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Abstract

Motivation: Accurate morphological models of brain vasculature are key to modeling and simulating cerebral blood
flow in realistic vascular networks. This in silico approach is fundamental to revealing the principles of neurovascu-
lar coupling. Validating those vascular morphologies entails performing certain visual analysis tasks that cannot be
accomplished with generic visualization frameworks. This limitation has a substantial impact on the accuracy of the
vascular models employed in the simulation.

Results: We present VessMorphoVis, an integrated suite of toolboxes for interactive visualization and analysis of
vast brain vascular networks represented by morphological graphs segmented originally from imaging or micros-
copy stacks. Our workflow leverages the outstanding potentials of Blender, aiming to establish an integrated, exten-
sible and domain-specific framework capable of interactive visualization, analysis, repair, high-fidelity meshing and
high-quality rendering of vascular morphologies. Based on the initial feedback of the users, we anticipate that our
framework will be an essential component in vascular modeling and simulation in the future, filling a gap that is at
present largely unfulfilled.

Availability and implementation: VessMorphoVis is freely available under the GNU public license on Github at
https://github.com/BlueBrain/VessMorphoVis. The morphology analysis, visualization, meshing and rendering mod-
ules are implemented as an add-on for Blender 2.8 based on its Python API (application programming interface).
The add-on functionality is made available to users through an intuitive graphical user interface, as well as through
exhaustive configuration files calling the API via a feature-rich command line interface running Blender in back-
ground mode.

Contact: marwan.abdellah@epfl.ch or felix.schuermann@epfl.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The brain requires an adequate supply of energy to drive billions of
neurons to fire properly. To ensure its normal functioning, essential
energy substrates including oxygen, glucose and lactate are pro-
vided, on-demand, through a vast network of cerebral blood vessels
via neurovascular coupling (NVC; Iadecola, 2017). The length of
this network in human brains is estimated to be �700 km and the
failure to deliver the proper amount of blood at the right time and
location will be accompanied by catastrophic neurodegenerative dis-
orders (Sweeney et al., 2018). While most of the focus in neurosci-
ence research covers the structural and functional aspects of brain
cells such as neurons (Markram et al., 2015) and glia (von Bartheld
et al., 2016), the dense network of vascular channels that course
through our brains has received comparatively less attention. This
oversight is unfortunate considering the disproportionately high

metabolic demands of neural tissues, the function of which must
surely be tied to the availability of energy and other nutrients. There
is a large body of work on gross-scale hemodynamics with the use of
brain imaging technologies such as functional magnetic resonance
(MR) imaging, with which the blood-oxygen level-dependent activ-
ity is measured (Logothetis et al., 2001; Raichle and Mintun, 2006).
But this and other imaging methods do not resolve the functions of
fine-scale structures that form the points of contact between the
microvasculature and glial cells or within the effective range of indi-
vidual neurons. Not only does an understanding of normal brain
function require improving our concept of neurovascular structure,
but there are numerous disease states associated with blood vessel
damage that are broadly referred to as vascular cognitive impair-
ments or dementias. Although all are generally due to cerebral
hemodynamic insufficiencies of one sort or another, there is still lit-
tle etiological or diagnostic agreement about causes or precise
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definitions, let alone treatments (Frantellizzi et al., 2020). The
neuro-glia-vasculature (NGV) ensemble is often considered as a
functional unit for the study of interactions among these critical
components of brain energy metabolism at an oligocellular scale
(Coggan et al., 2018b; Jolivet et al., 2015). Within this unit, detailed
vascular maps revealing fine anatomical features of vessels and their
interaction with neurons and glia are therefore critical to under-
standing overall brain function (Calcinaghi et al., 2013; Calı̀ et al.,
2019; Coggan et al., 2018a; Marı́n-Padilla, 2012; Schmid et al.,
2019). These maps are essential for developing blood flow models
to simulate cerebral blood flow (CBF) in realistic vascular networks
(Damseh et al., 2019; Reichold et al., 2009), analyzing the proxim-
ity of cell bodies to vasculature elements (Blinder et al., 2013) and
also for classifying vascular components into different types of seg-
ments (Zeng et al., 2017). Accurate digital reconstructions of vascu-
lar ultrastructure down to capillary level (Di Giovanna et al., 2018)
are central to this goal, which requires innovative and rapid soft-
ware visualization tools to investigate the topology of the vascular
network and to model its behavior (Smith et al., 2019).
Unfortunately, the existence of convenient domain-specific software
frameworks capable of visualizing those vascular models in real
time is currently lacking. We therefore remedy this limitation and
present an integrated tool to address this problem. This tool is pri-
marily devoted to neuroscience researchers studying NVC using
computational modeling and simulation.

1.1 Relevant work
Vasculature datasets are originally obtained on multiple scales from
two principal sources: imaging scanners such as computed tomog-
raphy or MR (Preim and Oeltze, 2008; Wright et al., 2013) and mi-
croscopy, mainly from optical (Lugo-Hernandez et al., 2017) and
electron microscopes (Januszewski et al., 2018). Certain optical
techniques have bridged the gap between macroscopic and micro-
scopic imaging, such as ultramicroscopy which can reconstruct cm-
sized vascular networks with micrometer resolution (Jährling et al.,
2009). A recent study proposed an advanced approach improving
vascular demarcation, making it possible to reconstruct a whole
brain vasculature with extremely high resolution that can capture
the details of a single capillary (Di Giovanna et al., 2018).
Nevertheless, exploring those vascular reconstructions and analyz-
ing their fine structures with which we can test our scientific hypoth-
eses, mainly in computational modeling, remains challenging.

A large variety of rendering techniques has been developed to
visualize different structural aspects of vasculature networks (Preim
and Oeltze, 2008). Complex networks can be visualized relying on
direct volume rendering methods, such as slice-based viewing or
ray-marching, employing original angiography stacks prior to their
segmentation (Kubisch et al., 2012). This approach is substantial to
classify and reveal vessel abnormalities more faithfully using multi-
dimensional transfer functions, allowing diagnosis of vascular dis-
eases, such as atherosclerosis or stenosis. Visualization of large-scale
volumes is not as trivial however. It requires scalable volume render-
ing workflows that either use out-of-core algorithms, distributed sol-
utions with sort-last rendering or combine the two approaches to
load terabyte-sized datasets (Eilemann et al., 2012). These work-
flows remain unavailable to the public, which drives scientists to use
standard visualization packages such as Paraview (Henderson et al.,
2004), or even build their custom workflows based on visualization
toolkit (VTK; Schroeder et al., 2004; Taka and Srinivasan, 2011).
The vascular modeling toolkit is a prominent example, designed
based on VTK and insight toolkit specifically to visualize and model
vascular data (Antiga and Steinman, 2006). It has several compo-
nents for (i) segmenting vessels from imaging stacks, (ii) reconstruct-
ing surface meshes, (iii) computing centerlines of vascular segments
from polygonal surfaces and (iv) creating tetrahedral meshes.
Nevertheless, its capability to perform these tasks for complex or
large networks is doubtful. Obviously, volume rendering can be use-
ful for segmentation and quantification purposes (Bühler et al.,
2004), but it cannot reveal spatial relationships between different
structures in the volume. Several limitations of volume rendering
can be addressed by relying on polygonal surface meshes instead.

Visualization of vascular meshes reconstructed from those stacks
can be accomplished with either model-free or model-based techni-
ques (Kretschmer et al., 2013). Conventional surface rendering
applications use marching cubes algorithms to visualize a polygonal
surface reconstructed during the rendering stage based on an appro-
priate iso-value. Although the quality of this category of algorithms
is relatively poor, it could be enhanced if the surface is explicitly seg-
mented a priori, but it might be subject to other inaccuracies due to
user interaction. Unfortunately, even for relatively small-scale net-
works, the size of corresponding vascular meshes might be large for
interactive visualization and analysis.

Skeletal representation of vascular networks has been proposed
fundamentally for morphometric analysis purposes (Wright et al.,
2013), but it has resolved implicitly the size limitation issue. Storing
a complex graph of a vascular network is comparatively more effi-
cient than a corresponding mesh. Although skeletons must be recon-
structed either from volumes or meshes, there are advanced
skeletonization methods that can perform this task efficiently (Saha
et al., 2016). Nevertheless, visualizing those skeletons was not simi-
larly investigated, in particular for brain vasculature. We only found
a few studies that have used input vascular trees for visualization or
analysis purposes based on convolution surfaces (Oeltze and Preim,
2004), abstract—yet spatially contextualized—approaches (Pandey
et al., 2020), illustrative rendering approaches (Ritter et al., 2006)
and signed distance fields (Lichtenberg et al., 2019). Nevertheless,
these research trials were not accompanied with open source imple-
mentations that can be adapted. The presence of a software package
that is mainly domain-specific, extensible, cross-platform and more
significantly free, capable of interactive visualization and analysis of
large-scale morphologies of vascular networks integrated in a single
package is still largely missing.

1.2 Contribution
We present VessMorphoVis, a multi-functional, domain-specific and
user-friendly add-on leveraging the core functionality provided by
Blender. This add-on is primarily developed for visual analysis of
large-scale morphological skeletons of vascular networks, allowing
to build accurate vasculature structures for modeling and simulating
CBF to understand the mechanisms of NVC. The add-on comes
with the following features:

1. Interactive visualization, analysis and automated repair of large-

scale vasculature morphology skeletons.

2. Creation of high-fidelity polygonal mesh models of vascular

structures from their morphology skeletons using metaballs.

3. Automated creation of high-quality multimedia content using

artistic shader nodes for debugging, discovery and

dissemination.

4. Extensible python-based application programming interface

(API) for analysis and visualization. This API can be called from

the user interface of Blender or invoked via feature-rich com-

mand line interface (CLI) that runs Blender in background

mode.

2 System architecture and results

VessMorphoVis is composed of five modules: (i) data handling, (ii)
vascular network analysis and repair, (iii) morphology building for
interactive visualization, (iv) polygonal mesh reconstruction and (v)
high-quality rendering. In the following part, we present the func-
tionality of each module and then demonstrate the features of the
add-on with multiple datasets of varying structure and complexity.
A high-level overview of the framework is illustrated in
Supplementary Figure S1. The integration of the add-on in the
graphical user interface (GUI) of Blender is shown in Supplementary
Figures S2 and S3. The corresponding panels of each module as seen
in the GUI are shown in Supplementary Material (Section 4).
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2.1 Vasculature morphology structure
A vascular morphology skeleton, or a vascular graph (VC), consists
of a set of ordered samples or points, where each sample is specified
by an index, a three-dimensional Cartesian position vector and a
diameter reflecting the cross-sectional extent of the skeleton at this
point. Each two consecutive samples account for a segment, where a
list of connected segments between two branching points represents
a section. The segments are implicitly connected based on the order
of their constituent samples in the section. A loop is composed of
two independent sections having the same parents and children. For
efficient data storage and convenient representation, the sections are
logically connected at their respective branching points, i.e. any two
connected sections have, at least, a shared terminal sample with the
exact same Cartesian position, but with different indices and pos-
sibly varying radii for each respective section. In certain cases, the
connectivity information is not explicitly encoded in the morph-
ology tree, and therefore, it will be computed on-the-fly if needed.
Figure 1 illustrates a schematic view of a small chunk of vasculature
morphology skeleton extracted from a larger vascular network.

2.2 Data format
VessMorphoVis supports two unique data formats: an internal bin-
ary file format based on the HDF5 library (with extension.h5) that
targets efficient storage of data to guarantee scalability, and another
ASCII format (with extension.vmv) that is mainly provided to exter-
nal collaborators and the neuroscientific community. The ASCII for-
mat is designed to be extensible, allowing users to add further
optional parameters that serve their needs. The structure of the file
formats is detailed in Supplementary Material (Section 1).

2.3 Skeleton analysis and repair
To complement the subjective visual analysis of the skeleton, it was
crucial to integrate another module for automated morphological
analysis as well. This module applies a list of predefined kernels on
the input network and produces a set of measurements and statistic-
al distributions. This analysis is essential to detect and reveal any
structural artifacts in the skeleton. Users can then apply another set
of kernels to repair any artifact that might affect the visual quality
of the reconstructed morphology, e.g. having a sample with zero
diameter. Afterwards, a fact sheet containing the computed meas-
ures of the VC is displayed in the analysis panel, allowing users to
link those values to the morphology skeleton appearing on the ren-
dering widget. The measurements include the total number of sam-
ples, segments and sections in the morphology before and after
resampling the skeleton, statistical distributions of the lengths of sec-
tions and their corresponding segments and the entire network in
addition to the total number of fragmented components and loops.
Supplementary Figure S4 shows a screenshot demonstrating a large
vascular network loaded in the viewport and its analysis results.

2.4 Interactive skeleton visualization
Visualizing complex networks of brain vasculature is relatively chal-
lenging with respect to other NGV structures (Coggan et al.,
2018b), such as neurons or glial cells. Neuronal and glial

morphologies are represented by directed acyclic graphs, which
makes storing and traversing them simpler than vasculature which
are represented by cyclic ones. In terms of data complexity, neuronal
morphologies have—on average—fewer numbers of samples than a
small piece of vasculature network. They range from several hun-
dred for simple morphologies and up to a few thousand for a neuron
with highly complex arborizations in its dendritic or axonal trees.
Subsequently, building interactive visualizers to render individual
neuronal graphs in real time relying on Blender (Abdellah et al.,
2018) is comparatively trivial. Blender is a powerful application; it
comes with a rich high-level API and an intuitive GUI that can be
exploited jointly for sketching, animation, mesh reconstruction and
even progressive rendering using third party plug-ins such as Cycles.
However, it is limited in terms of the number of objects that can be
drawn in the scene. For instance, spheres can only be visualized
based on explicit geometry (polygonal meshes) using UV spheres or
icospheres; they cannot be represented by implicit geometry like
signed distance functions (Karlsson et al., 2019; Lichtenberg et al.,
2019). This representation impacts the total number of independent
sphere objects that can be drawn in the scene.

The fundamental objective of VessMorphoVis is to allow neuro-
scientists and modelers to load, optimize and interactively visualize
large-scale vascular networks that can have several millions of
traced samples. Visualizing the connectivity of these networks using
the most straightforward approach requires drawing each element
in the morphology (segment or section) using a unique polyline ob-
ject. This object can be referenced later to assign a different property
to it, e.g. a color code, that maps its radius or any other vascular
property given by the user. This entails creating a geometric primi-
tive per element and then linking it to the scene. This approach is
not scalable; it can only be used to draw hundreds of polylines at
most. Trying to go beyond this limit results in a non-responsive ap-
plication which ultimately reduces its usability. The vascular net-
work graph is highly interconnected and can contain up to tens of
millions of samples if reconstructed at single capillary level (Di
Giovanna et al., 2018). Therefore, we had to investigate a radically
different approach capable of reconstructing the same polyline
geometry and drawing millions of samples in few seconds. We then
developed several skeleton builders to visualize vasculature mor-
phologies in various styles, making it possible to visually analyze
their structure (e.g. how each section is sampled and whether there
is an overlapping between or within the sections or not) and the con-
nectivity between its different components (segments or sections—
refer to Fig. 1). Figure 2 shows an exemplar vascular morphology
visualized with the different builders.

2.4.1 Disconnected sections builder

This builder converts each section in the morphology into a virtual
polyline structure whose segments correspond to those composed by
the section itself. The final morphology is constructed by creating all
the polylines and combining them into a single object with which it
gets linked to the scene to be drawn in the viewport only once. This
approach allows to efficiently pack a giant number of polylines into
a single object, which in turn makes it possible to visualize large and
dense vascular networks as shown in Supplementary Figures S3 and
S4. This builder does not require any section-to-section connectivity
information; the segment-to-segment connectivity is sufficient,
which is already granted by having ordered set of samples per sec-
tion in the loaded skeleton.

2.4.2 Disconnected segments builder

This builder converts each segment in the morphology into a line.
To build up on the implementation of the previous builder, this
line is merely a polyline composed of two points. This builder is
used to visualize how the segments are distributed along every sec-
tion in the morphology. It is mainly exploited to debug morpholo-
gies containing oversampled sections where we can clearly remove
unnecessary samples and preserve the spatial topology of the
morphology.Fig. 1. A schematic view of a vascular morphology network
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2.4.3 Connected sections builder

In some cases, connected sections might have certain configurations
leading to reconstructed objects with artifacts such as having clear
gaps between its different polylines at their branching points. These
issues are not visually pleasant when users are interested in creating
closeup images of their skeletons. Consequently, we have extended
the disconnected sections builder to resolve this issue and create
morphologies with connected sections that exhibit natural branch-
ing. Nevertheless, this extension entails the presence of valid con-
nectivity list between the different sections in the morphology. As
explained, this list might be missing in some morphology files as it
requires an extra step after segmenting the skeleton from its micros-
copy stack to be built. However, it could be easily constructed on-
the-fly before building the polylines. If the branching samples have
the same indices in the different sections they belong to, this con-
nectivity list can be built by comparing the indices of the terminal
samples on a per-section-basis. Otherwise, connectivity can be
obtained by evaluating the Euclidean distance between the terminal
samples. Once this connectivity list is computed, a long polyline is
constructed per section starting from a parent section, passing
through the section itself and ending at a child. Therefore, this build-
ing strategy will create multiple polylines for every section within
the network. If a section is connected between two parent and two
child sections, four polylines will be created. Figure 3 shows the
same morphology reconstructed with the disconnected and con-
nected builders and how the central gap between two sections at the
branching point is filled using the connected sections builder.

2.4.4 Samples builder

We also implemented another builder to construct the skeleton dir-
ectly from its raw samples as a group of spheres, each of them has a
center and radius matching a corresponding sample in the morph-
ology. Blender has no implicit sphere representation; therefore, we
based our implementation on an isotropic simplicial polyhedron

approximating a sphere called icosphere. To maximally reduce the
number of vertices, a subdivision of two is used to construct the ico-
sphere. To accelerate building the entire skeleton, each icosphere is
created relying on an internal mesh editing library in Blender called
bmesh, i.e. all the icospheres are created and joined together into a
single object before being linked to the scene (Conlan, 2017). This
visualization mode is selected to visualize the distribution of samples
along each section in the morphology. Nevertheless, it is not advised
to visualize dense skeletons as it becomes less efficient and cluttered
as shown in Supplementary Figure S5.

2.4.5 General features

The morphology visualization module was integrated with a set of
features that are generic and transparent to all the builders. These
features include resampling the morphology skeleton, changing the
tubular quality of the polylines or using spline interpolations to plot
the polylines and several other features that are detailed in the docu-
mentation. Skeleton resampling is encouraged for two reasons. First
of all, it removes any visual artifacts introduced from overlapping
segments having different radii. Moreover, it eliminates all unneces-
sary samples along every section in the morphology, and therefore,
optimizes the building process and makes the visualization further
interactive. Figure 4 shows the substantial differences between an
original highly oversampled vascular morphology and an optimized
one after the resampling process. A combined rendering of a small
morphology before and after resampling is shown in Supplementary
Figure S6 to demonstrate how the resampling process affects the
morphology.

The tubular surface of the polylines is reconstructed from inter-
polating a bevel object whose sides determine its cross-sectional
shape and quality. We added an external parameter that allows
users to control the number of sides of this bevel object, with min-
imum of 4 and maximum of 32 sides. Increasing the number of sides
increases the geometry of the reconstructed polygons and, in turn,
reduces the rendering performance. By default, we set this parameter
to eight to balance between quality and interactivity, but we also ex-
pose this parameter to be controlled by users. This allows to load ex-
tremely large networks, where they can use 4 sides for interactive
rendering and 16 sides for creating high-quality images. For the
same reason, we added an option allowing the users to use spline in-
terpolation to improve the visual quality of the reconstructed poly-
lines. These features are illustrated on the exemplar morphology in
Figure 5. In summary, Supplementary Videos S1–S3 demonstrate
how to use the morphology visualization module interactively.

Certain CBF modeling experiments mandate visualizing some
vascular properties per segment such as its length, diameter, pressure
or flow (Reichold et al., 2009; Smith et al., 2019). Therefore, it was

Fig. 2. VessMorphoVis implements different algorithms for visualizing vascular networks. The outline of the morphology is sketched in (A) using thin polylines and tiny spheres

to represent the sections and samples of the morphology, respectively. In (B), the morphology is illustrated by a list of points showing only the individual samples without any

connectivity. The morphology is visualized as a disconnected set of segments and sections using the same color in (C) and (F), with alternating colors in (D) and (G) and also

using transparent shaders in (E) and (H), respectively

Fig. 3. A close up showing how the connected sections builder is applied to visualize

the morphology skeleton (right) to resolve any visual artifacts (gaps between sec-

tions) revealed by the disconnected sections builder (left)
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essential to implement different coloring schemes allowing the users
to select between using a single color to visualize the entire morph-
ology, or using alternating colors to see some structural aspects of
the morphology—Figure 4C and E, or even use a high dynamic
range colormap to reveal other functional aspects. We added an-
other option that allows users to color every segment or section in
the morphology according to a specific property defined by the user.
This feature is demonstrated in Figure 6.

2.5 Polygonal mesh reconstruction
Packing the vascular morphology as a list of polylines into a single ob-
ject was essential for interactive visual analysis of dense vascular net-
works. Nevertheless, this polyline-based structure is limited in two
aspects. First of all, it is merely convenient for visualization and struc-
tural validation purposes; it cannot be used to perform or even visual-
ize stochastic reaction-diffusion simulations that entail highly
accurate and optimized polygonal meshes associated with a color
mapping scheme on a per-vertex basis. Furthermore, it can be only
loaded in Blender which ultimately limits the usability of datasets be-
yond their visualization or analysis. Therefore, it was significant to in-
tegrate a mesh reconstruction module in VessMorphoVis, making it
possible to build vascular surface meshes from their morphological
skeletons, with which they can be used by other applications. In gen-
eral, mesh generation of graph-based structures is known to be an off-
line process that might even take several hours based on the graph
complexity, so the performance of this module was not a concern.

We propose an offline, but highly accurate mesh generator based
on implicit structures called metaobjects (Oeltze and Preim, 2004;
Zoppè et al., 2008) allowing to create high-fidelity vascular meshes
from raw morphologies even without the necessity to have any

section connectivity information in the morphology. Metaobjects
are implicit surfaces defined procedurally. Unlike meshes that are
composed of vertices or surfaces that are defined by control points,
these objects are merely represented by mathematical functions that
are computed on-the-fly. The fundamental feature that makes meta-
objects significant is their ability to blend, i.e. when two independ-
ent metaobjects are getting closer to each other, they start to interact
and blend together into a single object. We, based on metaobjects
and in particular metaballs, propose an algorithm to reconstruct
vasculature meshes—refer to Supplementary Figure S7. This algo-
rithm is capable of handling highly complex branching scenarios
avoiding to create intersecting geometry that is common in other
meshing algorithms, e.g. skin modifiers (Abdellah et al., 2019).

Generating a vasculature mesh from its morphological skeleton
using metaballs requires three principal stages: (i) initializing the
metaobject, (ii) building the metaobject structure on a per-section-
basis and (iii) converting the metaobject into a target surface mesh.
During the initialization stage, an empty metaobject of type bpy.
data.metaball is created and linked to the scene. The initial reso-
lution of this object is set to 1; however, this resolution will be modi-
fied in the finalization stage based on the radius of the smallest
sample along the morphology skeleton to avoid reconstructing a
fragmented mesh as shown in Figure 7 and Supplementary Video S4.

Afterwards, the metaobject body is constructed on a per-section-
basis, where each step converts a raw list of ordered samples that be-
long to the section to what is called a meta-section. During this step,
each pair of connected samples along the section is used to create a
meta-segment and append it to the metaobject using sphere march-
ing. The segment length and direction are initially computed and
then the spatial extent of the segment is filled with multiple interpo-
lated points based on the radii and position vectors of the two sam-
ples of the segment until the traveled distance along the ray exceeds
the segment length. The radius of the smallest sample in the

Fig. 4. (A) A highly oversampled (�1.5 million samples) vascular network extracted

from the cortex. Removing the unnecessary samples (B and C) without changing the

connectivity of the morphology evidently improves the visual quality of the recon-

structed morphology (D and E) and increases the rendering interactivity

Fig. 5. Users can control the visual quality of the skeleton, choosing between highly

optimized geometry (A and C) for global far views or high-quality reconstructions

(B and D) for close up views. Morphology polylines are rendered using bevel objects

with 4 and 16 sides in A and B, respectively. The piecewise segments of the polylines

(C) might limit the visual quality in case of close ups; therefore, we added another

parameter to use spline interpolation to smooth their curvature (D)

Fig. 6. Users can assign a color map to reveal the spatial distribution of the radii of

all the segments in the morphology

Fig. 7. A vasculature mesh created with the proposed metaballs implementation.

The resolution of the metaobject is automatically set to 0.5 to create a highly tessel-

lated mesh in (A). The meshes in (B), (C) and (D) are created with metaobject reso-

lutions of 1.0, 2.0 and 4.0, respectively. These meshes have much fewer polygons

than the original mesh in A, but their quality is degrading correspondingly. The

small vessels and loops are not reconstructed in C and the large vessels are complete-

ly fragmented in D
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morphology skeleton is computed during the building of each meta-
section. At the finalization stage, this radius is used to set the actual
resolution of the metaobject and then the metaobject is converted to
a manifold surface mesh. The reconstructed mesh is tessellated or
decimated to result in a smooth and non-bumpy surface and then
linked to the rendering widget.

It has to be noted that our implementation does not require the
connectivity information between the sections. However, it assumes
that the corresponding branching points of the connected sections are
logically located at the same Cartesian positions even if they have dif-
ferent radii. The segment connectivity information per section is man-
datory to be able to construct correct structures. Supplementary
Figure S8 shows a combined rendering of a reconstructed vascular
mesh and its corresponding morphology for qualitative validation.

The mesh generation time depends mainly on the size of the vas-
cular morphology and the metaballs resolution used to build the
mesh. Building meshes for morphologies with less than few thou-
sands of samples at full resolution takes several hundreds of millisec-
onds to a few seconds. For a relatively larger dataset with 55 807
samples, we performed the meshing at three different resolutions.
The mesh reconstruction process took 107.45, 6.37 and 2.49 s corre-
sponding to metaball resolutions of 1, 2 and 3, respectively.

2.6 Mesh optimization
The tessellation of the reconstructed meshes from the metaballs im-
plementation is primarily based on the radius of the smallest sample
along the skeleton. Consequently, the presence of relatively small
samples would significantly impact the geometry of the mesh by cre-
ating very small polygons that are not necessarily essential to pre-
serve the structure of the vascular network. By default, the
resolution of the metaobject is obtained during the metaobject build-
ing process, and set at the finalization stage before converting the
metaobject into a mesh. But, for convenience, we added another op-
tion that allows users to manually set the metaobject resolution.
Although very useful for testing, inappropriate values of this param-
eter can result in highly fragmented mesh as obvious in Figure 7.

To overcome this issue, we added another option to decimate the
geometry allowing to create optimized meshes which could be used
for several applications, e.g. real-time rendering or stochastic simu-
lations. To avoid destructing the mesh, the decimation range
exposed to the user is limited between 0.99 and 0.125. This range
has been set based on trial-and-error. This allows users to create a
mesh with decent size without sacrificing its quality by reducing the
metaobject resolution. Figure 8 demonstrates how a highly tessel-
lated mesh with �68 000 polygons can be optimized to �17 000
polygons without any loss in visual quality. We can also notice that
decimation factors beyond the 0.125 can introduce visual artifacts
due to loss of topological detail.

There are different metrics that define mesh quality including its
minimum and maximum dihedral angles, edge and radius ratios (Hu
et al., 2018). Due to the nature of the metaobject algorithm itself,
the topology of the resulting meshes is not optimized according to
these metrics. We therefore have added another utility (implemented
in the C code of Blender) to optimize any generated mesh according
to these metrics based on an open source mesh optimization library
(Yu et al., 2008). The resulting meshes from this optimization pro-
cess are shown in Figure 9.

2.7 High-quality rendering and multimedia generation
High-quality scientific illustrations are essential in any research pro-
cess, but creating these illustrations requires a substantial amount of
time and effort, deep knowledge of media design applications in add-
ition to having individual artistic skills to a certain degree. Therefore,
we have integrated an extra module in VessMorphoVis specifically
designed to seamlessly create high-quality multimedia content that
reveals the beauty of vascular networks. The rendering module is
transparently connected to the morphology and meshing modules. It
consists of a list of artistic shader nodes and light setups that are auto-
matically configured to render scientific illustrations for vascular mor-
phologies and their corresponding surface meshes including high-

resolution static images and 360 sequences. These renderings are also
helpful to debug the connectivity of the skeletons. Supplementary
Videos S5 and S6 show 360 sequences for two meshes of different net-
work complexities. The rendering components including camera,
lighting setup and the selection of the rendering engine itself are auto-
matically added to the scene based on three items: (i) the rendering
resolution (or scale), (ii) the selected shader (or material) and (iii) the
type of the geometry that exists in the scene. The frustum of the cam-
era is defined based on its projection type (whether orthographic or
perspective) and the bounding box of the geometry that exist in the
scene. Users can create two sets of images, either for debugging and
analysis or for scientific articles media. The first set uses glossy shad-
ers with the Workbench renderer, making it possible to create very
high-resolution images in only few seconds. The other set uses physic-
ally based shaders with Cycles to create cinematic renderings (Eid
et al., 2017) even for highly dense vascular networks. Figure 10 shows
a vascular mesh rendered with different types of shaders and render-
ing engines. Supplementary Figure S9 shows other shading styles
using a radius-based colormap.

3 Discussion and experts feedback

VessMorphoVis is designed to be an open source and domain-specific
software solution. It serves diverse categories of users, primarily
neuroscience modeling researchers in addition to visualization special-
ists and scientific multimedia designers. For this reason, we based our
implementation on Blender, exploiting its user-friendly GUI, well-
documented Python API to accomplish multiple design goals. Starting

Fig. 8. Decimation is essential to reduce the tessellation of meshes with large poly-

gon counts. At certain point, it can reduce the visual quality of the reconstructed

mesh, but it does not fragment the mesh into several pieces. The mesh complexity

(number of polygons) has been reduced 40 times and the branching is still preserved

Fig. 9. Mesh optimization. A mesh reconstructed from the metaballs implementa-

tion in (A) is optimized with two different decimation factors in (B) and (C)
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from an input vascular morphology, users can analyze its graph using
automated kernels and interactive visual inspection, allowing them to
repair the morphology and then create an implicit representation that
is converted into a surface mesh. This polygonal mesh is further opti-
mized and can be used to reconstruct a tetrahedral mesh for simulat-
ing the CBF. Moreover, scientists can seamlessly create visualizations
to debug the vascular network and render high-quality multimedia
using ray tracing for scientific articles. Figure 11 shows a high-quality
rendering of a large mesh reconstructed from a very dense skeleton.
The API was also designed taking into consideration extensibility,
allowing researchers who have basic Python programming knowledge
to implement certain custom features needed for their research pur-
poses with minimal efforts.

To assess the overall performance, usability and impact of the
add-on, we prepared a collection of vascular morphologies with
varying size and complexity. Then, we presented the features of the
tool to a group of domain experts. This group included neuroscient-
ists working on computational modeling of brain vasculature, visu-
alization researchers and also multimedia specialists whose mission
is creating scientific illustrations of neuroscientific content with
Blender. The users were asked to report their feedback indicating (i)
points of strength and (ii) current limitations that can be improved,
and (iii) other features that can be implemented to be helpful for
their specific needs.

The experimental feedback was largely positive and satisfactory.
The scientists provided the following comments. The morphology
builders are extremely insightful to verify several structural aspects
of the vascular morphology and reveal certain inaccuracies of its
graph including false loops, disconnected fragments, misaligned sec-
tions, incorrect branching and overlapping components. The auto-
mated analysis module is very helpful and efficient. A single user
click creates an inclusive fact sheet summarizing different analysis
results of the whole network. Further kernels can be effortlessly
implemented to enhance the results. To them, resampling the skel-
eton without altering its spatial structure was substantial; several
datasets are excessively oversampled and using those datasets with-
out resampling in computational modeling increases the simulation
time significantly. The design of the add-on is intuitive and even
with no previous Blender experience, it can be used seamlessly.
Every item on the interface comes with a clear tooltip documenta-
tion displayed upon mouse hover over the element. Moreover,
designing a rich CLI to the add-on was as crucial as its GUI to allow
its integration into other software pipelines, which would potential-
ly magnify the impact of VessMorphoVis. The visualization and
media specialists have mainly liked the integrity of the tool. The
meshing and rendering modules were of significant value to them. It
would be very helpful to create Blender scenes where they can apply
further shading nodes to create outstanding multimedia.

We then received several feature requests to further enhance the
add-on functionality including (i) adding other coloring schemes to
visualize more vascular properties, (ii) visualizing dynamic graphs to
reveal changing structures over time to help in silico experimental-
ists to explore the impact of varying modeling parameters on the
network, (iii) integrating another module allowing scientists to
manually reconnect disconnected or fragmented pieces that were
poorly segmented, (iv) adding support to visualize a region of inter-
est selected from the GUI to focus on specific parts of the morph-
ology and (v) finally, making the API callable from a web interface.
Surprisingly, we were excited to see that other collaborators are
willing and deeply interested to implement some of these requests by
themselves to get to know more about the API.

4 Conclusion

Vascular modeling efforts in the neuroscientific community are lack-
ing domain-specific frameworks enabling interactive visual analysis
of vast morphological networks of brain vasculature.
VessMorphoVis is presented to fill this gap. Integrated in a single
open source toolbox, this Blender add-on is capable of interactive
visual analysis of vascular networks, synthesizing high-fidelity pol-
ygonal meshes from their morphologies and also creating high-
quality scientific illustrations and sequences of these networks. The
capabilities of the add-on were demonstrated on several vascular
morphologies with varying sizes and complexity. We performed a
set of user experiments to evaluate different aspects of the add-on
including its performance, functionality and interface intuitiveness.
We concluded from their feedback that our tool will be an essential
component in vascular modeling and simulation in the future.

Add-on Requirements

VessMorphoVis is designed as a python add-on for Blender 2.80.
The add-on depends only on the following software components:
Blender and the python bindings of HDF5 and MorphIO.

Data sources

The vascular morphologies used in this paper are kindly provided by
Bruno Weber, Institute of Pharmacologyand Toxicology –
Experimental Imaging and Neuroenergetics, University of Zürich
(UZH), Switzerland, Pablo Blinder, Department of Neurobiology,
George S. Wise Faculty of Life Sciences, Tel Aviv University (TAU),

Fig. 10. The same mesh reconstructed with metaballs algorithm is rendered with

four different shaders: glossy, flat, artistic bumby and artistic glossy in A, B, C and

D, respectively, using the Workbench and Cycles renderes in Blender

Fig. 11. A high-quality rendering of a large vasculature mesh reconstructed from a

vascular graph having �2.1 million samples based on our metaballs implementa-

tion. The mesh is rendered using the artistic glossy shader with Cycles
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