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and therefore, a rigorous effort is required to decode its pathogenicity. There are no licenced treatment
options available for treating SARS-CoV-2 infections and the development of a new antiviral drug tar-
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Introduction treatments options, namely, chloroquine and hydroxychloroquine

Coronaviruses (CoVs) are a large family of RNA viruses, belongs
to the family Coronaviridae and order Nidovirales [1]. These
viruses are protected by a membrane envelope and possess a large
RNA genome (26-32 kb), which is single-stranded, with positive
(mRNA) polarity (ssRNA+) and a nucleocapsid of helical symme-
try [2]. The club-shaped glycoprotein spikes projecting from the
virus surface give an electron micrograph image that resembles the
solar corona; hence its name “coronavirus” [3]. Both human beings
and animals are targeted groups of Covs; however, bats have been
found to host the largest variety of Covs [4]. There are four classes
of coronaviruses, namely: alpha, beta, gamma, and delta. The beta-
Covs class harbours Severe Acute Respiratory Syndrome (SARS)
virus (SARS-CoV), Middle East Respiratory Syndrome (MERS) virus
(MERS-CoV), and the COVID-19 causative agent SARS-CoV-2. Coro-
naviruses attack the host’s lower respiratory system, resulting in
viral pneumonia. However, SARS-CoV-2 may also affect different
organ systems including the central nervous system, leading to
multiple organ failure [5,6]. SARS-CoV-2 has also been identified
as more contagious than other betaCovs [7].

The first worldwide coronavirus outbreak, recorded between
2002-2004, was caused by SARS-CoV. The disease caused around
8098 SARS positive cases with a highly infectious mortal form of
pneumonia and 774 reported deaths [8]. The second coronavirus
outbreak was caused by MERS-CoV towards the end of 2012, which
affected around 27 countries, resulting in 2494 positive cases and
858 reported deaths [9]. The disease symptoms ranged from mild
to acute respiratory distress syndrome [9].

Coronavirus disease 2019 (COVID-19), reported in late 2019,
is the third ruthless coronavirus outburst; caused by SARS-CoV-2.
Symptoms range from mild (fever, cough and shortness of breath)
to acute (severe pneumonia resulting in multi-organ failure) [10].
As reported by the World Health Organization (WHO), as of 09
September 2020 there were a total 27,417,497 confirmed cases and
894,241 mortalities globally [ 11]. There was increasing concern due
to the fast spread of this disease, and therefore a global emergency
was declared by WHO on January 31, 2020, and on March 11, 2020
the disease was documented as a pandemic. The world is desperate
to uncover ways that can control the spread of novel coronaviruses
and to find successful treatment options. In search of effective treat-
ments or vaccines, more than 200 clinical trials for COVID-19 are
either being conducted, or patient recruitment is in process [12].
However, every day new studies are being added, as the number
of cases is increasing multi-fold globally. The treatment options
currently being explored vary from decade-old malaria drugs to
unsuccessful Ebola treatments, to repurposing flu drugs. An antivi-
ral drug named EIDD-2801 has been claimed by scientists to combat
SARS-CoV-2 in a better way than remdesivir [13]. Another antivi-
ral drug, favipiravir or avigan, used against influenza in Japan, was
also found effective against SARS-CoV-2 infections [14]. Malaria

were initially reported to be an effective option against COVID-
19 [15]; however, the results from clinical trial (NCT04332991)
[16] and prophylaxis data recorded by Boulware and coworkers
[17] were not promising. Additionally, the withdrawal of chloro-
quine and hydroxychloroquine from chief investigations denotes
the termination of attempts to repurpose these drugs for combat-
ing SARS-CoV-2 infection [18]. Remdesivir, an unsuccessful Ebola
drug, has also shown potential and is being repurposed for SARS-
CoV-2 infections; however, additional clinical trials are still ongoing
to ensure the effectiveness of this drug in COVID-19 patients.
Despite all this, a standard treatment for SARS-CoV-2 infections
is still lacking and increasing incidences of asymptomatic infec-
tions, excessive transmissibility, and a long incubation period have
made COVID-19 a competent and challenging pathogen which is
very difficult to contain.

Most importantly, the occurrence of microbial co-infections
in COVID-19 patients complicates the situation by increasing the
hitches in management of diagnosis of and prognosis for SARS-
CoV-2. Therefore, clinicians cannot ignore the high chance and risk
of co-infections caused by all groups of microbes, bacteria, viruses
and fungi among COVID-19 patients that may further result in seri-
ous disease symptoms and raise the mortality rate [19]. However,
it cannot be denied that coinfected microorganisms can bring hope
for developing new strategies against SARS-CoV-2 infection. There-
fore, in the present review we have highlighted this crucial aspect to
emphasise the importance of microbial coinfection in SARS-CoV-2
infection.

Aim of this review

Although there are no targeted antiviral agents available for
treatment of novel SARS-CoV-2, a remarkable amount of research
is in progress to find potential treatments that can save humankind
and develop vaccines that can secure our future. This review aims
to strengthen the intellectual foundation of ongoing research for
advances in therapeutic sciences aiming at potential drugs as well
as preventive vaccines for combating of SARS-CoV-2 and other
coronavirus diseases. The present review provides a cumulative
description of recent information on the SARS-CoV-2 structural
morphology; its characteristics, related co-infections, potential
drug targets and treatment options available.

Study selection

The PubMed, ScienceDirect and Scopus databases have been
exhaustively searched up till September 09, 2020, using the key-
words: SARS-CoV-2/coronavirus infection, including updates on
SARS-CoV-2 treatments and vaccine development, challenges in
coronavirus treatments, research and development on therapeutic
agents and vaccines for COVID-19 and related human coronavirus
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diseases and drug targets for corona viruses. Non-English articles
were excluded from the study. In total 87 published articles were
accessed and important cross-references were also retrieved and
included in the present study. Moreover, updates from WHO, CDC,
currently ongoing trials from ClinicalTrials.gov reports and other
authentic sources were grouped and presented in this review arti-
cle.

SARS-CoV-2

The SARS-CoV-2 genome consists of 29,811 nucleotides and is
organized into a 5 untranslated region (UTR), replicase complex
(ORF1ab), spike gene (ORF2), envelope gene (ORF3a, ORF4), mem-
brane gene (ORF5), nucleocapsid genes (ORF6, ORF7a, ORF7b, ORFS,
ORF9), 3’ UTR, and other open reading frames (ORFs) yet to be char-
acterized [20,21]. The genome encodes 29 different proteins that
are divided into three main groups, namely: structural proteins
(spike, envelope, membrane and nucleocapsid), non-structural
proteins (NSP) and accessory proteins [22].

Structural proteins

SARS-CoV-2 encodes four main structural glycoproteins — spike
(S), envelope (E), membrane (M) and nucleocapsid (N).

Spike protein (S)

S proteins are transmembrane proteins (around 150 kDa) and
are projected outwards from the surface of the virus. These pro-
teins bind the angiotensin-converting enzyme 2 (ACE2) expressed
in cells of the lower respiratory tract and play a crucial role
in attachment, fusion, entry, and transmission of viral parti-
cles into host cells. Furin-like protease present in the host cell
cleaves S glycoproteins into two sub-units, namely the S1 part (N-
terminal), responsible for virus-host receptor binding and the S2
part (C-terminal), which mediates virus-cell membrane fusion in
transmitting host cells [22,23]. Therefore, the process of SARS-CoV-
2 infection starts with the binding of S1- receptor-binding domain
(S1-RBD) to the cell membrane receptors of the host cell, causing
a structural change in the S2 part which results in fusion and the
entry of the viral particle into the target cell [24,25].

Nucleocapsid protein (N)

N glycoprotein binds to the viral genome to make up nucle-
ocapsid protein and is involved in processes such as the viral
replication cycle and the host cells response to viral infections
[26-28]. Although, the nucleocapsid protein N-terminal domain of
this virusis structurally similar to other known Covs, but the surface
electrostatic potential characteristics between them are different
[29].

Membrane protein (M)

M proteins are important and most abundant proteins, which
specify the outline of the viral envelope and are moreover consid-
ered as a principal organizer of CoV assembly [24]. In silico studies
revealed that SARS-CoV-2 M protein has a triple helix bundle, forms
a single 3-transmembrane domain (TM) and is homologous to the
prokaryotic sugar-transport protein semi-SWEET. However, the
advantage and role of sugar transporter-like structures in viruses
are still unknown [30]. The membrane protein assists S protein dur-
ing attachment and admission of the virus to the host cell. It also
helps in forming a stable N protein-RNA complex and supports the
completion of the viral assembly inside the virion [31].

Envelope protein (E)
E proteins are small membrane proteins (8.4—12 kDa size) that
interact with M proteins to form the viral envelope and accounts for

Journal of Infection and Public Health 14 (2021) 852-862

SARS-CoV-2 assembly, budding and pathogenesis [26,28]. They are
found to be highly conserved among the beta coronaviruses. There
are predominantly two structural domains: a hydrophobic domain
and a charged cytoplasmic tail. The presence of heme agglutinin-
esterase protein has been reported in some of the coronaviruses.

Non-structural proteins

The second group of proteins, non-structural proteins (NSP),
play a vital role and control the assembly of the viral particle
as well as its escape from the host defence system. The RNA
genome that encodes these proteins is replicase complex, contain-
ing two ORFs (ORF1a and ORF1b), complete expression of which
is accomplished via ribosomal frameshifting [32]. The translation
of ORFla and ORF1b produces two huge overlapping polypro-
teins, ppla and pplab. These polyproteins are then cleaved into
16 mature smaller proteins by the papain-like protease (PLpro) and
the 3-chymotrypsin-like protease (3CLpro), also known as the main
protease (Mpro). From 16 proteins, the first 11 are transcribed from
ORF1a and the remaining five from ORF1b [20,23]. A summary of
the non-structural proteins as well as and their roles, are outlined
in Table 1 below:

Accessory proteins

There are eight accessory proteins reported to date. While they
are not essential for replication (suggested by in vitro studies), some
of them are proved to be important for virus-host interactions. The
group include ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8a, ORF8b,
and ORF9b [51]. The details of accessory proteins reported in SARS
CoV-2 and their functions are outlined in Table 2 below:

SARS-Cov-2 infection and co-infections

The individuals carrying SARS-CoV-2 are more vulnera-
ble to co-infection with pathogens such as Aspergillus flavus,
Candida species, Streptococcus pneumoniae, Staphylococ-
cus aureus, Klebsiella pneumoniae, Haemophilus influenzae,
Mycoplasma pneumoniae, Chlamydia pneumonia, Legionella
pneumophila, Acinetobacter baumannii, influenza virus,
coronavirus, rhinovirus/enterovirus, parainfluenza virus, metap-
neumovirus, and human immunodeficiency virus (HIV) [61].
Cases of SARS-CoV-2 co-infection with human metapneu-
movirus (hMPV), human orthopneumovirus (human respiratory
syncytial virus/HRSV/RSV), Mycoplasma pneumoniae (MP), rhi-
novirus/enterovirus, non-SARS-CoV-2 Coronaviridae [62,63],
and influenza A virus [64-66] have been reported. According to
current medical literature, co-infection between SARS-CoV-2 and
bacteria/fungi appear to be low. 2 out of 9 (22%) clinical studies
reported bacterial co-infection in SARS-CoV-2 cases, whereas
62 out of 806 (8%) cases of bacterial/fungal co-infection were
reported. These patients were put on broad-spectrum antibiotic
treatment, with 72% of cases getting antibacterial therapy alone
[67]. Co-infections with bacteria such as S. pneumoniae, followed
by K. pneumoniae and H. influenzae were commonly reported
in SARS-CoV-2 patients [68]. There are also studies reporting
SARS-CoV-2 patients suffering with severe invasive pulmonary
aspergillosis [69,70]. Among SARS-CoV-2 patients the proportion
of bacterial co-infection was highest, followed by bacterial-viral,
viral-fungal and viral-bacterial-fungal co-infections [68].

Altogether rates of co-infections in SARS-CoV-2 patients are
increasing above what was previously reported. Although the num-
ber is small, the chance of co-infection is higher, which needs to be
investigated in detail.
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Table 1

Non-structural proteins of SARS CoV-2 and their function.
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NSP

Amino acid (aa)

Function®

Accession number

Reference

NSP1 (leader
proteins)

NSP2

NSP3

NSP4

NSP5

NSP6

NSP7 and NSP8

NSP9
NSP10

NSP11
NSP12

NSP13

NSP14

NSP15

NSP16

180 aa

638 aa

1945 aa

500 aa

306 aa

290 aa

83 aa

198 aa

113 aa
139 aa

13 aa
932 aa

601 aa

527 aa

346 aa

298 aa

Blocks host innate immune response and suppresses IFN
signalling by binding to host 40S ribosome, halting translation
and thereby selectively degrading host mRNA.

Found conserved in another coronavirus, SARC-CoV. This
protein binds with prohibitin 1(PHB1) and prohibitin 2 (PHB2)
present in host, and thus is responsible for disrupting the host
cell environment.

The largest protein encoded by coronavirus, it is around 200
KDa in size and a papain-like proteinase protein. This protein
also eases release of NSP1, NSP2, and NSP3 from the
N-terminal region. NSP3 shuts down host enzymes called
PARPs, which prevent viruses from replicating.
Accommodates transmembrane domain and interacts with
NSP3 as well as host proteins and assists reorganization of
SARS CoV membrane. However, both NSP4 and NSP3 are
involved together for their role in viral replication.

The main protease promoting cytokine expression and
cleavage of viral polyprotein. SARS CoV-2 NSP5 is highly
homologous to SARS NSP5 (identity, 96%; similarity, 98%).
This, similarly to other CoVs, presents putative
trans-membrane helices and interacts with NSP3 and NSP4.
This protein is involved in generation of autophagosome from
the endoplasmic reticulum and enable assembly of replicase
proteins.

Both NSP7 and NSP8 form a heterodimer that efficiently
performs de novo initiation and primer extension. Both NSP7
and NSP8 are found conserved among 2019-nCoV,
BetaCoV_RaTG, and BatSARS-like Cov.

Suggested involvement in viral replication and virulence.
Previous studies of SARS coronavirus demonstrate that NSP10
interacts and stimulates activity of NSP14
[S-adenosylmethionine (SAM)-dependent (guanine-N7)
methyl transferase (N7-MTase)]. Additionally, NSP10 also has
a crucial role in activating NSP16 (2'-O-methyltransferase).
Function is still unknown.

RNA dependent RNA polymerase (RdRp), along with cofactors
NSP7 and NSP8, assists in coping viral RNA. Current studies
suggest that SARS-CoV-2 NSP12 is almost identical to that of
the SARS-CoV (identity, 96%; similarity, 98%).

A helicase enzyme responsible for unwinding viral genome. As
reported previously, the overall structure of SARS-CoV-2
NSP13 is composed of five domains giving a triangular
pyramid shape similar to SARS and MERS-Nsp13.

Current reports suggest it is a proofreading protein with 3’ to
5’ exoribonuclease (NSP14-ExoN). This activity is an important
factor of both viral replication and recombination.

It has been characterized as RNA uridylate-specific
endoribonuclease carrying catalytic domain at C-terminal. The
NSP15 protein prevents uncovering of virus within host
system. This is achieved by degrading the viral polyuridine
sequences.

It is a N7-GpppA-specific, S-adenosyl-L-methionine
(SAM)-dependent, 2’-O-MTase and is activated by binding to
NSP10. NSP16-NSP10 complex cap viral mRNA transcripts
protecting it from degradation by 5’-exoribonucleases,
promote efficient translation and assist host innate immunity
surveillance.

YP_009725297.1

YP_.009725298.1

YP_009725299.1

YP.009725300.1

YP.009725301.1

YP.009725302.1

NSP7,

YP.009725303.1

NSP8,

YP.009725304.1
YP_009725305.1
YP_009725306.1

YP.009725312.1
YP_009725307.1

YP_009725308.1

YP.009725309.1

YP.009725310.1

YP_009725311.1

[20]

[33]

[34,35]

[36]

[37]

[38,39]

[40,41]

[42]
[43.44]

[20]
[45]

[46]

[47]

[48]

[49,50]

2 Note: The functions of NSPs are reported for SARS-CoV and are considered to be similar in SARS-CoV-2.

Potential targets for drug discovery in SARS-Cov-2

SARS-CoV-2 infection has already proven to be a devastating
disease worldwide. Therefore, the most urgent timely require-
ment now is to advance treatment options against this disease.
The strategy of drug development for tackling this global disas-
ter can be broadly classified on the basis of specific pathways
into the following categories: (a) blocking viral structural proteins
and thereby inhibiting virus-host interaction and viral entry; (b)
inhibiting viral RNA synthesis and replication by targeting different
viral enzymes or functional proteins; (c) targeting viral virulence

factors mediating escape from the host immune system; (d) target-
ing host-specific receptors such as Angiotensin-converting enzyme
2 (ACE2), which serves as an entry point for CoVs.

Targeting viral structural protein and its interactions

Spike protein is a crucial structural protein of CoVs and forms a
trimeric structure on the surface and mediates the invasion and vir-
ulence of the virus. The S protein is also responsible for activating
the host immune response toward the viral particle [71]. There-
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Table 2
Accessory proteins of SARS CoV-2 and their function.
Accessory proteins Amino acid (aa) Function® Reference
ORF3a 275 aa Involved in formation of ion channels, virulence, infectivity and virus release [52,20]
ORF3b 22aa Strong INF-1 antagonist. [53]
ORF6 61 aa Interacts with viral NSP8 (enhancing RNA polymerase activity) and involved in [20]
viral pathogenesis
ORF7a 121 aa Inhibits activity of bone marrow stromal antigen 2 (BST-2) by blocking its [54]
glycosylation.
ORF7b 43 aa Both accessory protein and structural component of the SARS virion. [55]
ORF8 121 aa Important for adaptation in human host following interspecies transmission [56-58]
and virus replicative efficiency.
ORF9b 97 aa Interacts with a mitochondrial import receptor, Tom70, which acts as an [59,60]
essential adaptor linking MAVS to TBK1/IRF3; resulting in the activation of
IRF-3
ORF9c XX aa Interacts with multiple proteins that modify IkB kinase and NF-kB signalling [60]
pathway, including NLRX1, F2RL1 and NDFIP2.
ORF10 38aa Function is undefined [20]

3 Note: The functions of accessory proteins are reported for SARS-CoV and are considered to be similar in SARS-CoV-2.

fore, targeting S proteins or specific host cell receptors is a valuable
therapeutic strategy for antiviral drug development.

The receptor-binding domain (RBD) is the main target for
designing drugs against SARS-CoV-2. Available literature suggested
a few potential targets that hamper S1-RBD: ACE-2 binding and
therefore, block the entry of SARS-CoV. The inhibitors are: 0C43-
HR2P (peptide derived from HCoV-0C43) showed pan-CoV fusion
inhibition property [72], chloroquine (antimalarial agent, elevates
endosomal pH and modifies ACE-2 binding site, thus inhibiting
virus receptor binding) [73], SSAAO9E2 (block the S-ACE2 bind-
ing), SSAAO9E1 (blocks viral entry), SSAAO9E3 (inhibits host and
viral cell membrane fusion)[74], the S230 antibody nullifies various
isolates of SARS-CoV [75], m396 (monoclonal antibody) competes
for RBD [76], 80R and CR301 (monoclonal antibodies) are spike-
specificantibodies that nullify viral infection by preventing S-ACE-2
binding [77].

The other structural proteins in SARS-CoV-2 are E protein and N
protein. E protein (E-channel) owns the central function for main-
taining the structural and viral pathogenicity, whereas NRBD and
CRBD are the important domains of Cov N protein and they are
required for an efficient host-viral interaction. Therefore, collec-
tively, these structural proteins can be thoroughly targeted for
antiviral drug discovery [78].

Targeting virus RNA synthesis and replication

Non-structural proteins are important for virus replication
along with infecting the host. The most potential drug targets
among them are: papain-like protease (PLpro), helicase/NTPase,
3C-like protease (3CLpro), haemagglutinin esterase and RNA-
dependent RNA polymerase (RdRp), because of their strong vital
role and functional enzyme active site.

C-like protease (3CLpro/Nsp5)

The 3CLpro/(Nsp5 is a homodimer protease with an active site
consisting of the cys-his dyad responsible for protease activity
[79]. It releases mature Nsp4-Nsp16 by cleaving Nsps present
downstream at 11 sites, and facilitates production of advanced
protein-mediating replication/transcription complex [80,81]. Due
to important catalytic activity 3CLpro is an attractive target for
developing antiviral drugs and mainly small-molecules and peptide
inhibitors are used for screening [82].

An in silico study [83] indicated that antibacterial medications
(oxytetracycline, demeclocycline, doxycycline and lymecycline),
conivaptan (used for hyponatremia) and anti-hypertensive drugs
(nicardipine and telmisartan) were inhibitors of 3CLpro. Other
In silico studies suggested potential 3CLpro inhibitors among

presently available drugs (aprepitant, icatibant, colistin, bepotas-
tine, perphenazine, valrubicin, epirubicin, and caspofungin. These
drugs also bind to the antiretroviral-binding site on SARS-CoV
[84]. Small molecules, phthalhydrazide-substituted ketoglutamine
analogs, arylboronic acids, thiophenecarboxylate and quinolinecar-
boxylate derivatives have been explored and proved to inhibit
3CLpro [85]. The inhibitors of HIV protease, lopinavir and ritonavir
also inhibit 3CLpro [84]. Various natural products and their deriva-
tives have been reported to show high binding affinity to 3CLpro
[83].

Papain-like proteases (PLpro)

These function by slicing the N-terminus of the replicase poly
protein (PP) and produce three NSPs (NSP1, NSP 2, and NSP 3) which
are critical for virus replication [86]. Being vital enzymes for CoV
replication and host infection, PLpro are becoming a well-accepted
focus for drug advances against SARS-CoV-2. However, there is no
candidate yet approved by the FDA as adrug. Zinc and its conjugates
at higher doses were found to inhibit PLpro [87]. Benzodioxole [88]
and a new lead compound (6577871) [89] were identified as strong
inhibitors by in silico studies. Lopinavir-ritonavir combinations are
also being used for treating SARS-CoV-2 infection [90]. Wu and co-
workers (2020) have discussed a series of available drugs as well
as natural products with strong affinity towards PLpro. The major
drugs include antibacterial drugs (chloramphenicol, cefamandole
and tigecycline), and antiviral drugs (ribavirin, valganciclovir and
thymidine) [83].

RNA-dependent RNA polymerases (RARp/Nsp12)

These are crucial enzymes of the replication/transcription com-
plex and are found conserved in coronavirus. The RdRp domain of
the RNA polymerase consists of a conserved motif (Ser-Asp-Asp)
present at the C-terminus [91]. However, in previous beta corona-
virus epidemics Nsp12-RdRp was considered as a significant drug
target because inhibition of this enzyme significantly reduces tox-
icity and side effects in host cells [92]. Remdesivir and Ribavirin
(antiviral agents) have the potential to serve as drug candidates that
can block this enzyme [93]. Several other existing compounds are
also presented as probable inhibitors of this enzyme, namely, itra-
conazole, novobiocin, chenodeoxycholic acid, cortisone, idarubicin,
silybin and pancuronium bromide [83].

Helicase/NTPase

Helicase (NSP13) is a vital protein which has a critical role
in the viral central dogma, with an ability to untangle double-
stranded DNA and RNA in an NTP-dependent manner [94]. The
SARS-Nsp13 sequence has been found conserved, and is a vital
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Table 3
Drug repurposing for SARS-Cov-2.
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Possible targets

Ongoing therapeutic options and their functions

Ongoing clinical trials for SARS-CoV-2

Targeting the RdRp

Inhibiting the viral protease

Blocking virus cell entry

Enhancing the innate immune system

Attenuating the inflammatory response

Symptomatic control

Vaccine

Pathogen-specific artificial antigen-presenting cells

Remdesivir (GS-5734) [115] commonly known as
Veklury; broad-spectrum antiviral drug against
SARS-CoV, MERS-CoV, and various other RNA viruses.

Favipiravir (T-705) [117]; antiviral drug used to treat
broad range of RNA viruses.

Galidesivir (BCX4430) [118]; broad-spectrum antiviral
drug.

3-D-N4-hydroxycytidine/NHC/EIDD-1931; strong
inhibitory effect against MERS-CoV, SARS-CoV, and
SARS-CoV-2 [119].

Ribavirin [118]; broad-spectrum antiviral, primarily
used for treatment of hepatitis C.

Ivermectin [120] (Stromectol/Soolantra cream); drug
used to treat parasitic infections.

Lopinavir-Ritonavir [121]; used for treatment and
prevention of HIV/AIDS.

Darunavir and Cobicistat [119, 122]; antiretroviral
drug against HIV/AIDS

Recombinant human angiotensin-converting enzyme
2 (RhACE2 APNO1) [123]. Used for treating cancer and
related problems.

Arbidol (Umifenovir) [124]. Used for the treatment of
influenza and hepatitis C virus.

Natural killer cells (NK cells) [125]; play important role
in cancer immunotherapy.

Recombinant interferon [126]; used as an antiviral or
antineoplastic drug.

Mesenchymal stem cells (MSCs) [127]; found to be
effective on acute lung injury (ALI)/acute respiratory
distress syndrome (ARDS) occurred by both infectious
and noninfectious diseases.

Intravenous immunoglobulin (IVIG) [128]; used to
treat a number of health conditions.

Neutralizing antibodies (nAbs) [129]; used for
anti-retroviral treatment.

Anti-C5a monoclonal antibody [130]; used for treating
paroxysmal nocturnal hemoglobinuria and atypical
hemolytic uremic syndrome (aHUS).

Blocking the interleukin (IL)-6 Pathway [131]; IL-6
inhibitors are approved for treatment of rheumatoid
arthritis.

Thalidomide (Thalomid) [132]; used to treat or prevent
Hansen’s disease (leprosy). Also used in cancer
treatment.

Methylprednisolone (Medrol) [133]; eases
inflammation, used to treat arthritis and cancer.
Fingolimod (Gilenya) [134]; mostly used for treating
multiple sclerosis.

Bevacizumab (Avastin) [135]; used to treat cancer and
eye disease.

Lipid nanoparticle (LNP)-encapsulated mRNA [136].
mRNA-1273, a novel LNP-encapsulated mRNA-based
vaccine, encoding full-length, prefusion stabilized
spike (S) protein of SARS-CoV-2.

DNA vaccine (INO-4800) [137], being tested to prevent
COVID-19 infection.

AZD1222 (ChAdOx1 nCoV-19) [138]; under clinical
trials for COVID-19.

Nanoparticle-based vaccines [139]; candidate vaccines
against various viral infections.

Clinical trials are evaluating the safety and
immunogenicity of artificial antigen-presenting cells
(aAPCs) alone and in combination with
antigen-specific cytotoxic T cells [140]

NCT04252664, NCT04257656, NCT04252664,
NCT04292899, NCT04292730, NCT04302766,
NCT04323761, NCT04280705, NCT04321616,
NCT04315948, NCT04314817 and
NCT04349410

ChiCTR2000029600, NCT04358549,
NCT04346628, NCT04310228, NCT04349241,
NCT04336904, NCT04319900, NCT04359615,
NCT04333589, NCT04303299, NCT04351295,
NCT04356495 and NCT04345419
NCT03891420

Data not available

NCT04356677

NCT04343092

NCT04252885 and ChiCTR2000029308
NCT04252274, NTC04303299 and

NCT04366089
NCT04287686 and NCT04335136

NCT04260594, NCT04255017 and
IRCT20180725040596N2

NCT04280224

NCT04293887

NCT04293692, NCT04269525, NCT04288102
and NCT04302519

NCT04261426

Data not available

Data not available

NCT04315298

NCT04273529 and NCT04273581

NCT04273321 and NCT04263402
NCT04280588
NCT04275414

NCT04283461

NCT04336410
NCT04324606
Data not available

NCT04299724 and NCT04276896

factor for the replication of CoV. Therefore, NSP13 has been recog-
nized as a potential druggable target [95,96]. However, toxicity due
to the non-specificity of inhibitors is considered to be the biggest
hurdle [97]. On the basis of in silico studies drugs namely, lymecy-
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cline, cefsulodine, rolitetracycline, itraconazole and saquinavir
were expected to be NTPase inhibitors [83].

Apart from the abovementioned drug targets, some NSPs that
are critical players in viral RNA synthesis and replication, namely:
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NSP3b, NSP3e, NSP6, NSP7-8 complex, NSP9, NSP10, NSP12 and
NSP14-16, need further investigation for anti-viral drug discovery
[60].

Targeting virulence factors

The SARS-CoV virulence factors that help the virus to escape
the host immune system as well as interfere with the host’s innate
immunity are Nsp1, Nsp3c and ORF7. (a) Nsp1 inhibits type-I inter-
feron production and is also responsible for degradation of the host
mRNA [98,99]. (b) Nsp3c supports the in virus to resisting host
innate immunity by binding with host’s ADP-ribose [100].(c) ORF7a
binds and inhibits activity of the bone marrow matrix antigen 2
(BST-2) by blocking its glycosylation [54]. These effects of the viru-
lence factors therefore advocate their potential for anti-viral drug
advances.

Targeting host-specific receptors

Many studies have already unambiguously proved ACE2 as a
receptor for S-RBD of coronavirus [101]. Recent work proves that
the SARS-CoV-2 host receptor is constant among SARS-CoVs, there-
fore, the sequence of S-RBD in SARS-CoV-2 is similar, and central
linking exists between the RBD receptor-binding motif and ACE2
receptors [102]. Therefore, ACE2 is considered as viable drug tar-
get for handling this infection. Arbidol (a broad-spectrum antiviral
agent), which works against the influenza virus by inhibiting virus-
host cell fusion and preventing virus entry into host cells, is under
clinical trial for the treatment of SARS-CoV-2. Camostat mesylate,
an existing TMPRSS2 (host cell protease, responsible for process-
ing of spike protein and facilitating ACE2 binding) inhibitor, stops
the entry of SARS-CoV-2 into host cells; thus, indicating its use as
a prospective drug against this infection [93]. Despite several chal-
lenges and disagreements about targeting host receptors, several
professional societies have recommended using this strategy for
the treatment in COVID-19 patients.

Available regimens
Drug repurposing for SARS-Cov-2

To date, no medication has been approved for treating SARS-
Cov-2 infection. Prevailing therapeutic options are not effective
against this infection; however, a variety of possible treatments
options are being explored by scientists [103]. In this situation the
best way to tackle this infection will be drug repurposing. Consid-
ering the information obtained from genomic sequence along with
in silico protein modelling, researchers have been working hard to
find a way to defeat this menace.

Recently published work has recognized the interaction of
SARS CoV-2 proteins with 332 human proteins. Out of these 332
protein-protein interactions, 66 were targetable by different antivi-
ral compounds. All these compounds were further screened by
multiple viral assays, resulting in the identification of two classes of
antiviral compounds: (i) protein translation inhibitors (i.e., zotat-
ifin, ternatin-4, and PS3061) and (ii) regulators Sigma1 and Sigma2
receptors (i.e., approved drugs: clemastine, cloperastine, proges-
terone and PB28) [60]. Some of these drugs have been reported
to be more effective than hydroxychloroquine. In another study,
researchers have screened about 12,000 FDA-approved drugs in
clinical trials in Vero-E6 cells (African Green Monkey kidney)
against SARS CoV-2 infection. Compounds, namely: apilimod (PIK-
fyve kinase inhibitor), cysteine protease inhibitors (MDL-28170, Z
LVG CHN2, VBY-825, and ONO 5334), and a CCR1 antagonist (MLN-
3897), were identified as potential druggable candidates against
COVID-19 [104].
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Severity of SARS CoV-2 infection is mostly among elderly
patients, which is may be due to weak immune response due to
the age factor. Therefore, adapting ways to boost innate immu-
nity against viral attack shows great potential. A previous study
has shown a promising role of macrophages and NK cells in the
clearance of SARS-CoV after their pulmonary migration and thereby
raising the levels of chemokines and cytokines [105]. There are
several multinational companies who are utilizing this approach
and aiming to reuse their NK-based products to combat COVID-19
infection. The most promising step has been taken by Cellular-
ity (a USA-based company) by developing CYNK-001. Also, Type
I interferons, used alone or in combination, give a broad-spectrum
protection against viral infections including MERS-CoV [106] and
SARS-CoV [107].

The SARS viral infection is majorly correllated with a high
inflammatory response in the respiratory tract [108,109]. Hence,
targeting mesenchymal stem cells (MSC) for therapeutic use in
viral treatment has been proposed by various researchers, as these
cells are acknowledged to exert anti-inflammatory responses and
initiate the tissue repair mechanism [110]. The purpose of MSCs
in treatment of COVID-19 pneumonia is still being investigated.
Similarly, intravenous immunoglobulin (IVIG) is gaining attention
for the treatment [111]. However, a more to the point approach
for SARS-CoV treatment could be generation of surface specific
epitope-targeting neutralizing antibodies [ 112]. Unfortunately, this
is a time-consuming process and requires a lot of effort. The
anti-C5a monoclonal antibodies may attenuate the degree of lung
damage caused by COVID-19 by lowering the neutrophil influx
and vascular leakage into the alveolar space [113]. When block-
ing the interleukin (IL)-6 pathway, as previously reported, a high
level of IL-6 in blood rapidly reduces lung elasticity, resulting in
acute bronchoalveolar inflammation. Thus, specific blocking of the
IL-6-regulated signalling cascade may be considered as a valuable
approach towards treatment [114]. The drug thalidomide which
shows anti-inflammatory and anti-fibrotic effects, may reduce lung
injury, and therefore it is also in the pipeline for COVID-19 patients.
Moreover, clinical evaluation of methylprednisolone (a synthetic
glucocorticoid) and fingolimod (an immunomodulating drug) for
suppressing the undesired immune responces caused by SARS-CoV,
is still in progress.

Every day knowledge about the COVID-19 virus is being updated
and supporting the vaccine development process. However, that
is a long-term stratagem to combat future outbreaks of SARS-
CoV. There are various proposed vaccine candidates which are
nucleic acid-based and in which the core revolves around the
sequence-coding S protein. For instance, mRNA-1273 (Moderna)
is developed to stimulate antiviral reaction, particularly against S-
protein of COVID-19. Unlike traditional vaccines, development of
this lipid nanoparticle (LNP)-encapsulated mRNA vaccine is free
from any inactivated virus particle or subunit of live virus. The
INO-4800 (Inovio Pharmaceuticals), is a genetic vaccine candidate
that triggers immune response after being delivered to host cells.
Additionally, these vaccines offer low cost and simple purifica-
tion procedures as compared with traditional vaccines, and their
simple structure prevents the chance of incorrect folding, which
is a possibility in protein-based recombinant vaccines [106,110].
But the potency will depend upon the administration route and
the numbers and intervals of plasmid doses delivered inside the
body. Another candidate under evaluation is AZD1222/ChAdOx1
nCoV-19 (University of Oxford) constituting an adenovirus vec-
tor (non-replicating) carrying the COVID-19-S protein genetic
sequence, making it comparatively safer in elderly individuals and
children. The wide tissue (gastrointestinal and respiratory epithe-
lium) range covered by adenovirus-based vectors increases their
likelihood of forming an effective vaccine. However, the dominat-
ing immunogenicity for the vector will always be a concern [115].

858



V. Srivastava, A. Ahmad

Table 4
Patented vaccines against SARS-CoV and MERS-CoV [93].

Journal of Infection and Public Health 14 (2021) 852-862

Type of vaccine Patent application

Target

Attenuated virus vaccines US20060039926
. W02005081716
DNA-based vaccines

W02015081155
W02010063685

Protein-based vaccines
US20070003577
US20060002947
VIRUS-like particle vaccines W02015042373
. W02017070626

mRNA-Based vaccines
W02018115527

The vaccine incorporates a mutation at specific tyrosine residue (Y6398H) into
the viral genome encoding a p59 protein. Showing completely attenuated
growth and pathogenicity of mouse coronavirus (MHV-A59).

DNA vaccine targeting antigens of SARS-CoV, epitopes of the Membrane (M),
Envelope (E), Spike (S) and Nucleocapsid (N) proteins of the virus. Stimulates
immune responses (antigen-specific CD8+T cell mediated) against SARS-CoV
antigens.

DNA-based vaccine comprised of MERS-CoV antigen (consensus spike protein).
The vaccine comprises an immunogenic SARS spike protein and an adjuvant
comprising an oil-in-water emulsion. Induces a protective immunity against
the virus.

The vaccine comprises purified trimeric S protein of SARS CoV, showing
specific binding to ACE2 receptor.

li-key/antigenic epitope hybrid peptide vaccines under clinical trials against
COVID-19.

The vaccine is composed of nanoparticles containing MERS virus proteins in
polymer structures. Induces a neutralizing antibody response to MERS that
reduces or prevents infection in mice and transgenic cattle.

RNA vaccine and combination vaccine, composed of at least one mRNA
encoding antigenic viral full-length S, S1, or S2 proteins from SARS-CoV and
MERS-CoV virus, formulated in a cationic lipid nanoparticle.

mRNA based vaccine, encoding at least one antigen derived from a MERS-CoV
and induces humoral immune responses.

Researchers are also putting effort into evaluating the efficacy
of certain genetically modulated artificial antigen-presenting cells
(aAPCs) specifically presenting the SARS-CoV structural proteins
(conserved domains), and probably helping cells to endure the pen-
etration of COVID-19 [116].

Moreover, there are several existing antiviral drugs which are
under clinical trials for their potential against SARS-Cov-2 infection.
Table 3 summarises the drugs that are in clinical trial which help
in combating novel SARS-CoV2 infection.

Vaccines under development for COVID-19

Owing to the high morbidity and mortality associated with
SARS-CoV-2 infection there is an urgent need for mitigation meth-
ods, and one of such method is vaccine development. Thorough
research suggested that there is a significant sequence homol-
ogy between SARS-CoV-2 and other beta-coronaviruses (SARS and
MERS). The vaccines identified for these lethal coronaviruses can
therefore be of high value in preparing vaccines against SARS-CoV-2
[141].

The viral S-protein based vaccine development approach has
drawn the attention of many scientists in the fight against
COVID-19. These subunit vaccines can elicit protective immu-
nity, producing higher neutralizing antibodies as compared with
DNA-based S protein vaccines, live-attenuated coronavirus and
full-length S protein [142]. Presently, 188 well-established patents
are present in the Chemical Abstracts Service (CAS) collection
related to anti-SARS and anti-MERS vaccines. Most of them are
associated with the S protein subunit vaccine and vaccines specif-
ically targeting S-RBD [90]. Therefore, the preferred target for
vaccine development against beta-coronaviruses is the S pro-
tein/gene, and applying the same strategy and knowledge will
be beneficial in developing vaccines against SARS-CoV-2 [23,141].
Table 4 comprehends the list of SARS and MERS vaccines that have
been patented.

Moreover, the prospect of short-term immunogenicity resulting
from neutralising antibodies should be addressed. Along with B cell
response, T cell response should also be considered, because these
responses are protective and persistent in humans. Strategies for
augmenting immunogenicity and preventing undesired side effects
should be explored [141].

Summary

RNA viruses (SARS-CoV, MERS-CoV and SARS-CoV-2), causing
severe mortal infections, will continue to be a serious global threat
in future. These viruses have a high rate of mutation, genetic recom-
bination and the capability of cross-species transmission, which
make them a menace to mankind. The present outbreak of COVID-
19 should direct us towards uplifting our knowledge and expertise
in combating stubborn microbial pathogens and solving global
health problems.

The present review summarizes recent research and develop-
mental information published on international platforms related
to SARS-CoV-2 infection, current therapeutic options and preven-
tive vaccines. It includes a complete overview of the SARS-CoV-2
morphology, pathogenesis and antiviral strategies. Also, the drugs
under clinical trials for COVID-19 have been discussed in detail,
with the main focus on drug-repurposing which may be the best
way out of this tragic situation. Literature strongly relates sequence
similarity between SARS-CoV-2 and other beta-coronaviruses, and
about 77.1% of the proteins found in SARS-CoV-2 are also reported
in SARS CoV [143]. Mere ignorance of previous research on SARS
and MERS proteins will increase vulgarity in drug and vaccine
development for SARS-CoV-2. Therefore, utilizing the literature to
forge a better understanding of SARS CoV-2 infection will enable
us to design better antiviral drugs/vaccines against the virus. Fur-
thermore, to speed up this drug development process, additional
structural biological information including life-cycle details of the
virus are required. At the same time, action should be taken to
enhance SARS-CoV-2 surveillance systems, and individuals with
symptoms (fever, cough or sore throat, diarrhea, body ache and
rashes) should be screened for COVID-19.
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