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Abstract

Background: Genotyping technologies enable us to genotype multiple Single Nucleotide
Polymorphisms (SNPs) within selected genes/regions, providing data for haplotype association
analysis. While haplotype-based association analysis is powerful for detecting untyped causal alleles
in linkage-disequilibrium (LD) with neighboring SNPs/haplotypes, the inclusion of extraneous SNPs
could reduce its power by increasing the number of haplotypes with each additional SNP.

Methods: Here, we propose a haplotype-based stepwise procedure (HBSP) to eliminate
extraneous SNPs. To evaluate its properties, we applied HBSP to both simulated and real data,
generated from a study of genetic associations of the bactericidal/permeability-increasing (BPI) gene
with pulmonary function in a cohort of patients following bone marrow transplantation.

Results: Under the null hypothesis, use of the HBSP gave results that retained the desired false
positive error rates when multiple comparisons were considered. Under various alternative
hypotheses, HBSP had adequate power to detect modest genetic associations in case-control
studies with 500, 1,000 or 2,000 subjects. In the current application, HBSP led to the identification
of two specific SNPs with a positive validation.

Conclusion: These results demonstrate that HBSP retains the essence of haplotype-based
association analysis while improving analytic power by excluding extraneous SNPs. Minimizing the
number of SNPs also enables simpler interpretation and more cost-effective applications.

Background
Genotyping technology now enables population
researchers to genotype dozens to thousands of SNPs
within any selected candidate gene or within any
genomic region. Such SNP data are increasingly collected
in disease association studies, using a case-control study
design [1, 2], with the analytic objective of assessing

association between SNP genotypes and a disease
phenotype of interest. While traditional analyses have
involved correlating phenotypes with individual SNP
genotypes [3], a complementary approach involves
inferring haplotypes of SNPs or their distributions,
then assessment of haplotypic associations with the
disease phenotype [4-7].
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Haplotype-based association analysis has several advan-
tages over association analysis with single SNPs. First,
haplotypes of multiple SNPs can reduce the number of
comparisons to be made during the analysis. Typically,
SNPs within a narrow region are in high LD, i.e., adjacent
SNP alleles on the same chromosome are highly
correlated. Consequently, with K such SNPs, the total
number of haplotypes formed by these SNPs is generally
much smaller than the number of all possible haplo-
types (= 2K-1). For a typical gene, the number of common
haplotypes, even with variable numbers of SNPs, is on
the order of 10–15 [8], with a few notable exceptions
such as the major histocompatibility (MHC) genes [9].
Secondly, a haplotype is naturally interpreted as genetic
polymorphisms of SNP alleles on the same chromo-
some. After filling in the non-SNP nucleotides between
SNPs, one has a fully phased DNA sequence. This
sequence, if it lies in the coding region of a gene, can be
converted into an amino acid sequence, and thus
haplotypic variations may result in protein variations,
an important biological context to consider. Third,
haplotypes themselves tend to be conserved and shaped
by evolutionary processes. Recent population genetic
studies of the human genome have suggested that
recombination processes, together with other population
genetic forces, have created long-range haplotype blocks
[10, 11]. These block structures are also useful for
reducing the number of statistical comparisons, as well
as for interpretation of disease associations with com-
mon extended haplotypes. Additionally, haplotype-
based associations are useful for mapping unknown
disease mutations. As opposed to assuming a direct
relationship between a phenotype and an individual
SNP, one or more disease-causing mutations may be in
high LD with adjacent SNPs; hence, extended haplotypes
formed by these known SNPs may serve as markers for
disease-causing mutations yet to be discovered [12].
Indeed, a haplotype of multiple SNPs may be thought of
as an allele at a multi-allelic marker locus, and increasing
polymorphism with multiple haplotypes improves the
power to detect disease associations.

There are also disadvantages when using haplotype-
based association analyses: the main disadvantage is that
haplotype-based association analyses may have reduced
power in detecting SNP-level associations. If in truth, the
disease association is with a single functional SNP, the
haplotype-based association can be less efficient due to
the fact that including irrelevant SNPs effectively divides
the samples into multiple haplotype groups, hence
reducing sample sizes and consequently decreasing the
power of the study. Moreover, dividing a single SNP
association into multiple haplotype associations will
also incur the penalty associated with multiple compar-
isons. This loss of statistical efficiency is exacerbated if

the haplotype analysis includes many SNPs, resulting in
an excessively large number of haplotypes.

To retain the advantages of haplotype-based analysis and
overcome its disadvantages, we propose a HBSP to
systematically search for a subset of SNPs whose
haplotypes associate with the disease phenotype. Fol-
lowing the principle of stepwise regression methodol-
ogy, for example, forward or backward selection [13], we
have developed forward and backward haplotype-based
stepwise procedures. For example, in the backward
procedure, one gradually de-selects one SNP at a time,
provided that the exclusion of individual SNPs does not
alter the observed haplotypic association. In this report,
we introduce the methodology of the HBSP, report our
results from simulation studies with finite sample sizes,
and illustrate its clinical applicability by using the HBSP
to select functional SNPs within the BPI gene, which has
been independently shown to be significantly associated
with pulmonary function in post-transplant patients.

Methods
BPI and Pulmonary Function among Transplant Patients
Given the importance of innate immunity in protection
from diseases of the airway, we conducted a genetic
association study using a candidate gene approach to
determine if polymorphisms in genes of the innate
immune pathway are associated with the development
of hematopoietic stem cell transplant- (HCT-) related
airflow obstruction (AFO), the details of which have
been published elsewhere [14]. This two-tiered (includ-
ing discovery and validation phases) case-control genetic
association study selected tagging SNPs from 15 genes
from the innate immunity pathway. Cases were defined
as patients who experienced an annual decrease of the
forced expiratory volume in the first second (FEV1) > 5%,
with their lowest post-transplant ratio of FEV1 to forced
vital capacity < 0.8. This study discovered and validated
the association of multiple tagging SNP haplotypes on
the BPI gene with the AFO phenotype. In the analyses
below, eight tagging SNPs from the BPI gene are used for
illustrative purposes.

Notation, Model and Estimation Procedures
Notation
Consider a case-control study with n subjects (i = 1,2,..., n),
with cases denoted by di= 1 and controls denoted as
di= 0. Let xi = (xi1, ...xic)' denote a vector of c covariates,
such as clinical, demographical, and lifestyle variables.
Also obtained from the ith subject is a biological sample,
which is genotyped for multiple SNPs. Let gi = (gi1, gi2,
...,giq) denote genotypes of linearly ordered SNPs within
a well-defined genomic region, such as a candidate gene
region. Let gij = aij: aij denote a pair of alleles at the jth
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locus in the ith individual, where bi-allelic SNP alleles aij
and aij take a value of 0 and 1, corresponding to the
major and minor allele, respectively. Due to the nature
of the genotyping technology, the parental origin (or
phase) of individual alleles is unknown. Let Ωi = (Ωi1,
Ωi2, ..., Ωiq) denote a vector of phase indicators: Ωij = 0
implies that the first allele at the jth locus for the ith
subject aij is inherited from the father, with the other
allele, aij , from the mother. In contrast, Ωij = 1 implies
that aij is inherited from the mother and aij from the
father. When phases are known, (gi, Ωi) defines two
haplotypes called a diplotype, denoted as Hi : Hi . Each
haplotype consists of q SNPs and may be written as Hi =
ai1ai2ai3...aiq-1aiq. For q SNPs, there are r possible
haplotypes, denoted as (h1, h2, ..., hr).

The penetrance of haplotypes and covariates to the
disease phenotype is quantified through a logistic
regression model. The logistic penetrance function can
be formally written as

Pr( | , , )
exp{ ’[ ( ) ( )] ’ }

,d H H x
K Hi K Hi xi

i i i i= =
+ − − + −

1
1

1 a b g

(1)

which takes values between 0 and 1, quantifying the
probability of being diseased. The K(·) is a vector of
(r-1) indicator functions, i.e K(Hi) = (I(Hi = h2), I(Hi =
h3), ..., I(Hi = hr))' where the haplotype h1 is treated as a
reference. The unknown regression coefficient vector =
(b1, b2,..., br-1)' quantifies haplotype-specific pene-
trance to the phenotype and is estimated from b the
data, along with other unknown regression parameters,
the coefficient of intercept a and the coefficients of the
other covariates g . The regression coefficient bj is also
referred as the logarithm of odds ratio (OR). The
estimation algorithm for parameters and their covariates
were developed elsewhere [4].

A Wald Test Statistic
In our proposed HBSP described below, we either add
(in forward selection) or remove (in backward selection)
one SNP at each time. Suppose that there are q SNP loci
with r different haplotypes denoted as (h1, h2, ..., hr)
considered in the above logistic regression model. The
estimations of b and its covariance Σ b are denoted by

b b b b b= −( , , , ..., )1 2 3 1r
and Σ b .

To examine the contribution of a particular SNP to the
overall haplotypic association, we remove one SNP at a time
from the haplotypes. For example, if the qth SNP is
removed, some of the haplotypes may be merged if their
haplotypic differences were due to allelic difference at the
qth SNP. To assess the contribution of the qth SNP to the

disease association, it is equivalent to test if the coefficients
of merged haplotypes are equal. Suppose s unique
haplotypes are observed after removing the qth SNP. So
(r-s) haplotypes are merged with one of s unique
haplotypes, thus number of equalities to be tested is (r-s).

Under the null hypothesis that the qth SNP has no
contribution to the haplotype-based association, we thus
compute haplotype-based parameters for s haplotypes
with (q-1). Further, under the null hypothesis, one could
use estimated s haplotype-based parameters to assign
haplotype-based parameters for all r haplotypes, as if q
SNPs been included. Let b b b b= −( , ,..., )1 2 1r denote
such haplotype-based parameters obtained under the
null hypothesis with the qth SNP removed.

To test whether the qth SNP contributes significantly to
the haplotype-based association, we construct the
following Wald statistic:

c b b b bbr s−
−= − −2 1( )’ ( ),Σ (2)

where Σ b is the estimated covariance matrix of coefficients
under thenull hypothesis. By theCentral Limit theorem,one
can show that the aboveWald statistic has an asymptotic chi-
square distribution with r-s degrees of freedom, under the
null hypothesis. With finite sample sizes, our simulation
results support the approximations by the stated chi-square
distribution (not shown). Based upon this distribution, one
can estimate the probability that quantifies the statistical
significance in removing the qth SNP.

Two exceptional cases areworthmentioning. The first case is
that if the qth SNP is in perfect LD with the remaining SNPs,
removing that SNP would not alter the distribution of
haplotypes. Consequently, estimated log ORs from the
reduced haplotype analysis will be exactly the same as those
in the full haplotype analysis, i.e., b b= . Naturally, the
above Wald-statistic equals zero, with zero degrees of
freedom. In such a case, the SNP is removed without
requiring a test. The second special case is that when only
one SNP is in the model, the Wald statistic [2] degenerates
to c b s1

2 2= ( / ) .

A Forward Selection Procedure
Consider a haplotype analysis with Q SNPs from a gene
or region. A forward selection procedure can be used to
evaluate haplotypic associations with a single SNP, two
SNPs, and progressively increasing numbers of SNPs.
This procedure will be terminated when the minimum p-
value exceeds a pre-set threshold (Figure 1A). Within this
procedure, the threshold value cf is chosen to control
false positive error rates. Here, we control the overall
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false positive error rate less than a pre-fixed rate, say 5%
(further explored below).

A Backward Selection Procedure
While computationally efficient, the forward selection
procedure may miss significant haplotypic associations
due to variable haplotypic domains, i.e., the parameter
domains are not necessarily hierarchical when a SNP is
progressively reduced [6]. The desire to overcome this
limitation motivates the backward selection procedure as
an alternative to the forward selection procedure. The
basic idea is to start with the haplotypes of all Q SNPs
and then to eliminate irrelevant SNPs one SNP at a time
(Figure 1B). The topic of choosing the threshold value cb
for the backward selection is discussed further below.

A Hybrid Selection Procedure
While being generally preferred, the backward selection
procedure can be time-consuming and prohibitive when the
number of SNPs to be analyzed is large and each haplotype-
based association analysis requires a substantial computa-
tion. To overcome this challenge, onemay consider a hybrid
selection procedure, i.e., combining both forward and
backward selection procedures, patterning after the usual
stepwise regression approach. One possible strategy is to
initially use the forward selection procedure to add SNPs
into haplotypes, and then to de-select those "selected SNPs"
from established haplotypes with the backward selection

procedure. The hybrid procedure, involving forward and
backward selection threshold values cf and cb, stems directly
from those described above (Figure 1C).

Permutation-Based Assessment of False Positive Error Rates
As noted above, the threshold values cf and cb for forward
and backward selection procedures, respectively, are
closely connected with false positive error rates, and
stringent threshold values correspond to low false
positive error rates. Choosing threshold values can be a
challenge due to multiple comparisons with a series of
highly correlated chi-square tests. The correlatedness
among these tests can not be easily quantified due to
varying levels of LD within a gene or within a specific
region. However, a simple Bonferroni correction ignor-
ing the correlation could lead to excessively conservative
results.

We propose to use a permutation-based assessment to
evaluate the false positive error rate (FPER), based on
which the corresponding threshold value is chosen.
Without requiring any distributional assumptions, the
basic idea is to permute disease phenotypes across all
subjects to create samples that could arise from the null
hypothesis, in which SNPs have no associations with the
disease phenotype. Thus, analysis of the permuted data,
utilizing either the forward or backward procedure or a
hybrid of both, would yield relevant statistics, in
particular, p-values. Following analysis of the permuted
data, the number of false positive errors is counted based
on the pre-chosen threshold values (cf or cb). Repeating
the permutation, say, 1000 times results in a sample of
false-positive error counts. The average value over all
permutations is taken as an estimate of the FPER. Thus,
the threshold value (cf or cb) is chosen in such a way that
the ultimate FPER is controlled at the pre-fixed rate.

Simulation Studies
Simulation studies were conducted under the null
hypothesis and also under alternative hypotheses.
Assuming a typical coalescent process, we simulated 15
SNPs in varying degrees of LD, which were then used for
the procedure (Figure 2). Under the null hypothesis, the
simulated phenotype had no association with any
simulated SNPs. For alternative hypotheses, we consid-
ered two different scenarios: 1) the phenotype was
associated with a single SNP, and 2) the phenotype was
associated with a haplotype of two SNPs.

Using a coalescent model, we generated genotype data
under a typical evolutionary process, based upon
Hudson's coalescent simulation program [15]. For the
simulation, we specified a scaled recombination rate of
10, i.e., 4× (number of generations) × (recombination

(A) Forward selection procedure 

(B) Backward selection procedure 

1. Start with the 1st SNP from a total of Q SNPs. 

2. Perform haplotype analysis with each SNP (with a single SNP, this is equivalent to the allelic association 

analysis).  The analysis yields the chi-square [2] and thus its p-values.  

3. Select the SNP if the corresponding p-value is the minimum and the p-value is less than a pre-fixed 

threshold value cf.

4. Select a new SNP from the remaining SNPs that have not been included in the haplotype.   

5. Perform haplotype analysis to obtain the above chi-square [2] and thus the p-value associated with adding 

this new SNP. 

6. Compute the minimum p-value across all remaining SNPs.  If the minimum value is less than a pre-fixed 

threshold value cf, the SNP will be selected into the existing haplotype and steps 4 ~ 6 will be repeated.   

7. Terminate the procedure when no more SNPs satisfy the criteria.  

1. Start with haplotype analysis of Q SNPs. 

2.  Perform a haplotype analysis by deleting a single SNP, which leads to estimated log odds ratios.  These 

estimates can then be converted to log odds ratios under the null hypothesis that the deleted SNP is not 

functionally significant.  Compute the chi-square statistic [2] and its p-value.  

3. Compute p-values associating with deleting every SNP.  If the maximum p-value is less than cb, the 

procedure would terminate.  Otherwise, move Step 4. 

4. Leave out the SNP associated with the maximum p-value from the current haplotype, and repeat step 2~4, 

until no more SNPs can be deleted. 

Figure 1
Outline of the three computational algorithms for
the stepwise selection of SNPs. (A) Forward selection
procedure. (B) Backward selection procedure. (C) Hybrid
Selection Procedure.
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rate) to generate 2,000 haplotypes and with 150
segregation sites. From the 150 segregation sites, we
selected 15 SNPs that had a minor allele frequency
greater than 5%. Based upon 2,000 simulated haplo-
types, we computed the haplotype frequencies of the 15
SNPs to represent the "true" haplotype frequencies in the
study population. In this particular population, we
observed 19 unique haplotypes with frequencies exceed-
ing 0.1% (Table 1).

The following procedure was used to simulate the study
population of one million people: we randomly drew a
pair of haplotypes from the above haplotypic distribu-
tion to form individual diplotypes, but stripped away the
phase information during this process. Using the

penetrance function [1], with parameters specified
corresponding to the null hypothesis and various
alternative hypotheses, we computed the probability of
an individual developing the disease. Based upon
computed probabilities, we then simulated a binary
disease status by the Bernoulli process. This simulation
process was repeated one million times, resulting in the
targeted study population. We also simulated two
demographic variables: gender and age. For gender, we
assumed that men and women were equally represented
in the population. We assumed age to be uniformly
distributed from 20 to 80 years. Under these assump-
tions, we randomly assigned gender and age to all
individuals in the simulated study population

From the simulated study population, we randomly
drew equal numbers of cases and controls to form case-
control data sets. We considered different sample sizes in
the simulation to test sample size effects. For each
configuration of parameters, we repeated the simulations
1,000 times. To ensure the validity of the simulated
results irrespective of SNP choices, we randomly selected
one or two adjacent SNPs as functional SNPs in each
replication. For each simulated data set, we used the
HBSP to identify the functional SNP or haplotype and
verified the finding. If the finding matched the func-
tional element, it was a true positive finding. The
percentages of true findings among the 1,000 replicates
were recorded to quantify the true discovery rate (TDR),
i.e., the percentage of true SNP associations identified.
Since some SNPs were in LD with each other, we treated
the discovery of SNP association, if it was at high LD
with the true functional SNP (D' ≥ 0.8), as an acceptable
discovery. To quantify this imperfect discovery, we

 (a) 

(b)

Figure 2
LD patterns among 15 simulated SNPs and their
haplotype block boundaries, indicated by solid lines:
(a) Standard D'/LOD pattern is shown, and (b) the LD
pattern with r2 using confidence intervals.

Table 1: Distribution of 19 simulated haplotypes

Haplotype Frequency

000001001011000 0.2370
100001001011000 0.1440
000010001000000 0.1025
000010001111010 0.0900
000001001111000 0.0790
001001001011000 0.0565
010001101011100 0.0560
000001011000001 0.0525
000110001000000 0.0430
000000000000000 0.0305
000010001011100 0.0275
000110001010000 0.0275
000001101011100 0.0150
010001001011000 0.0095
000000001011000 0.0085
000001001000000 0.0085
000010001010000 0.0065
010001101000001 0.0050
000010001011010 0.0010
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introduced a statistic, the imperfect true discovery rate
(iTDR). If the discovered SNP was neither the causal SNP
nor at high LD with the causal SNP, it was counted as a
false positive finding. Ideally, the rate of such false
positive errors would be largely comparable to the FPER,
which was controlled as described above.

Results
Simulated Data
Null Hypothesis
Under the null hypothesis, log ORs related to the
haplotypes in the penetrance function [1] are set to 0.

For gender and age, the coefficients were set at 0 and
0.01, respectively, with an intercept of 1. Sample sizes
varied from 500 to 2000, with an equal number of cases
and controls. Results of the simulation are reported in
the first row of Table 2. The estimated FPER did not
significantly deviate from 0.05, which was the chosen
threshold, across the three sample sizes.

Alternative Hypothesis with a Single Functional SNP
Under the alternative hypothesis with a single but
randomly chosen SNP, we specified related ORs as
1.10, 1.20, 1.30, 1.40, 1.50, 2.00, 3.00 and 5.00 in the

Table 2: False positive error rates are estimated under the null hypothesis.

Odds Sample Sizes
Ratios 250 × 2 500 × 2 1,000 × 2

Null Hypothesis
4.6 5.2 4.9

Alternative Hypothesis with a Single Functional SNP: 0 (ref) and 1
1.10 1.0/1.0/5.8 13.6/13.6/6.4 23.2/27.9/8.3
1.20 13.7/17.2/7.3 31.0/37.9/5.5 47.2/56.3/6.7
1.30 19.0/23.8/4.9 46.7/51.6/9.0 62.5/75.0/7.3
1.40 42.5/44.7/8.0 68.5/74.0/6.5 75.7/82.0/6.8
1.50 57.6/64.4/6.5 77.8/80.0/7.0 83.0/88.0/6.1
2.00 77.0/84.0/6.7 90.0/90.8/4.9 93.8/93.8/5.6
3.00 90.5/92.9/4.8 94.8/95.5/6.1 96.4/97.0/5.2
5.00 92.1/93.5/4.3 96.3/96.3/4.9 97.5/98.0/5.0

Alternative Hypothesis with Two SNPs: 00 (ref), 01, 10 & 11
Scenario 1

1.0 1.3 1.0 17.6/41.2/7.3 42.9/67.8/6.0 39.4/71.1/9.0
1.0 1.5 1.0 30.9/57.1/9.1 44.4/76.1/8.0 45.9/72.7/10.0
1.0 2.0 1.0 57.5/90.0/5.3 62.2/95.0/4.0 79.9/99.3/1.3
1.0 3.0 1.0 61.2/96.3/4.7 63.0/98.0/2.0 89.0/99.0/1.0
1.0 5.0 1.0 64.8/97.8/3.3 66.7/99.7/1.4 100/100/2.0

Scenario 2
1.0 1.0 1.3 20.0/46.3/5.0 26.1/60.0/6.1 30.7/69.2/7.5
1.0 1.0 1.5 16.7/50.0/4.0 23.5/52.9/6.0 29.2/78.4/6.5
1.0 1.0 2.0 10.0/55.6/5.5 20.0/66.7/6.5 36.0/80.1/6.3
1.0 1.0 3.0 20.5/74.7/8.0 25.7/74.6/6.4 34.4/81.0/7.0
1.0 1.0 5.0 31.6/80.8/9.3 32.9/82.1/6.2 33.3/85.2/6.0

Scenario 3
1.0 1.3 1.3 20.8/54.1/7.3 21.6/59.5/10.1 40.4/67.4/8.1
1.0 1.3 1.5 22.9/47.6/7.3 38.3/78.5/6.0 39.5/79.8/8.0
1.0 1.3 2.0 15.6/48.5/7.6 32.0/79.0/6.3 44.5/85.3/7.3
1.0 1.3 3.0 26.7/77.4/6.3 38.7/80.1/6.2 50.7/91.3/4.6
1.0 1.3 5.0 30.3/78.7/6.6 41.3/82.6/6.0 55.5/91.0/4.4

Scenario 4
1.0 1.5 1.3 44.4/72.2/6.7 45.9/79.7/10.0 53.3/88.7/7.1
1.0 1.5 1.5 50.0/75.0/6.6 45.7/80.6/9.2 47.8/87.3/7.0
1.0 1.5 2.0 33.9/69.5/9.7 37.5/79.4/8.3 49.7/93.7/6.3
1.0 1.5 3.0 28.1/74.6/9.0 42.1/82.0/6.7 51.0/94.9/6.0
1.0 1.5 5.0 39.4/86.2/7.7 49.2/94.89/5.7 53.0/99.4/5.0

Scenario 5
2.0 1.5 1.3 50.1/82.1/5.3 51.9/85.8/7.0 56.3/90.1/7.5
2.0 1.5 1.5 51.7/89.4/7.3 52.4/90.0/7.0 57.4/93.5/6.7
2.0 1.5 2.0 52.6/89.3/9.3 51.0/92.8/6.3 60.0/99.7/5.0
2.0 1.5 3.0 52.7/89.3/9.0 54.1/90.3/6.2 65.4/100/4.8
2.0 1.5 5.0 53.8/89.6/5.3 55.3/96.7/5.3 70.1/100/4.7

Also estimated, under alternative hypotheses with either a single SNP or two SNPs, are the true discovery rate (TDR), imperfect true discovery rate
(iTDR) and false positive error rate (FPER).
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penetrance function [1], to correspond to associations
ranging from weak to strong. Table 2 lists the estimated
TDR, imperfect true discovery rate iTDR, and FPER
percentages for each value. As expected, the TDR increased
with increasing sample size, 57.6% to 77.8% and then to
83.0% to detect OR = 1.5, as the sample size increased
from 500 to 1000 and to 2000, respectively. Similarly, the
TDR increased with the increasing OR values, 13.6% to
77.8% and then to 96.3% to detect ORs = 1.1, 1.5 and 5.0,
respectively, with the sample size fixed at 1000. As
expected, estimated FPER values were largely around 5%,
with a few exceptions. Someminor elevations in FPER were
probably due to weak LD with the functional SNP.

Alternative Hypothesis with Two Functional SNPs
Under the alternative hypothesis with two associated
SNPs, we randomly chose two adjacent SNPs; they form
four possible haplotypes (00, 01, 10, 11) with 00 as the
reference haplotype. We created five different scenarios
assuming different ORs for different haplotypes. Under
the first scenario, the OR corresponding to haplotype 10
took values ranging from 1.3 to 5.0, which is similar to
the single SNP situation. As expected, the TDR, iTDR and
FPER estimates were comparable to those under the
single SNP alternative hypotheses. Specifically, a case-
control study of 500 subjects would have a 57.5%
chance of detecting the true functional SNP with an OR
of 2.0. At an increased sample size of 2000, the study
would be able to detect an OR of 2.0 with nearly 80%
TDR. The greater iTDR was mostly due to more than two
SNPs being at high LD with these two functional SNPs.
FPER values were generally less than 5%, with a few
exceptions, partly because some SNPs had weak LD with
the functional SNPs.

Under the second scenario, the OR corresponding to
haplotype 11 varied from 1.3 to 5.0. While FPER
estimates were around 5%, the TDR of detecting such
associations was quite low, ranging from 10% to 36% for
detecting OR of 2.0 with sample size varying from 500 to

2000, respectively. The primary reason for the reduced
power was that the haplotype frequency for haplotype
11 was much lower than the others. Again, iTDR values
were much greater than comparable TDR values, for the
same reason stated above. When we increased the OR
associated with haplotype 10 to 1.3 (scenario 3) and 1.5
(scenario 4), the TDR appreciably increased.

Under the fifth scenario, three OR values for three
haplotypes deviated from 1.0, and both the TDR and the
iTDR for detecting such genetic associations by the HBSP
became very powerful. Even with a sample size of 500
subjects, the study had a 50~54% TDR and an 82~90%
iTDR for detection of the true SNP-haplotype associa-
tions with the stated OR values.

BPI Clinical Data
In our earlier analysis of a discovery cohort (N = 393),
we identified BPI as an important candidate gene for the
development of HCT-related AFO [14]. BPI was tagged
by eight SNPs (C2738G, G7258A, G9083C, A10214G,
G17016G, C23356T, A33065G, G36045A). Three hap-
lotypes, tagged by these SNPs, were found to be
significantly associated with the phenotype. Repeat
analysis of these tagging SNPs in an independent
validation cohort (N = 209) again revealed that multiple
tagging SNP haplotypes were significantly associated
with the AFO phenotype [14]. In the interest of reducing
the number of SNP markers necessary to identify at-risk
patients in clinical practice, we applied the proposed
algorithm to find the most informative tagging SNPs. We
applied the forward, backward and hybrid procedures to
the discovery cohort, while adjusting for clinical covari-
ates that were previously identified as important clinical
risk factors for HCT-related AFO (age at transplant,
pretransplant one-second forced expiratory volume,
extent of graft versus host disease, and duration of
follow-up). All three models identified the same two
SNPs (C23356T and A33065G) as the most significantly
associated with the disease phenotype (Table 3). With

Table 3: Estimated haplotype frequencies of two SNPs (C23356T and A33065G), estimated log odds ratios and their standard errors
for all common haplotypes formed by identified SNPs

Haplotype Control Freq. Case Freq. Coef. Odds Ratio 95% CI Z-Score P-value

Discovery Cohort (363 patients)
TG 0.33 0.21 1.00 (reference)
CA 0.39 0.42 0.42 1.52 (1.05, 2.21) 2.21 0.027
CG 0.21 0.23 0.56 1.75 (1.12, 2.72) 2.46 0.014
TA 0.07 0.15 1.21 3.36 (1.77, 6.37) 3.71 0.000

Validation Cohort (209 patients)
TG 0.34 0.20 1.00 (reference)
CA 0.40 0.49 0.68 1.98 (1.19, 3.27) 2.65 0.008
CG 0.18 0.23 0.75 2.11 (0.99, 4.50) 1.94 0.053
TA 0.09 0.09 0.63 1.87 (0.67, 5.23) 1.20 0.230
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TG as the reference haplotype, the CA, CG, and TA
haplotypes had ORs ranging from 1.52, 1.75 and 3.36,
respectively (p-values 0.027, 0.014 and < 0.001, respec-
tively). In the validation cohort, analysis of these SNPs
again confirmed the statistical significance, with the
exception of the TA haplotype. All ORs were comparable
to those in the discovery cohort. These results confirmed
that our approach can be applied to clinical data to
identify the most informative SNP markers across a
genetic region of significance.

Discussion
A complementary approach to the HBSP is the direct
application of the stepwise regression approach to assess
disease associations with SNP alleles or genotypes at
multiple SNP loci, as described by Clayton and his
colleagues [3, 16]. Basically, this approach treats
individual SNP alleles or genotypes as covariates and
then assesses their associations with the disease pheno-
type via the logistic regression model [1]. To identify
functional SNPs, they propose using the usual stepwise
regression technique to systematically analyze all SNP
genotypes and their cross products. Those cross-product
terms, if significant, are surrogates for possible haplo-
typic associations. While its key advantage includes the
simplicity and familiarity to most population research-
ers, the interpretation of cross-product terms as possible
haplotypic associations is not straightforward. Moreover,
such an approach does not take full advantage of
extended common haplotypes across many SNPs,
because one has to numerate all cross products to detect
a high-order interaction; e.g., eight SNPs will create 256

(= 28) allelic cross products or 6,561 (= 38) genotypic
cross products.

To compare both stepwise approaches, we utilized
simulation studies to assess the TDR, iTDR and FPER
for the stepwise regression approach. We conducted the
simulation studies under both null and alternative
hypothesis and used the same 15 simulated SNPs from
the simulation study population generated for our
proposed approach. The simulation results are reported
in Table 4. Under scenario 1, the OR corresponding to
haplotype 10 takes values ranging from 1.3 to 5.0, and
the FPER and iTDR estimates from the usual approach
were comparable to those from the HBSP. However, the
TDRs for detecting associations with the usual stepwise
regression technique were lower than those obtained
with HBSP (Table 2). Under scenario 2, the OR
corresponding to haplotype 11 varies from 1.3 to 5.0.
While the FPER estimates were around 5%, the TDR for
detecting associations was quite low, even though the
sample size reached 2000. Thus, compared to HBSP, the
usual stepwise regression technique has less power for
detecting true genetic associations and compatible power
in discovering imperfect true genetic associations.

For illustrative purposes, we have also applied stepwise
logistic regression models to the BPI discovery cohort.
The forward stepwise selection procedures did not detect
any SNPs at the significance level of a = 0.05. The
backward stepwise elimination procedure detected the
joint effect of the two SNPs (C23365T and A33065G),
the results from which were consistent to those obtained
by HBSP.

Table 4: False positive error rate under the null hypothesis, and true discovery rate (false positive error rate) under alternative
hypotheses 1 when the Clayton's stepwise approach is used to select a subset of SNPs.

Odds Sample Sizes
Ratios 250 × 2 500 × 2 1,000 × 2

Null Hypothesis
5.5 5.2 5.0

Alternative Hypothesis with a Single Functional SNP: 0(ref) and 1
1.5 65.7/70.0/5.5 71.3/87.0/5.1 74.3/100/5.0
2.0 71.3/100/5.3 71.1/100/5.0 85.0/100/5.0
3.0 80.7/100/5.0 89.3/100/5.0 94.0/100/5.0

Alternative Hypothesis with Two SNPs: 00 (ref), 01, 10 & 11
Scenario 1

1.0 1.3 1.0 14.3/51.0/6.1 31.3/68.8/5.7 32.1/77.0/6.3
1.0 1.5 1.0 29.2/61.0/7.0 42.2/72.1/7.1 33.2/78.2/7.2
1.0 2.0 1.0 36.5/92.2/6.0 51.7/95.0/5.3 71.2/100/4.4
1.0 3.0 1.0 51.1/98.2/5.0 60.3/98.8/4.1 82.4/99.8/4.0
1.0 5.0 1.0 52.0/99.1/4.3 61.2/100/4.0 100/100/4.0

Scenario 2
1.0 1.0 1.3 7.9/45.2/5.5 21.4/65.0/5.4 19.7/71.2/6.3
1.0 1.0 1.5 7.8/51.4/5.3 14.5/55.1/5.2 21.7/80.1/6.3
1.0 1.0 2.0 7.2/55.2/6.1 19.9/74.5/6.0 30.0/82.1/6.0
1.0 1.0 3.0 17.8/93.0/6.0 23.4/94.4/5.4 25.4/95.7.0/5.4
1.0 1.0 5.0 23.4/90.8/5.7 32.9/88.1/6.2 34.3/89.2/5.4
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Recently, Cheng and colleagues have described another
method of mapping functional sites with SNP-haplo-
types [17], which shares a similar scientific objective to
the HBSP. The key idea underlying their approach is to
compute an overall statistic that summarizes all associa-
tions within a sliding window of multiple SNPs.
Systematically covering genes/regions with sliding and
overlapping windows, their method can pinpoint one or
more sites that are functionally associated with the
disease phenotype. The end result of this approach is to
identify functional sites, which is complementary to that
of the HBSP. In fact, one can apply the HBSP to produce
the overall statistic for each sliding window, as a way of
detecting haplotypic associations in an efficient manner.

While the HBSP performed well for the studies reported
in this paper, its function can also be extended to other
types of analysis. The HBSP can be adapted for other
phenotypes, such as continuous, censored or categorical,
via their corresponding link functions. As presented
above, the key statistic needed to construct the Wald
statistic [2] is the covariance matrix of all estimated
parameters, which is typically obtainable from the
maximum likelihood or estimating equations. In addi-
tion, the current method is structured to detect major
genetic associations via the assumed penetrance model
[1], and is not designed to detect gene-environmental or
gene-gene interactions. To achieve those objectives, we
can extend the penetrance model by including those
interactions, which have been elaborated elsewhere [4].

Conclusion
The HBSP described above is effective in selecting a
subset of SNPs whose haplotypes are significantly
associated with a disease phenotype by eliminating
SNPs with random polymorphisms. The HBSP retains
the advantages of haplotype-based analysis while mini-
mizing the deficiencies associated with typical haplo-
type-based analysis that includes extraneous SNPs.
Simulation studies indicated that our permutation
scheme effectively controls the false positive error rate
while HBSP has adequate power to identify those
functional SNPs/haplotypes. The illustrative example
with SNP data from the BPI gene in a transplant cohort
demonstrated the success of the HBSP in identifying two
consecutive SNPs out of eight SNPs from the discovery
cohort and in validating their associations with the
disease phenotype from clinical data.
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