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Abstract: Triple negative breast cancers (TNBCs) are characterized by worse prognosis, higher
propensity to earlier metastases, and shorter survival after recurrence compared with other breast
cancer subtypes. Anthracycline- and taxane-based chemotherapy is still the mainstay of treatment
in early stages, although several escalation approaches have been evaluated to improve survival
outcomes. The addition of platinum salts to standard neoadjuvant chemotherapy (NACT) remains
controversial due to the lack of clear survival advantage, and the use of adjuvant capecitabine
represents a valid treatment option in TNBC patients with residual disease after NACT. Recently,
several clinical trials showed promising results through the use of poly ADP-ribose polymerase
(PARP) inhibitors and by incorporating immunotherapy with chemotherapy, enriching treatment
options beyond conventional cytotoxic agents. In this review, we provided an overview on the current
standard of care and a comprehensive update of the recent advances in the management of early
stage TNBC and focused on the latest emerging biomarkers and their clinical application to select the
best therapeutic strategy in this hard-to-treat population.
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1. Introduction

Triple negative breast cancer (TNBC) is clinically defined by the lack of the estrogen receptor (ER),
progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. TNBC
represents approximately 15–20 percent of breast cancers (BC) diagnosed worldwide and occurs more
often in younger, black women and patients harboring mutations in breast related cancer antigens 1
and 2 (BRCA1/2). TNBC is a heterogeneous disease and, during the last decades, several classifications
have been proposed according to specific histological and molecular characteristics of tumor [1]. High
grade ductal invasive carcinoma is the most frequent histological type, even if special subtypes as well
as medullary-like, apocrine, adenoid-cystic, and metaplastic are generally triple negative cancers.

TNBC is associated with worse prognosis with a high propensity to distant metastases (usually
within two or three years from diagnosis) and shorter survival after recurrence. The pattern of
relapses is characterized by a preferential metastatic spread to lungs, liver, and brain, while skeletal
involvement is less common compared to luminal cancers [2]. Despite the emerging role of targeted
therapies, TNBC is still an orphan disease in terms of therapeutic options, and chemotherapy remains
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the mainstay of treatment. Unfortunately, only about one third of patients responds to chemotherapy,
thus the identification of actionable molecular drivers is crucial for the development of novel targeted
treatments. Recently, several clinical trials showed promising results through the use of poly ADP-ribose
polymerase (PARP) inhibitors and by incorporating immunotherapy with chemotherapy, enriching
treatment strategies beyond conventional cytotoxic agents.

In this review, we provide an overview on the current therapeutic options and a comprehensive
update of the latest advances in the management of early stage TNBC.

2. Classifications of TNBC: Molecular Subtypes and Gene Signatures

Gene expression microarray studies identified a spectrum of distinct molecular subtypes of BC
with different prognosis and specific biological characteristics (Table 1). Based on gene expression array,
Perou et al. proposed the first molecular classification, identifying four intrinsic subclasses of breast
tumors: luminal A, luminal B, HER2-enriched, and basal-like subtype. These molecular portraits are
defined according to the different clusters of co-expressed genes: hormone receptor (luminal cluster),
Her2, cell-cycle regulating genes, and other genes mapping to chromosome 17 [3].

Immunohistochemistry and gene expression arrays demonstrated about 70–80% of concordance
between triple negative disease and basal-like (BL) subtype. Approximately 20–25% of triple negative
breast cancers (TNBCs) are not basal-like at microarray analysis, while 25% of basal-like tumors are
not immunohistochemically triple-negative.

Additional novel molecular entities that preferentially display triple negative phenotype are the
claudin-low and interferon-rich subtype. The claudin-low tumors are characterized by the absence
of luminal differentiation markers, enrichment for epithelial-mesenchymal-transition, and immune
response genes, low proliferation, cancer stem cell-like features, and poor prognosis [4], while the
definition of interferon-rich subtype is based on the overexpression of interferon-regulated genes
cluster such as STAT 1, associated with lymph node metastasis and worse outcome [5].
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Table 1. Classifications of triple negative breast cancer (TNBC).

Subtypes Characteristics

LEHMANN CLASSIFICATION [6]

Basal-like 1 High level of DNA repair proteins and cell-cycle regulation (high rate of tp53 mutations, amplification of MYC, CDK6, CCNE1, deletion of BRCA-2,
PTEN, MDM2, RB1).

Basal-like 2 Overexpression of growth factor signaling genes and overexpression of myoepithelial differentiation genes.

Mesenchymal like Expression of genes associated with EMT.

Mesenchymal-stem like

Expression of genes associated with EMT;
Enrichment in genes involved in angiogenesis, including VEGFR2 and some components of immune signaling;

High expression of stem cells genes;
Low expression of proliferation genes and epithelial-related genes involved in the maintenance of cellular junction, such as claudin (claudin-low

breast cancer).

Immunomodulatory Enrichment in genes involved in regulation of immune response, antigen processing and presentation, immune cells and cytokine signaling pathways.

Luminal androgen receptor (LAR) High level of androgen receptor genes;
Alterations of PI3K pathway genes (PI3KCA, AKT1, NF1, CDH1).

BURSTEIN CLASSIFICATION [7]

Basal-like immunosuppressed (BLIS) Downregulation of B cell, T cell, and natural killer cell immune-regulating pathways, and cytokine pathways;
Expression of multiple SOX family transcription factors.

Basal-like immunoactivated (BLIA) Upregulation of genes involved in immune cell function regulation;
High expression of STAT genes.

Mesenchymal (MES) Expression of genes involved in cell cycle, mismatch repair, and DNA damage networks, and hereditary breast cancer signaling pathways;
Expression of genes normally exclusive to osteocytes (OGN) and adipocytes (ADIPOQ, PLIN1) and important growth factors (IGF1).

Luminal androgen receptor (LAR) Expression of AR, ER, prolactin, and ErbB4 signaling genes.

MICROARRAY-BASED CLASSIFICATION [4,5]

Basal-like Low expression of luminal A signature, high proliferation score, low expression of estrogen signaling related genes (FOXA1, PGR); High expression of
cell-cycle related genes (CCNE, FANCA); High expression of EMT (TWIST1, ZEB1).

Claudin-low Low levels of cell adhesion proteins (Claudins 3, 4, 7, Occludin, E-caderin); Low expression of luminal genes; Inconsistent basal genes expression;
Elevated expression of immune-related genes (CD4, CD79a).

Molecular apocrine Activation of AR pathways.

Interferon-rich Overexpression of interferon-regulated genes (STAT1, SP110).

Epithelial-mesenchymal transition, EMT; androgen receptor, AR; estrogen receptor, ER.
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The advances in transcriptomic field have led to the identification of several molecular drivers
that define seven clusters within TNBCs: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal- like
(M), mesenchymal stem-like (MSL), immunomodulatory (IM), luminal androgen receptor (LAR), and
unstable clusters. BL1 is characterized by the expression of basal cluster of genes involved in DNA
repair mechanisms and cell-cycle regulation. BL2 shares with BL1 a highly proliferative phenotype, and
it shows a marked overexpression of growth factor signaling genes and myoepithelial differentiation
markers. M and MSL subtypes, which mainly belong to the claudin low intrinsic subgroup, are enriched
for genes encoding regulators of cell motility, invasion, and mesenchymal differentiation. Furthermore,
MSL shares with the IM type numerous genes engaged in the regulation of immune response, antigen
processing and presentation, immune cell, and cytokine signaling pathways. Tumors with LAR subtype
typically express high levels of androgen receptor (AR) and present gene alterations of phosphatidyl
inositol 3-kinase (PI3K) pathway, such as PI3KCA (55%), AKT1 (13%), NF1 (13%), and CDH1 (13%)
mutations, in conjunction with a higher prevalence of invasive lobular histology [6]. Furthermore,
Lehmann and colleagues observed that the presence of distinctive stromal cells in tumor specimen
was associated with specific behavior across subtypes in terms of both presentation and outcomes.
This assumption led to a new classification of TNBC in four subgroups: BL1 (immune-activated),
BL2 (immune-suppressed), M (including most of the MSL), and LAR [8]. Interestingly, the response
to neoadjuvant chemotherapy (NACT) is largely influenced by the specific class of TNBC with the
highest and the lowest pathological complete response (pCR) rates reported in BL1 (65.6%) and LAR
(21.4%) subtypes, respectively [9]. Moreover, Burnstein and colleagues proposed a similar classification
founded on a combination of RNA and DNA profiling analyses dividing TNBC into four subgroups:
LAR, mesenchymal (MES), basal-like immunosuppressed (BLIS), and basal-like immune-activated
(BLIA). Each subtype has well-defined molecular targets and different prognosis. Noteworthy, the
BLIS subgroup exhibited the worst prognosis, while the BLIA subtype is related to favorable outcomes
in terms of disease-free survival (DFS) [7].

Despite efforts in classifying TNBC, discordance in the number of molecular subtypes and methods
used as well as intratumor genomic heterogeneity represented barriers in developing targeted therapies.
However, by reviewing all genomic studies, it emerged that TNBC consists of four main subgroups:
BL, mesenchymal, LAR, and immune-enriched. This simplified molecular portrait of TNBC provided
the basis for a new subtype-driven therapeutic approach. For example, in BL cancers, targeting
DNA damage response pathways by using platinum salts and PARP inhibitors (PARPis) could be an
effective therapeutic strategy, while the mesenchymal subtype would seem to be more sensitive to PI3K,
vascular endothelial growth factor 2 (VEGFR2), fibroblast growth factor receptor (FGFR), or mammalian
target of rapamycin (mTOR) inhibitors [10]. Several phase I–II trials have suggested the activity of
anti-androgen agents in the LAR subgroup, even if results from confirmatory phase III studies are
needed to validate the efficacy of this strategy [11]. Furthermore, ongoing trials are investigating the
usefulness of immunotherapy for treatment of patients affected by immune-enriched TNBC.

In conclusion, the implementation of next-generation sequencing (NGS) and other genomic assays
into everyday practice is expected soon to deliver personalized treatment for TNBC, but, until then,
patient enrollment in clinical trials that stratify according to the presence of a specific gene signature
should be strongly encouraged.

3. BRCA1/2 Mutations

BRCA1 and BRCA2 are tumor suppressor genes that exhibit an autosomal dominant pattern of
inheritance with high penetrance. In the presence of DNA double-strand breaks (DSBs), the proteins
encoded by these genes are involved in a conservative form of DNA-repair processes defined as
homologous recombination repair (HRR) able to recover the original DNA sequence.

Many BRCA1/2 dysfunctions arise from germline mutations, promoter methylation, and somatic
alterations. Patients with deleterious BRCA1/2 mutations are more sensible to alkylating agents, platinum
salts, or PARPis, since these drugs induce irreparable DNA damage in hormone receptor (HR) deficient
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cells and consequently lead to cell cycle arrest and apoptosis [12]. Germline BRCA1/2 (gBRCA1/2)
mutations are responsible for 52% and 32% of all hereditary breast cancers (BCs), respectively [13].

TNBC phenotype accounts for 71% of gBRCA1 mutations carriers while only 25% of patients with
gBRCA2 mutations are affected by TNBC [14]. Noteworthy, gBRCA1/2 mutations have been identified
in 10–20% of TNBCs, while somatic mutations are rarely reported (3–5% of cases) [15]. BRCA1 mutated
TNBC patients are commonly younger than those harboring BRCA2 mutations, with a median age
at diagnosis of 47.2 years and 58.8 years, respectively [16]. The relationship between these genomic
scars and race/ethnicity has been widely studied, showing the lowest and the highest prevalence of
gBRCA1/2 mutations in the Asian group (0.5%) and in the Ashkenazi Jewish (AJ) population (10.2%),
respectively [17]. Interestingly, a recent analysis conducted in the USA showed that the incidence of
pathogenetic BRCA2 mutations is higher in the AJ population compared to non-Hispanic whites, while
BRCA1 alterations were not affected by race and ethnicity [18].

Several trials demonstrated the effectiveness of platinum-based chemotherapy for TNBC patients
with BRCA mutations both in preoperative [19] and in metastatic settings [20]. However, two
randomized clinical studies showed that the addition of platinum to standard NACT significantly
increased pCR rate in TNBC regardless of the presence of gBRCA1/2 mutations [21]. Noteworthy,
results from ongoing (neo)-adjuvant trials are awaited to clarify if PARPis could have a role in early
stage BC as in advanced disease [22,23].

Almost 20% of BC patients share histological features and clinical outcome to BRCA1/2 related
cancers without detectable gBRCA1/2 mutations, a phenotype defined as BRCAness. The most
common mechanisms that cause BRCAness status are somatic mutations, large deletions, and DNA
hypermethylation of BRCA1/2, germline mutations in PALB2, and hypermethylation of RAD51C genes.
Recently, three single nucleotide polymorphism array-based signatures of chromosomal instability
identified three distinct types of genomic scars caused by deficient DNA repair system: number of
telomeric allelic imbalances (NtAI) [24], large scale transition (LST) [25], and loss of heterozygosity
(LOH) [26]. The Homologous Recombination Deficiency (HRD) score is derived by the sum of these
three metrics and represents an indirect measure of tumor genomic instability. Myriad genetics and
myChoice CDx are the most commonly used assays to evaluate this signature. HRD status was defined
as positive if either BRCA1/2 mutation or a predefined high HRD score (≥42) were revealed or classified
as negative if no BRCA1/2 mutations or a low HRD score (<42) were detected [27].

The ability of HRD status to identify TNBCs likely to respond to platinum salts monotherapy or
in combination was investigated in a large analysis of three neoadjuvant phase II studies (PrECOG
0105, Cisplatin-1, and Cisplatin-2). The results of this study strongly suggested that TNBC patients
with HRD positive status treated with platinum-based NACT achieved more favorable response rates
both in terms of pCR and residual cancer burden (RCB) compared to negative ones [28–30]. Similarly,
in a retrospective analysis of Geparsixto, HRD TNBC patients randomized in the carboplatin arm
achieved doubled pCR rates versus the non-HRD subgroup (63% and 29%, respectively), albeit without
significant advantage in DFS or overall survival (OS) [31]. All these studies proved a strong correlation
between HRD status and responsiveness to platinum-based NACT among TNBC patients. Noteworthy,
in contrast with these data, platinum demonstrated no additional benefit compared to docetaxel in
BRCAness metastatic TNBC, suggesting that its activity is not epigenetically driven by HRD status [20].

Finally, an alternative assay called “HRDetect” was recently generated to accurately detect
BRCA1/2 deficiency. This tool, through whole-genome sequencing, identified six critically mutational
signatures associated with BRCA1/2 deficiency that could predict benefits to platinum salts or PARPis
therapies [32]. However, prospective clinical trials with a control arm and larger retrospective
metanalysis are needed to clarify the clinical utility of the HRD status assessment.

All international guidelines highlighted the importance to identify gBRCA1/2 mutations carriers
by performing genetic counseling as early as possible during the course of disease in patients at risk of
inherited disease, given the implication in decision-making process in terms of the type of surgery,
radiotherapy, and systemic treatment either in neo-(adjuvant) and advanced settings [33].
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4. Other Biomarkers in Immunotherapy Era

4.1. Tumor Infiltrating Lymphocytes (TILs)

Considerable evidence highlights the relationship between host immune system, tumor
microenvironment, and response to anticancer therapy. BC has been historically considered as a
non-immunogenic disease characterized by a relatively low mutation rate. However, TNBC displayed
the highest mutation rate and a marked presence of tumor infiltrating lymphocytes (TILs). TILs consist
of mononuclear immune cells that infiltrate tumor tissue composed prevalently of cytotoxic CD8+

lymphocytes, and, to a lesser extent, CD4+ T helper cells, T regulatory (Treg) cells, macrophages, mast
cells, and plasma-cells. Tumors with more than 50–60% of TILs in their specimen area are defined as
lymphocyte-predominant breast cancer (LPBC), identifying a subset of TNBC associated with better
outcome. Different percentages of LPBC were reported in TNBC patients enrolled in (neo)-adjuvant
studies, ranging from 4.4 to 28.3% [34].

Several adjuvant and neoadjuvant trials demonstrated that the presence of intra-tumoral (iTILs)
and stromal (sTILs) TILs represents a reliable surrogate of the immune anti-tumor activity and a
robust independent prognostic biomarker in BC [35]. Recently, a pooled analysis of nine clinical
trials confirmed sTILs as independent prognostic factors in early-stage TNBC, showing a significant
correlation between higher levels of sTILs and improved survival after adjuvant chemotherapy [36].
Noteworthy, sTILs may add important information to conventional clinicopathologic factors in order
to select a subset of patients who could not derive benefits from chemotherapy. In a large series of
more than 500 women affected by pathological stage I TNBC, the presence of sTILs level of at least
30% identified a cohort of patients with excellent prognosis (5-year OS of 98%) without adjuvant
chemotherapy [37]. Moreover, the presence of high TILs (>60%) in residual disease after NACT seemed
to be correlated with better outcome for TNBC patients in which post-neoadjuvant treatment did not
offer additional survival gain [38,39].

The predictive role of TILs, measured in pre-treatment biopsies, was also explored in neoadjuvant
studies. A metanalysis of six randomized trials performed by the German Breast Cancer Group
confirmed a significant pCR improvement reported in high TILs (≥60%) TNBC patients compared to
low TILs subgroup (50% vs. 31%, respectively) [40].

TILs count was also investigated as a predictive marker of the response to immune checkpoint
inhibitors (ICI) alone or in combination with chemotherapy. Data from Keynote-086 reported that sTILs
count was able to predict efficacy of pembrolizumab as a first line treatment in metastatic TNBC [41].

In a neoadjuvant setting, a recent analysis explored the predictive role of TILs level and
programmed death ligand 1 (PD-L1) expression, reported as combined positive score (CPS), in patients
treated with immunotherapy-based combination. In the phase Ib Keynote-173 trial, patients who
responded to different NACT regimens plus pembrolizumab showed higher levels of pre-treatment and
on-treatment TILs as well as pre-treatment CPS. In particular, high pre-treatment TILs were observed
in 40% of patients achieving pCR and in only 10% of the non-responder cohort [42].

Despite the prognostic and the predictive roles of TILs having been established, the value of
qualitative characterization of immune-infiltrate is still under investigation. Breast tumors containing
elevated counts of CD8+ lymphocytes with features of tissue-resident memory T-cell differentiation
or a high CD8+/FOXP3+ ratio are deeply associated with improved survival after NACT, while the
prognostic significance of regulatory T lymphocytes remains controversial [43].

In conclusion, TILs count is considered a well-established prognostic biomarker in TNBC (level of
evidence I), and its clinical routine use is recommended by the 2019 Saint Gallen Consensus. However,
to date, TILs scoring should not be used to guide neo-(adjuvant) treatment choices [44].

4.2. Programmed Death Ligand 1 (PD-L1)

PD-L1, a transmembrane protein predominantly involved in negative regulation of the T-cell
function, is expressed in both tumor and immune cells (myeloid cells, T Reg, Natural Killer cells,
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endothelial cells) in various types of cancers. PD-L1 expression is commonly found in LPBC, and it is
related to distinctive features such as younger age, high grade tumors, non-luminal HER2-positive and
TNBC clinicopathological surrogates, as well as basal-like and HER2-enriched molecular subtypes.
Despite the aggressiveness usually conferred by these characteristics, cancers with upregulated PD-L1
showed better OS and increased sensitivity to chemotherapy, suggesting a reciprocal interplay between
immune response and antitumor activity [45,46]. PD-L1 assessed on immune cells (IC) is expressed in
about 40–65% of TNBC tested samples, while its expression is lower (about 10%) when measured on
tumor cells (TC) [47].

In metastatic settings, the predictive value of PD-L1 positivity on IC (PD-L1 IC +) was validated
in several clinical trials. In particular, the IMpassion 130 study demonstrated that the addition of
atezolizumab (anti-PD-L1) to nab-paclitaxel as first line treatment was associated with a relevant OS
improvement of 7 months in PD-L1 IC ≥ 1% population (25 vs. 18 months) [48].

However, data from Keynote-522 and NeoTRIPaPDL1 trials [49,50] investigating the efficacy of
pembrolizumab or atezolizumab in combination with conventional chemotherapy as a neoadjuvant
approach revealed that PD-L1 expression significantly increased pCR rates irrespective of ICI addition.
Therefore, the use of PD-L1 expression as a predictive marker of ICI efficacy remains controversial in
early BC settings.

Noteworthy, the standardization of the method to determine PD-L1 positivity in BC is still unclear.
A post-hoc exploratory analysis of the IMpassion130 trial evaluated the analytical concordance of
VENTANA SP142 (IC ≥ 1%) with two other immunohistochemistry assays, SP263 (IC ≥ 1%) and
Dako PD-L1 IHC 22C3 (CPS ≥ 1). The overall percentage agreements of the SP142 method with Dako
22C3 and SP263 were 69% and 63%, respectively, whereas a positive percentage agreement of 98% for
both assays was estimated. Thus, SP142+ patients represent a subgroup of a larger PD-L1 positive
population defined by Dako 22C3 and SP263 assays [51].

Furthermore, the reproducibility of PD-L1 detection due to its spatial and temporal heterogeneity
and the different relevance as predictive markers of TC and IC positivity remains undefined. In order
to overcome these gaps, new biomarkers are currently under evaluation as potential surrogates of ICI
efficacy [52].

4.3. Tumor Mutation Burden (TMB) and Microsatellite Instability (MSI) and Mismatch Repair
Deficiency (MMRd)

Tumor mutation burden (TMB) is a measurement of the total number of non-synonymous
mutations per coding area of a tumor genome, which is easily evaluated by NGS-based techniques.
These mutations are responsible for increased production of misfolded proteins (neoantigens) within
cells recognized as non-self by the immune system. In contrast to other tumors (melanoma, lung cancer,
and colorectal cancer), in which several data support TMB as a predictive biomarker for ICI efficacy,
regardless of PD-L1 expression, its clinical utility in BC is not well known due to the limited and
controversial data available. In BCs, high TMB is found in only 3.1% of cases and is more frequently
detected in TNBC compared to luminal cancers [53].

In a retrospective analysis, patients with high TMB and favorable immune subclass defined by
“positive” immune infiltrate disposition displayed improved survival independently from tumor stage,
molecular subtype, age, and schedule of treatment [54]. Conversely, in a comprehensive analysis
including clinical and genomic data, no differences in survival emerged for BC patients with high TMB
treated with ICI-based therapy [55].

Furthermore, in the subgroup analysis of the neoadjuvant GeparNuevo study, early TNBC patients
with high TMB achieved the highest pCR rate compared to those with low TMB with or without the
addition of durvalumab to conventional NACT [56]. However, the absence of standardized assay and
cut off value to define high mutational load represents a limit to the use of TMB as a biomarker in
clinical practice.
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Microsatellites are short DNA sequences repeated in tandem along the human genome and are
particularly susceptible to misalignments during DNA replication. When the mismatch repair system
is impaired, a condition defined as mismatch repair deficiency (dMMR), tumors exhibit a hypermutator
phenotype called microsatellite instability (MSI). Recently, the FDA approved pembrolizumab for any
unresectable or metastatic solid tumors with high frequency MSI (H-MSI) or dMMR [57]. Nevertheless,
H-MSI/dMMR is an extremely rare condition in BC ranging between 0–1% of cases (0.6% of TNBC
patients) and, to date, its clinical use as a prognostic and a predictive biomarker deserves further
investigations [58].

5. Treatment of Early Stage

The therapeutic decision-making process represents a crucial point for early TNBC due to its
higher propensity to relapse rapidly, generally within 2–3 years from diagnosis, with limited treatment
options available in the metastatic setting beyond conventional cytotoxic drugs.

Chemotherapy is still the mainstay of therapy with no statistically or clinically significant difference
between pre- or post-surgery administration [59], and regimens based on anthracyclines and/or taxanes
remain the standard of care [60]. The neoadjuvant approach is the preferred choice for BC patients
with locally advanced or inoperable disease to allow breast-conserving surgery and better cosmetic
results, but the main advantage of NACT is the ability to pre-emptively predict treatment efficacy,
driving physicians to optimize systemic strategies before surgery or to evaluate further post-operative
treatments in case of residual disease.

Despite the aggressiveness, TNBC generally achieves a higher pCR rate after chemotherapy
compared to other BC subtypes [61–63]. Several studies showed a strong correlation between pCR
(defined as no invasive or in situ disease in the breast or the lymph nodes at time of surgery) and
better outcomes, leading researchers to consider pCR as a surrogate endpoint for DFS in TNBC
patients [63]. However, the use of pCR as a surrogate of long-term survival benefits is still debated,
since no statistically significant correlation with OS has been formally demonstrated.

Residual disease post-NACT is a well-established biomarker of recurrence risk used to select
patients for adjuvant escalated therapy. The quantity of residual disease in the surgical specimen, also
called residual cancer burden (RCB), is classified in RCB-0, I, II, and III according to the size and the
cellularity of the tumor detected in the surgical specimen (RCB-0 is equivalent to pCR, and RCB-III
stands for no response or progression). The prognostic value of RCB was confirmed by Symmans and
colleagues in a prospective trial enrolling 820 patients treated with various chemotherapy regimens
containing anthracyclines and taxanes. Particularly, in patients affected by triple-negative disease,
a 10-year DFS rates resulted of 86%, 81%, 55%, and 23% for RCB-0, RCB-I, RCB-II, and RCB-III,
respectively [64]. Recently, patients with RCB after NACT were selected as appropriate candidates for
intensified post-operative chemotherapy.

The CREATE-X trial randomized 910 HER2-negative BC Asiatic patients with residual disease
after NACT to receive either eight cycles of adjuvant capecitabine or no further treatment [65]. In the
TNBC cohort that represented one-third of the study population, patients receiving capecitabine had
higher rates of 5-year DFS (70% vs. 56%) and OS (79% vs. 70%) compared to the control arm. Notably,
the addition of capecitabine in patients with no-TNBC phenotype resulted in a numerically but no
clinically meaningful advantage in terms of survival gain (93% vs. 90%, respectively).

Indeed, in the preliminary results of a phase III GEICAM/CIBOMA trial, which enrolled 876
Caucasian women with early-stage TNBC treated with (neo)-adjuvant chemotherapy, the extension
with adjuvant capecitabine versus placebo did not significantly improve 5-year DFS (80% vs. 77%) and
OS (86.2% vs. 85.9%) in the whole study population, although in a pre-specified subgroup analysis, a
significant survival benefit was reported among patients with no basal-like TNBC [66].

Of note, a meta-analysis of trials conducted in America, Europe, and Asia showed a significant
improvement in DFS and OS by the addition of adjuvant capecitabine in early TNBC patients pretreated
with anthracycline and taxane-based chemotherapy irrespective of study region [67].
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Finally, a recent meta-analysis of 12 prospective randomized trials including more than 15,000
BC patients reported that only the TNBC subset derived significant survival benefit from adjuvant
capecitabine, particularly when it was given in addition to systemic treatment rather than instead of
another therapy [68].

However, the role of adjuvant capecitabine in TNBC patients who received platinum-based
chemotherapy and/or ICI as part of a neoadjuvant strategy remains to be investigated. Moreover, the
results of the ongoing phase III trial comparing capecitabine with platinum salts in TNBC with residual
disease after NACT are awaited (NCT02445391).

In clinical practice, the addition of adjuvant capecitabine should be considered in TNBC patients,
especially in those with residual disease after standard NACT.

5.1. Anthracyclines

In the last 30 years, anthracyclines have represented the backbone of (neo)-adjuvant therapy for
early BC patients. However, several phase III trials and metanalyses reported a modest benefit from
anthracycline and taxane-containing regimens compared to anthracycline-free adjuvant chemotherapy
in patients with high-risk disease.

A joint analysis of NSABP B-49, USOR 06-090, and NSABP B-46-I/USOR 0713 phase III trials
(ABC trials) reported an absolute gain of 2.5% in 4-year invasive DFS in favor of anthracycline-
containing regimen (90.7% vs. 88.2%) but no difference in terms of OS between anthracycline-based
and anthracycline-free treatment. In a subgroup analysis, patients with TNBC and more extensive
lymph nodal involvement seemed to derive greater survival benefit from taxanes plus doxorubicin/

cyclophospamide (TaxAC), although the statistical significance was not met [69].
Conversely, data from the phase III West German Study (WSG) Plan B trial, which evaluated the

non-inferiority of TC (docetaxel plus cyclophosphamide) versus epirubicin plus cyclophosphamide
(EC) followed by docetaxel in the same study population of the aforementioned ABC trials, showed
similar 5-year DFS and OS in both treatment arms irrespective of HR status (DFS = 89.9% vs. 89.6%;
OS = 94.7% vs. 94.5%, respectively) [70]. These discordant findings could be explained by the higher
percentages of triple negative and node positive BC patients included in the ABC trials compared with
WSG Plan B study.

Finally, a pooled analysis of the ABC trials, the WSG Plan B trial, and a study performed by the
Hellenic Oncology Research group (HORG) failed to demonstrated the non-inferiority of TC regimen
compared to TaxAC, although the absolute benefit in DFS was relatively limited (1.28%) [71].

Basing on these controversial results, and taking into account the long-term cardiotoxicity
derived from anthracycline-containing chemotherapy, TC regimen is considered a valid alternative
option for patients with very low-risk TNBCs (node-negative and T < 1 cm) or in case of severe
cardiac comorbidities.

A robust body of evidence shows statistically significant survival benefit with the use of adjuvant
dose-dense chemotherapy, in which anthracyclines are given at two weekly intervals compared to the
standard three weekly administration in patients with HR negative tumors (HR 0.8, p = 0.002) but not
in HR positive BC cohorts [72].

A more recent large meta-analysis of 26 trials of adjuvant therapy clearly showed that dose-dense
chemotherapy improves the outcome in terms of BC recurrence (28% vs. 31.4%), BC specific mortality
(18.9% vs. 21.3%), and overall mortality (22.1% vs. 24.8%) with similar safety profiles. However, the
benefit was not affected by hormone receptor status [73].

In neoadjuvant settings, the role of the dose dense strategy is still debated, since no consistent
advantages in pCR and long-term outcomes have been demonstrated [74]. However, based on the
intrinsic aggressiveness and the higher proliferative rate of TNBC, the dose dense approach represents
an attractive choice for neoadjuvant treatment, where an intensive schedule of administration could
reduce the re-growth of cancer cells during the interval between cycles [75].
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To date, dose dense neo-(adjuvant) chemotherapy represents the preferred schedule for high-risk
BC patients.

5.2. Taxanes

Several trials and metanalyses suggested the activity of paclitaxel and docetaxel in adjuvant
settings, particularly in high risk patients such as TNBC, HER2 positive tumors, and high grade or
node positive luminal BC, showing a significant reduction in the risk of recurrence and mortality
compared to taxane-free chemotherapy.

The CALGB 9344/INT1048 trial demonstrated firstly the efficacy of paclitaxel added to doxorubicin
and cyclophosphamide AC in node positive BC patients. This study randomized 3121 patients to
receive AC for four cycles followed by four cycles of paclitaxel or AC alone administered every
three weeks. The addition of paclitaxel resulted in an absolute improvement in 5-year disease-free
and overall survival of 5% and 3%, respectively. Noteworthy, among HER2 negative patients, an
unplanned analysis reported that the beneficial effect of paclitaxel was confined to HR negative
subgroup (HR = 0.72) [76].

In the GEICAM 9906 adjuvant trial, the subset of TNBC patients treated with fluorouracil,
epirubicin, and cyclophosphamide (FEC) followed by paclitaxel derived an absolute benefit of 18% in
DFS at 7 years follow up compared to FEC alone (DFS 74% vs. 56%, respectively) [77]. Similarly, in the
French PACS 01 trial comparing six cycles of FEC to three cycles of FEC followed by three cycles of
docetaxel, patients with BL subtype obtained the greater DFS benefit from the sequential chemotherapy
regimen [78].

Two exploratory analyses performed in the E2197 study [79] and the CALGB trials [80] confirmed
that taxanes were more effective in HR-negative tumors compared with HR-positive ones. However,
an updated Cochrane systematic review including 29 adjuvant trials reported increased survival by
adding taxanes to standard anthracycline-based chemotherapy with no different treatment effect by
subgroups for HR status [81].

In the neoadjuvant context, the NSABP B-27 trial assigned 2411 women to receive either four
cycles of standard AC every 3 weeks followed by surgery, or four cycles of AC followed by four cycles
of docetaxel and then surgery, or four cycles of AC followed by surgery and then four cycles of adjuvant
docetaxel (D), which displayed that the addition of preoperative docetaxel to AC (AC-D) improved
response regardless of HR status, even if the pCR rate was nearly double in the HR negative subgroup
compared to the HR positive population (22.8% vs. 14.1% for AC-D) [82]. Similarly, in the GeparDuo
and the I-SPY neoadjuvant trials, pCR rates were significantly higher in the HR negative versus the
HR positive subset [83,84]. Furthermore, a retrospective analysis of seven consecutive neo-adjuvant
studies including 1079 patients who received NACT with or without taxanes showed that the pCR rate
was enhanced in the HR negative subgroup treated with taxanes (pCR: 29% vs. 15%) [85].

Traditionally, docetaxel and paclitaxel have been considered equivalent and interchangeable.
Sparano et al. evaluated the efficacy of AC followed by weekly (q1w) or three weekly (q3w) docetaxel
or paclitaxel in the adjuvant setting including 4950 early BC patients. The results demonstrated
an improvement in both DFS and 5-year OS with q1w paclitaxel versus q3w administration. In
TNBCs, q1w paclitaxel compared to q3w regimens (docetaxel or paclitaxel) was associated with an
approximately 30% reduction in the risk of recurrence and death and with an absolute gain in terms of
DFS and OS of 10% at long term follow up [86].

Interestingly, in order to improve efficacy and decrease toxicities related to the use of conventional
taxanes, in the last decade, novel formulation was developed. The neoadjuvant GeparSepto trial
compared weekly nanoparticle albumin-bound paclitaxel (nab-paclitaxel) to conventional paclitaxel
for 2 weeks, both followed by four cycles of EC, 1200 patients with HER2 positive and HER2 negative
early BC. The improvement of pCR rate was mainly observed among the 275 patients affected by TNBC
(48% with nab-paclitaxel versus 26% with standard paclitaxel). Noteworthy, a significant invasive DFS
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benefit was reported in the TNBC subgroup who achieved pCR, supporting the value of pCR as the
surrogate endpoint for long-term outcomes in this population [87].

Conversely, in the phase III ETNA trial conducted in 695 patients with HER2 negative early or
locally advanced BC, a slight and not statistically significant improvement in pCR rate was registered
in the nab-paclitaxel arm compared to paclitaxel cohort (22% vs. 19%), even in patients with TNBC
(41% vs. 37%) [88]. Likewise, the secondary endpoint of 5-year event free survival (EFS) was not
statistically different between neoadjuvant nab-paclitaxel compared to standard paclitaxel [89].

The conflicting data between the two trials could be explained in part by the different populations
of patients enrolled and the administration schedule of nab-paclitaxel used (3 weeks on/1 week off in
ETNA vs. every week in the GeparSepto study).

Nonetheless, nab-paclitaxel is currently recommended only for high risk disease and for patients
who have experienced serious adverse (hypersensitivity or anaphylaxis) from conventional taxanes.

5.3. Platinum-Based Chemotherapy

TNBCs are typically more sensitive to DNA-damaging compounds, such as platinum agents, due
to the high prevalence of DNA repair pathways defects reported in these tumors.

Results from two large phase II trials showed a significant improvement in pCR rates for TNBC
patients by the addition of carboplatin to neoadjuvant anthracycline and taxane-based chemotherapy.
However, it is not clear whether this effect on pCR would ever translate into lower recurrence rate.
In the Geparsixto trial, TNBC patients derived an absolute benefit in 3-year EFS of about 10% when
carboplatin was added to standard NACT plus bevacizumab (85.8% vs. 76.1%, respectively), although
no statistically significant advantage in OS was registered [90].

In contrast, the higher pCR rates obtained by the incorporation of carboplatin into conventional
NACT led to nonsignificant gain in terms of 3-year EFS in the subgroup of patients with TNBC enrolled
in the CALGB 40603 study [91].

The difference between these trials may arise from the inclusion of patients with more favorable
baseline characteristics in the CALGB 40603 study compared with the Geparsixto population.
Furthermore, in CALGB 40603, the use of cyclophosphamide combined with anthracycline, which
also induces DNA damage like platinum salts, could potentially undermine the effect of carboplatin
between the control and the experimental arms. Noteworthy, these studies were not powered to
demonstrate survival differences.

Furthermore, the BrighTNess phase III trial, which evaluated the addition of the PARP inhibitor
veliparib plus carboplatin or carboplatin alone to standard NACT in stages II–III TNBC patients,
reported substantially higher pCR rates in patients receiving carboplatin with or without veliparib
(53% and 58%, respectively) compared to the subgroup assigned to paclitaxel alone (31%) [92].

Interestingly, a recent metanalysis of nine randomized clinical trials demonstrated an absolute
gain of 15% in pCR rates by the use of neoadjuvant platinum-based chemotherapy with the exception of
the GEICAM/2006-03 study. The incorporation of cyclophosphamide in the standard NACT regimen of
GEICAM/2006-03 study could partially explain the lack of benefit in pCR achieved, since the alkylating
agent, acting as a DNA-damaging drug, may decrease the positive effect of platinum addition [21].

BRCA status has been studied as a predictive biomarker of response to platinum agents, although
its role has not been yet established. GeparSixto and BrighTNess trials reported similar pCR
rates in BRCA mutated cohorts irrespective of the addition of platinum (58.0% vs. 54.3% in the
platinum-based chemotherapy group vs. the platinum-free chemotherapy group). However, the
effectiveness of platinum agents in neoadjuvant setting remains an unsolved question, since these data
were derived from a post-hoc exploratory analysis with limited number of BRCA mutated patients
(95/609 patients) [21]. Results from the ongoing phase II neoadjuvant INFORM trial are awaited to
further define the utility of platinum compounds in BRCA mutated settings.
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6. Novel Therapeutic Options and Future Perspectives

6.1. PARP Inhibitors

On the basis of positive results of the phase III studies, OlympiAD and EMBRACA [22,23],
olaparib and talazoparib were recently approved for treatment of metastatic HER2 negative BC patients
harboring gBRCA1/2 mutation. As a consequence, several trials are evaluating the activity of PARPis in
early settings to reduce toxicity and improve pCR rates and long-term outcomes compared to standard
chemotherapy. Veliparib was the first PARP inhibitor used in the neoadjuvant phase II I-SPY2 trial, in
which the addition of veliparib and carboplatin to standard NACT improved the probability of pCR
(estimated by Bayesian analysis) compared to the control arm in TNBC patients (52% vs. 26%) but not
in HR positive ones [93]. Surprisingly, the phase III Brightness trial, which enrolled 634 operable TNBC
patients, failed to demonstrate a significant benefit in terms of pCR from the addition of veliparib
to neoadjuvant carboplatin plus paclitaxel [92]. Furthermore, no difference in pCR emerged among
gBRCA1/2 mutation carriers in an unplanned subgroup analysis [92]. The results of these two trials
suggested that the observed improvement in pCR was mainly derived from the incorporation of
carboplatin to standard NACT rather than to the addition of PARPis.

Talazoparib, the PARP inhibitor with the highest catalytic activity and the most efficient trapping
mechanism, in a single arm phase II trial including patients with operable gBRCA1/2 mutated BC,
achieved a pCR rate of 53% when administered in monotherapy for six months before surgery followed
by standard adjuvant treatment [94]. Notably, the majority of patients enrolled had TNBC (15/20) and,
among them, almost 50% achieved pCR.

Olaparib, the first PARP inhibitor approved for the treatment of metastatic BC harboring gBRCA1/2
mutation, is currently under investigation in phase II/III trials in early settings. The phase II GeparOla
study randomized 102 operable HRD BC patients to receive either paclitaxel plus olaparib or paclitaxel
plus carboplatin followed by EC as a neoadjuvant treatment. The preliminary results reported that
TNBC patients derived no benefit in pCR from the addition of olaparib to conventional NACT [95].

Finally, rucaparib in combination with cisplatin was compared to cisplatin alone in TNBC patients
with residual disease after NACT showing no significant contribution in terms of DFS derived from
PARP inhibitor addition [96]. Although talazoparib showed encouraging results, several issues remain
debated, such as the optimal dose and the identification of predictive biomarkers of response to PARPis
beyond BRCA1/2 mutations. Confirmatory data from larger phase II/III randomized controlled trials
are awaited (Table 2).

6.2. Immunotherapy for Early TNBC

BC is generally considered a “non-immunogenic” tumor due to its low mutational load and poor
immune infiltrate. However, the TNBC subtype displays several features, such as the presence of
TILs, the expression of immune evasion molecules in a tumor microenvironment such as PD-L1, and
the genomic instability and consequently the highest number of mutations that make it a “hot” and
immunogenic tumor.

Over the last years, several clinical studies showed that immunotherapeutic agents alone or in
combination with standard chemotherapy yielded an increased overall response rate and survival in
metastatic TNBC patients [48], supporting ICI as a valid approach in early BC settings.

The I-SPY 2 phase II trial evaluated the addition of pembrolizumab to standard NACT, showing
a 40% improvement in the probability of pCR compared to the control arm (60% vs. 22%) [97].
Furthermore, in the phase Ib Keynote-173 trial, a multicohort study assessing the safety and the efficacy
of pembrolizumab combined with various schedules and doses of platinum and taxanes followed by
AC as NACT, the pCR rate across all cohorts ranged from 60% to 80%, with the best response registered
in the subgroup of patients treated with pembrolizumab added to nab-paclitaxel plus carboplatin [98].
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Table 2. Ongoing (neo)-adjuvant phase II-III trials with PARP inhibitors.

Phase NCT Study Population Setting Stage Experimental Arm Control Arm Primary Endpoint

II NCT03499353 (NeoTala) TNBC and/or gBRCA1/2 mutated BC Neoadjuvant I–III Talazoparib NA pCR

II NCT02282345 gBRCA1/2 mutated BC Neoadjuvant I–III Talazoparib NA iDFS

II NCT02789332 (GeparOla) HER2 negative BC with gBRCA1/2
mutation and/or HRD Neoadjuvant I–III Standard NACT + Olaparib Standard NACT +

Carboplatin AUC2 pCR

II NCT01042379 TNBC Neoadjuvant II–III Veliparib + carboplatin→
standard NACT Standard NACT pCR

III NCT02032277 (BrighTNess) TNBC Neoadjuvant II–III Veliparib + carboplatin +
paclitaxel→ AC

Placebo ± carboplatin+
paclitaxel→ AC pCR

II/III NCT03150576 (PARTNER) TNBC and/or gBRCA mutated BC Neoadjuvant II–III Olaparib + carboplatin +
paclitaxel→ AC/EC

Paclitaxel + carboplatin→
AC/EC Safety, pCR

III NCT02032823 (Olympia) HER2 negative BC with gBRCA1/2
mutation Adjuvant NA Olaparib maintenance up to

maximum 1 year Placebo iDFS

Doxorubicin plus cyclophosphamide, AC; epirubicin plus cyclophosphamide, EC; homologous recombination deficiency, HRD; pathological complete response, pCR; invasive disease-free
survival, iDFS. not available, NA.
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In the Keynote-522, the first phase III trial that demonstrated the effectiveness of anti-PD1 therapy
in neoadjuvant setting, 1174 TNBC patients were randomized 2:1 to receive chemotherapy (carboplatin
+ paclitaxel followed by AC or EC) plus pembrolizumab or placebo followed by pembrolizumab alone
or placebo after surgery. In this study, the addition of the pembrolizumab resulted in a statistically
significant and clinically meaningful increase in pCR rate of 13.6% (64.8% vs. 51.2%, p = 0.00055)
regardless of the PD-L1 expression status [49]. Data from the subgroup analysis presented at the last
San Antonio Breast Cancer Symposium (SABCS) showed that patients with the most aggressive disease,
such as stage III tumors, derived more benefit from the incorporation of the anti-PD1 to chemotherapy.
Moreover, a favorable trend for EFS was revealed, although statistical significance was not already
reached [99].

However, conflicting data arose from the phase II GeparNuevo and the phase III NeoTRIPaPDL1
trials [50,100]. The GeparNuevo, in which 174 patients were randomized to receive nab-paclitaxel plus
durvalumab (anti PD-L1) or placebo followed by EC, failed to demonstrate a significant difference in
terms of pCR between the two arms. Interestingly, in an unplanned analysis, the cohort of patients
who received additional induction therapy with durvalumab before surgery achieved a better pCR rate
(61.0% vs. 41.4%), suggesting that immunotherapy could enhance the anti-tumor activity of cytotoxic
drugs [100].

The NeoTRIPaPDL1 study investigated the efficacy of atezolizumab in combination with
carboplatin plus nab-paclitaxel in the neoadjuvant treatment of early high risk or locally advanced
TNBC followed by AC or EC after surgery. The preliminary results showed that the combination
therapy did not significantly improve the pCR rate compared to chemotherapy alone (43.5% vs. 40.8%,
p = 0.66), even if a slight benefit was reported in PD-L1 positive patients assigned to the experimental
arm (51.9% vs. 48%) [50].

The discordant results derived from Keynote-522 [49] and NeoTRIPaPDL1 [50] phase III studies
could be explained by different ICI tested but also by the different chemotherapy regimens used.
Indeed, in the Keynote-522, anthracyclines administered before surgery may have acted synergistically
with immunotherapy due to their ability to induce immunogenic cell death and increase proliferation
of CD8+ lymphocytes. Furthermore, since pCR is merely considered a surrogate endpoint of survival
outcomes, long-term results of the NeoTRIPaPDL1 trial are awaited to definitively establish the
effectiveness of ICI treatment in terms of EFS.

Finally, several ongoing trials are testing the ability of ICI monotherapy or in addition to
conventional cytotoxic drugs to improve the “cure rate” in adjuvant setting (Table 3).
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Table 3. Ongoing (neo)-adjuvant phases II–III clinical trials with immune checkpoint inhibitors.

Phase NCT Study Population Setting Stage Experimental Arm Control Arm Primary Endpoint

II NCT03639948
(NeoPACT) TNBC Neoadjuvant I–III Carboplatin + docetaxel +

pembrolizumab NA pCR

II NCT03289819 TNBC Neoadjuvant I–III Pembrolizumab + nab-paclitaxel→
pembrolizumab + EC NA pCR

II NCT03356860
(B-IMMUNE) TNBC and Luminal B Neoadjuvant I–III Paclitaxel→ EC + durvalumab Paclitaxel + epirubicin→

cyclophosphamide Safety, pCR

II NCT02685059
(GeparNuevo) TNBC Neoadjuvant I–III Durvalumab + nab-paclitaxel→ EC Placebo + nab-paclitaxel→ EC pCR

III NCT02620280
(NeoTRIPaPDL1) High-risk TNBC (Neo)-adjuvant II–III Carboplatin + nab-paclitaxel +

atezolizumab→ AC/EC/FEC
Carboplatin + nab-paclitaxel→

AC/EC/FEC EFS

III NCT03036488
(Keynote-522) TNBC (Neo)-adjuvant II–III

Carboplatin + paclitaxel +
pembrolizumab→ AC/EC +

pembrolizumab

Carboplatin + paclitaxel +
placebo→ AC/EC + placebo pCR, EFS

III NCT03281954
(NSABP B-59) TNBC (Neo)-adjuvant II–III Paclitaxel + carboplatin + atezolizumab

→ atezolizumab + AC/EC
Paclitaxel + carboplatin + placebo

→ placebo + AC/EC pCR, EFS

III NCT03197935
(IMpassion031) TNBC (Neo)-adjuvant II–III Nab-paclitaxel + atezolizumab→ AC +

atezolizumab→ atezolizumab
Nab-paclitaxel + placebo→ AC +

placebo→ placebo pCR

III NCT02954874
(SWOG 1418)

TNBC or ER and PgR ≤ 5%
with residual disease ≥ 1 cm

and/or ypN+
Adjuvant - Pembrolizumab NA iDFS, Safety

II NCT03756298 TNBC with residual disease
≥ 1cm and/or ypN+

Adjuvant - Capecitabine + atezolizumab Capecitabine iDFS

III NCT03498716
(IMpassion030) TNBC and PD-L1+ Adjuvant II–III Paclitaxel + atezolizumab→ dose-dense

AC/EC Paclitaxel→ dose-dense AC/EC iDFS

III NCT02926196
(A-Brave) High risk TNBC Adjuvant - Avelumab NA DFS

II NCT03872505
(PANDoRA) TNBC Neoadjuvant II–III Durvalumab + carboplatin + paclitaxel +

radiation
Durvalumab + carboplatin +

paclitaxel pCR

II NCT03546686 TNBC (Neo)-adjuvant I–III Ipilimumab + nivolumab + cryoablation
+ breast surgery→ nivolumab Breast surgery EFS

Doxorubicin plus cyclophosphamide, AC; epirubicin plus cyclophosphamide, EC; pathological complete response, pCR; event free survival, EFS; invasive disease-free survival, iDFS.
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6.3. Potential Therapeutic Targets in Early TNBC

The vascular endothelial growth factor (VEGF) pathway plays a key role in the pathophysiology
of TNBC, as demonstrated by elevated vascular levels of VEGF and higher microvascular density
compared to other subtypes [101].

In three phase III neoadjuvant trials (GeparQUINTO, ARTemis, and CALGB 40603), the addition of
bevacizumab to anthracycline and taxane-based regimen increased pCR rate compared to chemotherapy
alone without survival benefit [91,102,103]. In two large, randomized studies, BEATRICE (Bevacizumab
Adjuvant Therapy in Triple-Negative Breast Cancer) and E5103, the combination of bevacizumab
with standard adjuvant chemotherapy failed to show a favorable effect in terms of DFS in TNBC
patients [104,105].

The epidermal growth factor receptor (EGFR) is frequently over-expressed in TNBC, and it seems
related to a poor prognosis [106]. Anti-EGFR targeted therapies, such as tyrosine kinase inhibitors and
monoclonal antibodies used in monotherapy or in combination with chemotherapy, were also evaluated
for treatment of TNBC patients. To date, two phase II trials evaluated the incorporation of panitumumab
or cetuximab to NACT in operable TNBC reporting a slight improvement in pCR. Interestingly, in both
trials, TILs seemed to predict response to neoadjuvant anti-EGFR treatment [107,108]. Several clinical
studies evaluating the effectiveness of anti-EGFR agents are currently ongoing in early settings.

The androgen receptor targeting pathway may represent a promising strategy for treatment of
metastatic TNBC expressing AR on immunochemistry [109,110], and a neoadjuvant trial is currently
ongoing to evaluate the combination of enzalutamide plus paclitaxel in patients with stages I–III AR
positive TNBC (NCT02689427).

The PI3K-Akt-mTor pathway represents an attractive therapeutic target, since PIK3CA hotspots
mutations and PTEN aberrations are frequently reported in TNBC [111]. However, a phase II study
investigating the efficacy of the mTOR inhibitor everolimus in addition to standard NACT reported
disappointing results [112].

Mitogen activated protein kinase pathway and FGFR signaling are often deregulated in TNBC
and are generally related to chemo-resistance. Therefore, a great deal of effort was spent to evaluate
MEK and FGFR targeting inhibitors for treatment of TNBC patients but, unfortunately, no data in early
settings are available [113,114].

The promising results derived from ICI based therapy encouraged the researchers to evaluate
novel immunomodulatory agents with distinct mechanisms of action such as anticytotoxic T
lymphocyte-associated antigen 4 (CTLA-4), monoclonal antibodies (ipilimumab, tramelimumab,
enoblituzumab), indoleamine 2,3 dioxygenase (IDO) inhibitor (epacadostat), and adenosine A2A
receptor antagonist (CPI-444) with the aim of enhancing the anti-tumor immune response beyond
anti-PD1/PD-L1 drugs [115].

The TNBC microenvironment is characterized by pro-inflammatory cytokines and chemokines,
and an alternative immunotherapy strategy based on the silencing of cytokine receptors represents an
intriguing field of research [116]. In this context, the deregulation of multiple copies in T-cell malignancy
1/miR-34a/interleukin-6/interleukin-6 receptor (MCT-1/miR-34a/IL-6/IL-6R) signaling axis, involved in
epithelial–mesenchymal transition, M2-like macrophages polarization, and TNBC cell invasiveness,
was identified as a potential therapeutic target. Pre-clinical trials showed interesting results by the use
of MCT-1 inhibitor in combination with anti-IL-6/IL-6R monoclonal antibody, tocilizumab, or with
short/small hairpin RNA, thus allowing further investigations [117].

Moreover, a synergistic effect by the addition of targeted therapies (PI3K, MEK, VEGF, EGFR,
and PARPis) that are able to reinforce immune microenvironments to ICI is expected and currently
under evaluation in ongoing clinical trials. Preliminary positive data are derived from trials exploring
novel immune system modulators in TNBCs as well as adaptive cell therapy, chimeric antigen receptor
(CAR) T cell therapy, and vaccines [118].

Finally, in the transcriptomic era, the identification of multiple potentially actionable targets led to
categorizing TNBC into smaller and smaller subgroups. In this scenario, several biomarker-driven



Cancers 2020, 12, 819 17 of 25

neo-adjuvant trials are investigating the efficacy of targeted therapies stratifying patients before
randomization according to distinct gene signature with the aim to select a specific population to
include in confirmatory phase III studies. A list of the ongoing phase II trials is reported in Table 4.

Table 4. Ongoing (neo)-adjuvant clinical trials with potential therapeutic targets.

Phase NCT Study
Population Setting Stage Experimental

Arm Control Arm Primary
Endpoint

II NCT03348098 TNBC Neoadjuvant II–III Apatinib +
paclitaxel NA ORR

II NCT03650738 TNBC Neoadjuvant II–III
Apatinib +

nab-paclitaxel +
carboplatin

NA pCR, safety

II NCT02511847 TNBC Neoadjuvant II–III
Afatinib +

weekly
paclitaxel

NA pCR

II NCT02720185 EGFR positive
TNBC Neoadjuvant I–III Dasatinib NA

Increase in
plasma

membrane
EGFR

expression

II NCT02750358 AR positive
TNBC Adjuvant I–II–III Enzalutamide NA Feasibility

NA NCT03756090 TNBC Neoadjuvant I–III
Palbociclib +

dose dense EC +
paclitaxel

Placebo + dose
dense EC +
paclitaxel

pCR

Objective response rate, ORR; epidermal growth factor receptor, EGFR; androgen receptor, AR; pathological complete
response, pCR; epirubicin plus cyclophosphamide, EC.

7. Conclusions

TNBC are associated with worse prognosis, higher propensity to earlier metastases, and
shorter survival after recurrence compared with other BC subtypes. Standard chemotherapy with
anthracyclines and taxanes is still the mainstay of systemic treatment in early settings.

The addition of platinum-salts to standard NACT significantly improved pCR rate in stages II–III
TNBC patients, but its use is not uniformly endorsed by current guidelines due to the lack of clear
survival benefit. Furthermore, in patients with residual disease after NACT, an escalation approach
with post-operative capecitabine represents an effective option in prolonging survival.

The emerging cancer genomic data led to the development of new therapeutic strategies targeting
specific molecular drivers. PARPis showed encouraging results for the treatment of TNBC, especially
in patients with impaired DNA damage repair system. However, their use remains restricted to
gBRCA1/2 metastatic BC disease.

Despite the impressive results of immunotherapy in advanced stage TNBC, the incorporation of
ICI agents deserves further evaluation to validate their efficacy in (neo)-adjuvant settings.

Finally, the identification of reliable predictive biomarkers is imperative to offer the best therapeutic
option for this hard-to-treat population.
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