic efficiency of CYP450 systems depends
on efficient electron transfer between the heme-containing monooxygenase enzyme and
its redox partner, which transfers electrons from NAD(P)H to the monooxygenase. Het-
erologously expressed CYP450 systems often suffer from diminished efficiency due to loss
of co-localization between the monooxygenase and reducing partner [111]. As proof-of-
concept that hydrophobins could assist the electron transfer process in CYP450 systems,
Urlacher and co-workers split the Bacillus megaterium BM3, a special CYP450 in which
both monooxygenase and reductase domains are found as a single protein chain, into its
parts—BMO (monooxygenase) and BMR (reductase) (Figure 8B). When fused to HFBI,
both BMR and BMO were found to be soluble and the electron coupling efficiency of the
BMO–HFBI and BMR–HFBI pairs reached 93% of that of native BM3. This was credited to
the strong tendency of HFBI to aggregate with each other through the hydrophobic effect.
The HFBI fused BMO and BMR also achieved about three times higher kcat than free BMO
and BMR when tested using hydroxylation of myristic acid.

While hydrophobins are robust to chemical and physical aggravation, a key limitation
of using these emerging protein scaffolds is that many known hydrophobins, but not all,
are insoluble, especially if recombinantly produced in E. coli [107]. Three main methods
of overcoming this issue are (i) to fuse the hydrophobin protein to a highly water-soluble
protein, such as GST, (ii) to purify the hydrophobin in denaturing conditions (e.g., 8 M
urea) and to refold it by dialysis in oxidizing conditions, and (iii) to use a yeast host (e.g.,
P. pastoris), which has a protein folding machinery more analogous to the native fungal
producers [108–110,112]. Hence, the issue of solubility is paramount in any endeavor using
hydrophobins as scaffolds.
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2.6. Vault Ribonucleoprotein Complexes

The vault ribonucleoprotein complex, or more simply referred to as vault (Figure 2),
is a highly conserved eukaryotic compartment that has a protein membrane, composed
of 78 chains of the major vault protein (MVP), each of which is approximately 100 kDa in
mass [113]. The distinctive arch shape of the vault (Figure 9A) resembles the architectural
vaults in Roman Catholic cathedrals, hence the name. The exact cellular function(s) of
the vault is currently not ascertained, though it has been found to span across the nuclear
envelope and may play roles in transport of molecules across the nucleus, nuclear pore
assembly, and signaling [114]. The MVP interaction domain (INT) is a 147-residue peptide
that directs proteins into the vault, forming two rings above and below the middle of the
shell [115]. Due to their low immunogenicity and relative ease of cargo loading, vault has
been used for packaging of macromolecular and small molecule therapeutics.

Reports on the use of vault for supporting enzyme catalysis are currently sparse. The
widely used reporter enzyme luciferase could be packaged within the vault via fusion
to INT, and its activity was retained [116]. Using a similar methodology, manganese
peroxidase (MnP) was also encapsulated by vault. MnP is a fungal enzyme that oxidizes
Mn2+ to Mn3+ using H2O2 as the oxidizer. Mn3+, which is stabilized by chelation to
organic acids produced by the fungal producer, proceeds to oxidize a wide range of organic
compounds [117]. MnP has been used in bioremediation due to its ability to oxidize
polycyclic aromatic hydrocarbons and phenolics [118]. It was found that encapsulation
of MnP within vault increased the enzyme’s thermal stability (up to 40 ◦C), longevity in
continuous catalysis (up to 24 h) in wastewater, and resistance to non-physiological pH
(down to pH 3). These properties are beneficial for improving MnP’s economic viability in
remediation of contaminated water.

Vault is one of the largest homomeric protein shells known, is mostly hollow, and has
shown to be acquiescent in housing a plethora of cargo with diverse chemistries. Along
with its low immunogenicity and the fact that it is eukaryotic in origin, there could be
untapped potential in utilizing vault for hosting reporter enzymes for targeted cellular
imaging/theranostics, as has been done for the encapsulin shell (see Section 2.2).
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2.7. Lumazine Synthase Assemblies

Lumazine synthase catalyzes a step in riboflavin (vitamin B2) synthesis and is found
in bacteria, fungi, and archaea [120]. A number of quaternary arrangements of lumazine
synthase have been observed, with variations dependent on the organism in which they
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are found [121]. Known structures of lumazine synthase include pentamers in S. cerevisiae,
dimer of pentamers in Brucella abortus, and capsid-like dodecahedrons in Aquifex aeolicus
(Figure 2). Studies done on the Bacillus subtilis lumazine synthase have shown that its
dodecahedral lumazine synthase complex encapsulates riboflavin synthase, increasing the
overall reaction rate in riboflavin biosynthesis due to local substrate enrichment [120]. As a
major initial step in improving the lumazine synthase shell for hosting enzyme reactions
unrelated to its native function, Hilvert’s group performed directed evolution on the
A. aeolicus lumazine synthase (AaLS) to increase its cargo loading capacity [122]. They
tagged HIV protease, which is toxic to the E. coli host, with 10 arginine residues such that
it had a high net positive charge. The cargo was then co-expressed with a mutant library
of AaLS to select for shell variants that efficiently contained the toxic enzyme within the
negatively charged lumen of the shell. After four rounds of selection, a variant (AaLS-13)
emerged that could encapsulate 14 copies of HIV protease, about 10-fold higher than the
initial AaLS template. AaLS-13, which has an exterior diameter of 36 nm, was also later
shown to be capable of capturing around 70 copies of GFP(+36). Protein cargo fused to
GFP(+36) could also be efficiently targeted into AaLS-13 (Figure 10A).

The high cargo loading capacity and exceptional thermostability of the AaLS (Tm
of wild-type ~119 ◦C) has made it a generalizable container for improving enzyme func-
tion [43]. AaLS-13 has been used to host a variety of enzymes, each with distinct reaction
chemistries and properties: a retro-aldolase, a Kemp eliminase, a β-lactamase, a cycloamine
oxidase, a monoamine oxidase, a catalase, an NADH oxidase, an aldehyde dehydroge-
nase, and a peroxidase [123,124]. AaLS-13 has also been used to simultaneously host two
separate enzymes—RuBisCO and carbonic anhydrase—to form a shell that mimics the
cyanobacterial carboxysome (Figure 10A) [125]. Unfortunately, encapsulation of both en-
zymes did not confer any kinetic advantage over free enzymes, nor did it prevent inhibition
of RuBisCO activity by ambient oxygen. Nonetheless, the shell did protect the enzymes
from protease degradation. These studies demonstrate that lumazine synthase shells are a
facile platform for encapsulating a plethora of enzymes.
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Figure 10. The AaLS-13 shell as a designer nanocage for hosting foreign enzymes. (A) Fusion of
retro-aldolase (RA) to GFP(+36) allows encapsulation of the enzyme by AaLS-13. Reprinted from
Hilvert and co-workers [121]. Copyright 2018 Royal Society of Chemistry. (B) Repurposing of
AaLS-13 into a carboxysome mimic. Reprinted from Hilvert and co-workers [125]. Copyright 2016
American Chemical Society.
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2.8. Membraneless Organelles

Membraneless organelles (MO) are biomolecular condensates, composed of proteins
and nucleic acids, that phase separate from the bulk intracellular aqueous environment
(Figure 2) [29]. Such condensates have a dielectric permittivity more akin to polar organic
solvents (e.g., DMSO) than to water. MOs tend to be amorphous in appearance and adopt a
wide range of sizes. MOs are more dynamically regulated than lipid-delineated organelles,
in that changes in cell physiology and extracellular environment can swiftly alter the
size and abundance of MOs [126]. This dynamic regulation is concordant with findings
that eukaryotic MOs, which include nuclear speckles, stress granules, nuage, and the
nucleolus, are generally involved in rapid cellular processes, including stress response
and cell differentiation (Figure 11A) [29]. In tandem with re-emerging appreciation of the
importance of MOs with regard to cell physiology, the striking biophysical properties of
MOs have garnered the attention of synthetic biologists in recent years.
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A landmark study by Lemke’s group reported the formation of synthetic MOs in
HEK293 cells to increase the efficiency of translational incorporation of non-canonical
amino acids (ncAA) into proteins [127]. In vivo incorporation of ncAAs into proteins is
often challenging as the host’s endogenous translational machinery interferes with the
suppressor tRNA, leading to low suppression of stop codons that have been co-opted
as ncAA codons [128]. Lemke and co-workers fused long IDPs to the suppressor tRNA
synthetase and to an RNA motif (ms2) encoded in the mRNA containing the stop codon
to be suppressed (Figure 11B). This strategy created a micrometer scale compartment
within the cell whereby components of the ncAA translational machinery, such as the
suppressor tRNA, suppressor tRNA synthetase, and target mRNA, were enriched. The
MO strategy improved the selectivity of incorporation of the ncAA, pyrrolysine (Pyl) by
about 10-fold. Using this platform, Pyl was incorporated not only into fluorescent proteins
but also into endogenous cytosolic and membrane proteins. The use of eukaryotic MO-
formation sequences (MOFS) to form protein condensates via liquid-liquid phase separation
(LLPS) has been reported in E. coli [36]. Overexpression of spider silk and resilin proteins
resulted in the formation of liquid-like compartments in E. coli. Enzymes involved in the
conversion of L-aspartate 4-semialdhyde to 1,3-diaminopropane, an industrially useful
platform chemical, were fused to these MOFS to determine if compartmentalization of these
enzymes might improve the overall productivity of the simple pathway. Unfortunately, the
strain with the fusion enzymes did not perform better than the strain with free enzymes.
Another recent study utilized MOFS from proteins (GKAP, Shank, Homer) found to be
abundant in dense regions at synapses [129]. These MOFS were utilized in two different
contiguous biosynthetic pathways—menaquinone biosynthesis involving three enzymes
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(MenF, MenD, MenH) and farnesyl pyrophosphate biosynthesis involving two enzymes
(Idi, IspA). Under in vitro conditions, the synthetic enzyme condensate improved the
productivity of menaquinone production by 70% and that of farnesyl pyrophosphate by
50%. In these studies, the formation of MOs loaded with enzymes was achieved by high-
level expression of the MOFS–enzyme fusion protein. The straightforward nature of this
approach is a distinct advantage of using MO for enzyme scaffolding in comparison to
highly structured protein shells, where the stoichiometries between the shell protomers
and cargo proteins need to be titrated to produce shells optimally loaded with cargo.

A current limitation in the adoption of this emerging scaffold is that there is only
preliminary data on the chemical microenvironment within MOs. Some MOs are involved
in nucleic acid processing, and therefore, have been observed to concentrate nucleic acids
from the surrounding aqueous environment, although basic biophysical parameters, such
as pI and molecular size, are not correlated with inclusion within the MO [130]. Due to the
varied molecular interactions found to contribute to LLPS in different MOFS—electrostatic,
dipole, cation-π, π-π, and coiled coils, among others—the chemical selectivity of small
molecule passive transport close to and within MOs need to be better understood for more
tractable engineering of MO-based scaffolds [29].

3. Nucleic Acid Scaffolds

Nucleic acids are able to adopt a range of architectures that can serve as enzyme
scaffolds for in vivo and in vitro applications. Computational design of self-assembled
two- and three-dimensional nucleic acid topologies tend to yield higher predictability in
comparison to protein-based scaffolds [131]. The folding of nucleic acid scaffolds into
predicted structures in solution is also mostly robust, in contrast to protein scaffolds where
researchers sometimes need to contend with proper protein expression and folding. On the
other hand, coupling of enzymes to nucleic acid scaffolds is generally less straightforward
than with protein scaffolds, and the acidic microenvironment imposed by the phosphate
backbone of nucleic acids may impact the activity of pH sensitive enzymes [25,132]. This
section discusses how DNA and RNA-based scaffolds can supplement enzyme function,
focusing on their distinctive properties and areas of application.

3.1. DNA Scaffolds

DNA is arguably the most programmable of all biomolecules due to its high ther-
mostability, predictable biophysical properties, and reliability in pairing to complementary
strands [133]. This programmability, coupled with rapidly decreasing cost of DNA syn-
thesis, has contributed to the field of DNA nanotechnology [134]. The advent of DNA
origami, in which a long single stranded DNA can be folded into defined two- and three-
dimensional shapes using short “staple” strands, has inspired creative use of DNA as
scaffolds for an assortment of molecules [135]. Enzymes can be installed onto DNA scaf-
folds using non-covalent or covalent strategies. One non-covalent, high-affinity method
involves expressing enzymes as streptavidin fusions and conjugating to biotin modified
DNA [136]. The converse, biotinylating enzymes and attaching streptavidin to DNA, can
also be done. Another non-covalent method of installation uses nitrilotriacetate (NTA)
modified DNA to complex with His6-tagged enzymes in the presence of Ni2+ [137]. This
strategy is convenient as the His6 tag can serve a second function in purification of en-
zymes by immobilized metal affinity chromatography (IMAC). Covalent DNA-protein
attachment is less straightforward but offers undissociable conjugation. One method de-
veloped by Gothelf and co-workers, termed DNA-templated protein conjugation (DTPC),
introduces the His6-tag followed by a single lysine onto proteins, which then binds to an
NTA-modified DNA strand (Figure 12A) [138]. The NTA-modified strand hybridizes with
a complementary strand carrying an aldehyde moiety, which forms a covalent bond with
the aforementioned lysine via reductive amination.

The robust GOX and horseradish peroxidase (HRP) pair has been a popular proof-of-
concept enzyme cascade for assessing various DNA architectures since 2008 [25]. A more
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recent and sophisticated example involved recruitment of the enzymes into DNA origami
nanotubes with approximate diameters of 30 nm [136]. Within the nanotubes, the activities
of GOX and HRP increased by approximately 5- and 3-fold, respectively. When the tubes,
separately containing GOX and HRP, were dimerized, the overall activity of this simple
cascade increased by 10-fold. This was attributed to improved substrate channeling within
the nanotubes.

Yan and co-workers refashioned DNA to mimic flexible “swinging arms” present
in multi-enzyme complexes and multifunctional mega-enzymes (e.g., polyketide syn-
thases) [139–141]. They immobilized glucose-6-phosphate dehydrogenase (G6pDH) and
malate dehydrogenase (MDH) on a DNA double crossover tile, in which two DNA he-
lices placed side by side are joined by cross over of strands (Figure 12B) [142]. G6pDH
oxidizes glucose-6-phosphate with the reduction of NAD+ to NADH, while MDH reduces
oxaloacetate to malate and oxidizes NADH back to NAD+. The key NADH cofactor was
installed between G6pDH and MDH via a poly(T)20 strand. The authors exploited the easy
maneuverability of the DNA scaffold to find an optimal stoichiometry ratio of enzymes and
NADH. The construct that gave the highest activity had a cross geometry where four MDH
and four NADH were centered around one G6pDH. This scaffold gave an approximate
277-fold increase in activity over just immobilized enzymes but free cofactor. To further
reinforce the advantage of substrate channeling, the authors introduced lactate dehydro-
genase (LDH), which competed with MDH for NADH. They designed an assay whereby
free LDH was incubated with the G6pDH-MDH scaffolds with decreasing fractions of
immobilized MDH. It was determined that the activity of LDH increased linearly with
decreasing fractions of immobilized MDH, signaling the importance of enzyme-cofactor
proximity in the scaffold.

More recent advances in DNA origami have allowed deployment of DNA as molec-
ular machines through dynamic alteration of their three-dimensional shape [133]. A re-
cent and first demonstration of dynamic DNA scaffolds for hosting enzymes was the
design of a DNA vault that can open and close in response to opening and closing keys
(Figure 12C) [143]. The opening key binds to a lock region on the vault, causing it to
open, while the closing key anneals to the opening key, removing it from the lock re-
gion. Chymotrpysin was introduced into the DNA vault by incorporating an alkynyl
moiety into the cargo anchoring site (CAS), while chymotrypsin itself was reacted with
azido-N-hydroxysuccinimide (azido-NHS) ester. These alkynyl and azido moieties react
to form a 1,2,3-triazole linkage via the Huisgen cycloaddition [144]. In the presence of a
fluorophore-tagged chymotrypsin substrate, it was found that the open vault exhibited
approximately three times the activity of the closed vault. The authors surmised that the
unexpectedly high basal activity seen in the closed vault was likely due to misfolded DNA
vaults that did not properly sequester the enzyme. Nonetheless, the DNA vault created
in this study can serve as a prototype for dynamically regulating enzyme activities in
response to environmental signals.

3.2. RNA Scaffolds

In contrast to DNA, research in harnessing RNA scaffolds has been comparatively slow
due to few established methods for binding RNA to proteins with very high affinity [145].
This is further discouraged by the predilection for RNA polymers to hydrolyze under
basic conditions or by the action of RNase, a pervasive and hardy contaminant in RNA
molecular work [146]. As such, the use of RNA scaffolds for enzyme tethering has been
largely restricted to in vivo applications. The sizable library of RNA aptamers that bind
to protein domains, mostly with moderate affinities (KD—mM–µM), has been critical for
creating enzyme pathways in microbial hosts [147]. To construct an RNA scaffold capable
of supporting coupled enzyme catalysis, aptamer-binding protein domains were fused
to the enzymes [FeFe]-hydrogenase and ferredoxin. These enzymes work in tandem to
reduce water to molecular hydrogen. The PP7 domain (HP) and MS2 dimeric domain
(FM) were installed on the hydrogenase and ferredoxin, respectively (Figure 13A). Binding



Molecules 2021, 26, 1389 21 of 33

of the enzymes on discrete RNA hairpin duplex, one-dimensional, and two-dimensional
scaffolds improved hydrogen productivity by 4-, 6-, and 24-fold, respectively, compared
to free enzymes. This improvement was correlated with increased immobilization of the
enzymes afforded by higher-order architectures.

Building on this work, a small collection of eight aptamer sequences and correspond-
ing protein binders were utilized for localization of two enzymes in pentadecane produc-
tion [148]. Acyl-ACP reductase (AAR) and aldehyde deformylating oxygenase (ADO)
convert C16 acyl-ACP to the C15 pentadecane through an aldehyde (hexadecanal) interme-
diate [149]. However, hexadecanal is readily reduced by the host’s endogenous alcohol
dehydrogenases to form an alcohol side product. It was reasoned that co-localization of
these enzymes would reduce the extent of the side reaction. The aptamer binding peptides
PP7 and BIV-TAT were installed on ADO and AAR, respectively, and co-expressed with a
two-dimensional RNA scaffold (Figure 13B). The RNA scaffold offered exquisite control
over the geometry and proximity between the two enzymes. A 13 to 17 bp range of hairpin
stem length between the aptamer regions was tested and it was found that a distance of
14 and 16 bp offered the highest titers of pentadecane synthesis while 15 bp yielded the
lowest. A model of the RNA-enzyme scaffold was proffered where at a 15 bp distance the
enzymes were far from each other while at 14 and 16 bp they were in close proximity.
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4. Molecular Tools for Constructing Enzymatic Scaffolds

An overarching theme that can be seen from the above discussion on protein and nucleic
acid-based compartments and scaffolds is that expressing these compartments/scaffolds
and coupling them to the enzyme(s) of interest require careful planning of the multiple
steps involved. In this section, we summarize molecular tools that enable such efforts,
focusing on their strengths and limitations.

4.1. Multipartite DNA Assembly Enabled by Synthetic Biology

The first step in co-expressing enzymes and enzymatic pathways with their target
scaffold often involves piecing together numerous DNA parts—open reading frames (ORF),
promoters, linkers, and terminators. The advent of synthetic biology has brought along
efficient multipartite DNA assembly methodologies [150]. These developments have been
leveraged by researchers seeking to design, build, and test enzyme and scaffold systems to
achieve an optimal stoichiometric ratio of parts. While some researchers have made use
of multiple plasmids with orthogonal selection markers for tuning expression of multiple
genes, others have opted to accommodate numerous genes on a single plasmid. The key ad-
vantage of the latter strategy is that the overall metabolic burden on the host can be reduced.
Three main DNA assembly methods that have found widespread success in enabling combi-
natorial assembly of numerous genetic parts are identified. These methodologies—BioBrick
assembly, Golden Gate assembly, and Gibson assembly—have been utilized in many of
the studies cited herein. The construction of BMCs and cellulosomes are discussed in
relation to the DNA assembly methods, as these scaffolds have more parts compared to the
others mentioned.

BioBrick assembly uses type IIP restriction enzymes (RE) recognition sites that flank
the genetic part [151]. The RE recognition sites on a part are chosen such that when it is
ligated to another part, the recognition sites are removed. This strategy allows genetic
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parts to be sequentially introduced into the destination plasmid. This “Link and Lock”
BioBrick strategy was utilized to sequentially introduce seven PDU shell proteins (PduAB-
JKNUT) into a single plasmid, allowing the contribution of each component towards shell
assembly to be interrogated [86]. It was also used to construct a simplified β-cyanobacterial
carboxysome, consisting of four shell proteins, by assigning ribosomal binding sites (RBS)
of appropriate strengths to the components [88]. Some synthetic cellulosomes were also
constructed using the BioBrick strategy [53,99,104]. Major shortcomings of the BioBrick
strategy include the creation of RE ligation scars flanking each part at every stage of
assembly and that digestion and ligations of parts have to be carried out sequentially.

Golden Gate assembly uses type IIS RE that cut outside of their recognition site.
Ligated genetic parts can, therefore, be designed to have the RE recognition site removed
after digestion. Consequently, digestion and ligation can be performed in a one-pot
reaction, expediting the assembly process. Golden Gate assembly has been used in gene
shuffling experiments and can be used to assembly up to 10 parts simultaneously with >90%
accuracy [152]. Golden Gate assembly has been used to create synthetic compartments
using five PDU shell proteins and also to create chimeric metabolosome shells [153,154].
The main limitation of Golden Gate assembly is that the RE recognition sites need to be
absent from the genetic parts used.

Gibson assembly uses a mixture of a 5′-exonuclease, a ligase, and DNA polymerase
for one-pot isothermal assembly of overlapping DNA fragments [155]. It has been used to
create a synthetic chromosome measuring several hundred kilobases, though commercially
available master mixes for routine laboratory use promise high fidelity assembly of up to
approximately six fragments. Gibson assembly has been used to assemble the plasmid
expressing the three-component HO-BMC shell, and facilitated the switching in and out of
engineered shell components to investigate cargo loading efficiency [54]. Experimentally,
Gibson assembly is the most straightforward out of the three DNA assembly methodologies
mentioned, requiring just incubation of PCR products with the master mix for 15 min to
1 h. Its two disadvantages are: (i) errors sometimes arise during homologous repair of
overlapping regions and (ii) fragments shorter than 100 bp (such as those encoding protein
linker or tag sequences) cannot be efficiently assembled [156].

4.2. Strategies for Installing Enzymes on Scaffolds

Methods for installing enzymes on protein and nucleic acid-based scaffolds can be
broadly classified into two groups: synthetic chemistry-based and biochemistry-based.
Synthetic chemistry tools make use of labile moieties on enzymes and scaffolds (e.g.,
terminal amines, carboxylates, sulfhydryl) to covalently link macromolecules together.
The crosslinking is robust but generally not applicable for whole-cell applications due
to non-specific reactions with cellular biomolecules (Table 2). Biochemistry-based tools,
which include the use of ncAA/non-canonical nucleotides (ncNT), affinity tags, and protein
ligases, are applicable for both in vivo and in vitro use. On the other hand, biochemical-
based linking techniques may be less straightforward to carry out, or may not yield enzyme-
scaffold linkages that are immune to dissociation. Ultimately, the choice of installation
methodology depends on the specific enzyme and scaffold of interest.

Some widely utilized enzymes, such as GOX and HRP, are generally tolerant to chem-
ical crosslinkers, which tend to react non-regioselectively [76,157]. It is plausible that many
other enzymes suffer from major or complete loss of activity from chemical crosslinking
due to such unspecific modifications. These cases are likely to be underreported in the
literature. Many bio-macromolecular conjugates, discussed herein or otherwise, employ
biologically benign coupling methods that afford high regioselectivity, thereby ameliorating
issues in protein unfolding or inactivation of critical catalytic sites. Incorporation of ncAA
or non-canonical nucleotides (ncNT) into the enzyme and scaffold allows bioorthogonal
crosslinking reactions to occur intracellularly [144]. A widely used coupling reaction used
is the Huisgen cycloaddition between the azido and alkynyl functional groups, termed the
“click” reaction due to its robustness [144,147]. However, genetic incorporation of ncAA
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requires engineering/evolution of a tRNA synthetase that specifically loads a chosen ncAA
onto a suppressor tRNA, while incorporation of ncNT into an oligomer similarly requires
tailoring of DNA polymerases [144,158,159]. The complexity in genetically incorporat-
ing ncAA and ncNT limits their use to only the most tractable hosts, such as E. coli and
S. cerevisiae.

Table 2. Examples of widely adopted methodologies for installing enzymes onto scaffolds.

Method Examples Advantages Limitations

Chemical crosslinking N-hydroxysuccinimide (NHS),
sulfhydryl, carbodiimide

Wide variety of reagents
commercially available
Covalent conjugation

Modifications are often
non-regiospecific and may

inactivate enzymes
Incompatible with

in vivo applications

Non-canonical amino
acids (ncAA)/nucleotides

(ncNT)

Amino acids and nucleotides
containing azido, alkynyl, and

other crosslinking moieties

Regiospecific and
bioorthogonal

Conjugation is often covalent

Inefficient and challenging
incorporation of ncAA/ncNT into

target molecules in vivo
ncAA and ncNT are expensive or
have to be synthesized in-house

Affinity tags

Encapsulation/targeting
peptides, supercharged

proteins (e.g., GFP(+36)),
avidin-biotin, aptamers

Regiospecific
Tags are often short sequences

that do not severely impact
protein folding/function

Dissociable linkage
Tags sometimes do significantly

affect protein property

Covalent protein ligation
SpyCatcher/SpyTag,

SnoopCatcher/SnoopTag,
peptide ligases

Covalent conjugation
Regiospecific

Some protein ligation domains
(e.g., SpyCatcher, SnoopCatcher)

are relatively bulky and may
affect protein folding/function

Non-covalent affinity tags are the most widely used method for localizing foreign
enzyme(s) to the scaffold. These include encapsulation or targeting peptide (EP/TP)
sequences that, when installed on the cargo molecule, allow it to interact specifically with
a region on the scaffold. The molecular mechanism of encapsulation/targeting varies,
from docking into hydrophobic pockets observed in the T. maritama encapsulin [52,69], to
electrostatic interactions in the A. fulgidus ferritin cage and engineered AaLS shell [78,122].
Affinity tags can be derived from proteins cognate to the compartment/scaffold, such as
dockerin domains in cellulosomes, or obtained through rational design and/or evolution,
such as GFP(+36) or aptamers [98,123,148]. The diversity, ease of installation, and general
non-intrusive of affinity tags on the scaffold have offset their key limitation, which is
detachable coupling to the scaffold. It should be noted that some affinity tags, even short
ones, may have unforeseen impact on the cargo. For example, the PDU EP (18 residues
long) may cause enzymes to strongly aggregate into inclusion bodies owing to hydrophobic
motifs on its sequence [89].

Protein ligation techniques, in which isopeptide bonds are formed by peptide ligases,
offer both high regioselectivity (due to sequence specificity of the ligases) and affinity (due
to the covalent isopeptide bonds formed). The caveat is that peptide ligase domains that cat-
alyze isopeptide bond formation between a tag and itself (e.g., SpyTag/SpyCatcher, Snoop-
Tag/SnoopCatcher) tend to be relatively bulky for a protein fusion partner—SpyCatcher
and SnoopCatcher have masses of 9 and 15 kDa, respectively. This may affect folding and
supramolecular assembly of the scaffold if installed near highly structured or crowded
regions. Nevertheless, structure-guided grafting of the SpyCatcher and SnoopCatcher
domains into flexible regions of the scaffold protomer, such as the termini or internal loop
regions, have permitted their integration into the scaffold [54,67,96,160]. External peptide
ligases, such as sortase and butelase, are not integrated into the scaffold but tend to have
limitations on the specific terminus at which ligation can take place [161,162]. This restricts
possible spatial orientations that the enzyme can adopt in relation to the scaffold.
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5. Conclusions and Outlook

Enzymology is an established field that is largely concerned with explaining the
structure–function relationships of enzymes with regard to activity, and has more recently
been expanding towards understanding the behavior of enzymes in complex and dynamic
systems [163,164]. The studies discussed in this review demonstrate that the notion of
controlling enzyme microenvironment via genetically manipulable scaffolds is percolat-
ing in enzymology, with direct implications for their applications in biotechnology and
biomedicine. These advances have been facilitated by the cross-pollination of tools and
methodologies between synthetic biology and chemical biology. The “plug-and-play”
paradigm in synthetic biology has accelerated the building of multi-component enzyme-
scaffold systems and downstream optimization of the components’ stoichiometries [150].
Chemical biology has provided a range of tools for regiospecific coupling of normally
unrelated enzymes and scaffolds.

The various protein- and nucleic acid-based scaffolds discussed herein and the de-
sirable properties they have conferred on enzymes are summarized in Figure 14. With
continuous discovery and structural elucidation of nanoscale protein shells and scaffolds,
empowered by developments in genomics and structural biology, more protein-based tem-
plates can be added to the complement the current ensemble [30,68,165]. Concurrently, the
burgeoning field of nucleic acid-based nanotechnology and decreasing cost of nucleic acid
synthesis and modification is projected to yield more architectures capable of controlling,
with greater molecular precision, the spatial orientation and activity of enzymes [131].
Two major challenges are commonly encountered by researchers when seeking to adopt
protein or nucleic acid scaffolds for enhancing enzyme utility. First, despite the many
molecular tools mentioned beforehand that assist in building and conjugating enzyme-
scaffold systems, achieving a successful system probably still requires multiple rounds
of optimization. While some scaffolds, such as MOs and homomeric encapsulin shells,
can be produced by simple overexpression of the constituent modules, others, such as
the multi-component BMCs and cellulosomes, require stoichiometric fine-tuning of its
components [36,41,51,99]. Furthermore, the effects of protein tags and other modifications
used for enzyme-scaffold coupling have to be assessed on a case-by-case basis. Synthetic
biology-based methodologies that streamline combinatorial DNA assembly of individual
components can alleviate part of this difficulty. Second, due to the multivariate nature of
enzyme-scaffold systems, subtle biophysical properties may be overlooked in explaining
the effects a specific scaffold exerts over specific enzyme(s). Consequently, desired prop-
erties reported for an enzyme-scaffold system may not necessarily be applicable should
a different set of enzymes be used. As an illustration, there has been concerns that the
improved activities observed in the GOX and HRP enzyme cascade widely used for proto-
typing DNA scaffolds, generally credited to proximity effects, may actually be caused by
the acidic microenvironment in DNA scaffolds that is favored by these enzymes [132]. A
wider range of enzyme cascades with more diverse reaction chemistries can be tested on
existing scaffolds to provide a more substantial body of knowledge on the generalizability
of altered properties in enzyme-scaffold systems.

As global demand for enzymes continues to grow in various markets, including but
not limited to food, pharmaceutics, and biofuels, there is a strong motivation to engineer
enzymes to fulfill emerging industrial needs [166]. To achieve economic viability, enzymes
should be robust towards environments canonically uncongenial to biomacromolecules
and be adaptable to industrial trends. Despite being an emerging research focus, enzyme
scaffolding based on genetically encodable biomolecules has shown potential in overcom-
ing the all-too-common bottleneck of translating research ideas to commercially viable
biotechnological products.
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CYP450 Cytochrome P450
EP Encapsulation peptide
EPSPS 5-enolpyruvylshikimate-3-phosphate
G6pDH Glucose-6-phosphate dehydrogenase
GCK Gluconokinase
GFP Green fluorescent protein
GH Glycoside hydrolase
GOX Glucose oxidase
GRAS Generally regarded as safe
GSH Glutathione
GST Glutathione S-transferase
HRP Horseradish peroxidase
IMAC Immobilized metal affinity chromatography
INT MVP interaction domain
LDH Lactate dehydrogenase
LLPS Liquid-liquid phase separation
MDH Malate dehydrogenase
MnP Manganese peroxidase
MO Membraneless organelle
MOFS Membraneless organelle formation sequence
MoClo Modular cloning
MOFS Membraneless organelle formation sequence
MVP Major vault protein
ncAA Non-canonical amino acid
ncNT Non-canonical nucleotide
NHS N-hydroxysuccinimide
NTA Nitrilotriacetate
ORF Open reading frame
PDC Pyruvate decarboxylase
Pyl Pyrrolysine
RBS Ribosomal binding site
RE Restriction enzyme
ROS Reactive oxygen species
SDS Sodium dodecylsulfate
sHSP Small heat shock protein
TEM Transmission electron microscopy
TMV Tobacco mosaic virus
TP Targeting peptide
VLP Virus-like particle
YFP Yellow fluorescent protein
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