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Aims. This review summarized all available evidence on the accuracy of SNP-based pathogenicity detection tools and introduced
regression model based on functional scores, mutation score, and genomic variation degree. Materials and Methods. A
comprehensive search was performed to find all mutations related to Crigler-Najjar syndrome. The pathogenicity prediction
was done using SNP-based pathogenicity detection tools including SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred.
Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Results. Comparing the diagnostic
OR, our model showed high detection potential (diagnostic OR: 16.71, 95% CI: 3.38–82.69). The highest MCC and ACC belonged
to our suggested model (46.8% and 73.3%), followed by SIFT (34.19% and 62.71%).The AUC analysis showed a significance overall
performance of our suggestedmodel compared to the selected SNP-based pathogenicity detection tool (𝑃 = 0.046).Conclusion. Our
suggested model is comparable to the well-established SNP-based pathogenicity detection tools that can appropriately reflect the
role of a disease-associated SNP in both local and global structures. Although the accuracy of our suggested model is not relatively
high, the functional impact of the pathogenic mutations is highlighted at the protein level, which improves the understanding of
the molecular basis of mutation pathogenesis.

1. Introduction

Crigler-Najjar syndrome (CNS) (MIM nos. 218800, 606785)
type I and type II are inherited as autosomal recessive con-
ditions that is resulted from mutations in the UGT1A1 gene
(UGT1A1; MIM nos. 191740) [1–4]. Type I is characterized
by almost complete absence of UGT1A1 enzyme activity,
and these patients are refractory to phenobarbital treatment,
while type II is a less severe form of deficiency [5, 6].
Patients with CNS are at permanent risk of developing severe
neurologic complications such as hearing problems, mental
retardation, and choreoathetosis due to severe unconjugated
hyperbilirubinemia [7]. It is well known that UGT1A1 is
expressed specifically in the liver and that it is difficult to
perform an expression analysis directly on the patients by

invasive liver biopsy but to state that the mutation causes
inactivation of the enzyme you could perform an in vitro
functional study by cloning the mutated cDNA ofUGT1A1 in
an expression vector. The constructs could be transfected in
hepatic cell lines as HepG2 or HUH7.The expression analysis
on these cells overexpressing the mutated forms of UGT1A1
will allow you to finally demonstrate the inactivation of the
enzyme [8]. The UGT1A1 gene comprises five consecutive
exons located on chromosome 2q37 by which complete or
partial inactivation of any exon causes CNS. Single variations
in deoxyribonucleic acid (DNA) base pairs responsible for
protein, called coding which is single nucleotides polymor-
phism (SNP), leads to changes in amino acids that ultimately
affect the protein structure and function. Different such
types of SNPs include, missense mutations, nonsense, silent
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mutations, and splice-site mutations. The majority of mis-
sense mutations leads to considerable variation in the protein
structure and function, causing the disease symptoms. Data
about nonsynonymous SNPs exists in public repositories
such as SWISSPROT [9], dbSNP [10], and HGVBASE [11].

Genetic methods including the detection of genes linked
to the disease phenotypes and the identification of aberrant
functions of these genes have, in recent years, provided
worthy understanding into the biological foundations of
genetic mutation [12]. The present review summarized all
available evidence on the accuracy of SNP-based pathogenic-
ity detection tools and introducing regressionmodel based on
different scores including functional scores, mutation score,
and genomic variation degree and compared the results to the
published clinical result.

2. Materials and Methods

2.1. SNP Data Sources and Collection. An inclusive search
was done to find all CNS-related mutations. The major
data repositories, including HGMD, dbSNP, SNPdbe, and
Ensembl, were reviewed. All CNS-related mutations were
extracted and double checked for duplicated queries and then
tabulated (Table 1).

2.2. Inclusion Criteria. Only UGT1A1-gene-related missense
mutations were included.

2.3. Exclusion Criteria. Other types of mutation such as syn-
onymous or nonsense were excluded.

2.4. Data Extraction. The pathogenicity prediction was done
using SNP-based detection tools including SIFT [13], PHD-
SNP [14], PolyPhen2 [15], fathmm [16], Provean [17], and
Mutpred [18]. Then a regression model was designed using
functional scores, mutation score, and genomic variation
degree. For each SNP-based pathogenicity detection tool and
our regression model, we extracted a 2 × 2 table including
positive prediction of the disease (True Positive, TP), negative
prediction as neutral (true negative, TN), positive prediction
in nondisease (false positive, FP), and negative prediction
in disease (false negative, FN). In order to assess the phe-
notypic characterization and clinical features of the disease
of interest, we searched databases, including SWISSPROT
[9], dbSNP [10], Ensembl [19], OMIM [20], DECIPHER
[21], and HGVBASE [11]. Furthermore, we compared the
results of SNP-based pathogenicity detection tools with the
results of phenotypic description tools. Then we calculated
the diagnostic odds ratio (diagnostic OR), which is a single
indicator of test performance and varies between 0 and
infinity [22].

2.5. Statistical Analysis. All the analyses were done by SPSS
16.0. A regression model was designed using three cate-
gories, including functional score [23], structural score (GV,
genomic variation score) [24], and conservation score [25].
Each SNP-based pathogenicity detection tool was compared

by the reference values using logistic regression. The sensi-
tivity (Sn), specificity (Sp), accuracy (ACC), diagnostic OR,
andMatthew’s correlation coefficient (MCC) were calculated
using the following formula:

Sensitivity (Sn) = TP
TP + FN

,

Specificity (Sp) = TN
TN + FP

,

Accuracy = TP + TN
TP + FP + TN + FN

,

Diagnostic OR = Sn/1 − Sn
1 − Sp/Sp

,

MCC = (TP × TN) − (FP × FN)
√(TP+FP) (TP+FN) (TN+FN) (TN+FP)

.

(1)

Themetadisk was used to calculate individual and pooled
diagnostic OR, sensitivity, specificity, negative likelihood
ratio, and positive likelihood ratio [26]. We also compared
the AUC (area under curve), which is a popular index of the
overall performance of a test, using the summary receiver
operating characteristic (SROC) curve [27].

3. Results

Overall, 59 different SNPs related to missense mutations
in the UGT1A1 gene were reviewed using the designed
protocol (Figure 1). Our regression model was as y = 3.39 +
(−0.24 × functional score) + (−0.14 × GV score) + (−2.44
× conservation score). Comparing the diagnostic OR, our
model showed high detection potential (diagnostic OR:
16.71, 95% CI: 3.38–82.69) (Figure 2). The highest MCC and
ACC was belonged to our suggested model (46.8% and
73.3%), followed by SIFT (34.19% and 62.71%) (Table 2). The
SROC curves reflected an acceptable and fairly good overall
diagnostic performance for our suggestedmodel compared to
the SNP-based pathogenicity detection tools (Figure 3). The
AUC analysis showed a significance overall performance of
our suggested model compared to the selected SNP-based
pathogenicity detection tool (Table 3).

4. Discussion

Since the late 1990s, the initiation of research using genetic
testing or molecular medicine, development of diagnostics
accuracy tests, and molecular assays that measure levels of
genes or specific mutations are used to provide a specific
therapy for an individual’s diseases. We suggested a regres-
sion model based on different scores including functional
scores, conservation score, and genomic variation degree
and compared the results to the published clinical result as
reference. We observed the effect of a set of disease-causing
missense mutations, determined from the general popula-
tion.The susceptibility ofMendelian inherited disease ismost
frequently associated with SNPs; hence, the mechanisms by
which this occurs are still poorly known. From a biological
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Table 1: Prediction results of SNP-based pathogenicity detection tools compared with the published results.

0 SNP-ID Variant SIFT PhD-SNP PolyPhen-2 fathmm Provean MutPred References
(1) rs74720349 V3G 1 0 0 0 0 1 0
(2) rs201984525 L11P 0 1 0 0 0 1 0
(3) rs111033541 L15R 1 1 1 0 1 1 1
(4) rs72551339 H39D 1 1 1 1 1 1 1
(5) rs140365717 E56A 1 0 1 1 1 1 0
(6) rs4148323 G71R 0 1 1 1 0 0 1
(7) rs72551340 F83I 0 1 0 1 1 0 1
(8) rs144217005 V109A 0 1 0 1 0 0 0
(9) rs140867457 I116K 0 0 0 1 1 0 0
(10) rs200734586 K118N 0 0 0 1 0 1 0
(11) rs72551341 L175Q 1 0 1 1 1 1 1
(12) rs72551342 C177R 0 0 1 1 1 1 1
(13) rs201093245 Y192C 1 0 1 1 1 1 0
(14) rs72551343 R209W 1 0 1 1 1 1 1
(15) rs144398951 I215V 0 0 0 1 0 0 0
(16) rs144721642 V225M 0 0 0 1 0 0 0
(17) rs35003977 V225G 0 0 0 1 1 1 1
(18) rs35350960 P229Q 0 1 1 1 0 1 1
(19) rs147640261 T232N 0 0 0 1 0 1 0
(20) rs57307513 S250P 0 1 0 1 0 1 0
(21) rs141950052 P267R 1 1 1 1 1 1 0
(22) rs143072292 V273F 1 1 0 1 1 1 0
(23) rs72551345 G276R 1 1 1 1 1 1 1
(24) rs72551347 I294T 1 0 1 1 1 1 1
(25) rs62625011 G308E 1 1 1 1 1 1 1
(26) rs114000345 K317E 0 1 0 0 0 0 0
(27) rs200903749 I322V 1 0 1 1 0 1 1
(28) rs17851756 I322T 1 1 1 1 1 1 0
(29) rs202035422 I329T 1 0 1 1 1 1 1
(30) rs72551348 Q331R 1 1 1 1 1 1 1
(31) rs139607673 R336W 1 1 1 1 1 1 1
(32) rs144978321 S343L 0 1 1 1 1 1 0
(33) rs149750520 N344K 1 0 1 1 1 0 0
(34) rs201372184 A346V 1 1 1 1 0 1 1
(35) rs72551351 Q357R 1 1 1 1 1 1 1
(36) rs34946978 P364L 0 0 1 1 1 0 0
(37) rs55750087 R367G 1 0 1 1 1 1 1
(38) rs72551352 A368T 1 0 1 1 1 1 1
(39) rs72551353 S375F 1 0 1 1 1 1 1
(40) rs72551354 S381R 1 1 0 1 0 1 1
(41) rs143573365 V386I 0 0 1 1 0 0 0
(42) rs28934877 N400H 1 1 1 1 1 1 1
(43) rs72551355 A401P 0 1 1 1 1 1 1
(44) rs140613392 R403H 0 0 1 1 1 1 0
(45) rs36076514 V411L 0 0 0 1 0 1 0
(46) rs72551356 K428E 0 0 1 1 1 1 1
(47) rs202172337 M441T 0 0 0 1 0 0 0
(48) rs143033456 R442C 1 1 1 1 1 0 0
(49) rs201427749 R450C 1 0 1 1 1 0 0
(50) rs200370335 R450H 1 0 1 1 1 1 0
(51) rs114982090 P451L 1 1 1 1 1 1 0
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Table 1: Continued.

0 SNP-ID Variant SIFT PhD-SNP PolyPhen-2 fathmm Provean MutPred References
(52) rs115410088 F460L 1 0 1 1 1 1 0
(53) rs72551358 E463A 1 1 1 1 1 1 0
(54) rs115944950 E463D 0 1 1 1 0 1 0
(55) rs72551359 L474M 1 1 1 1 0 0 0
(56) rs150687296 R475H 1 0 1 1 1 1 0
(57) rs34993780 S488C 0 1 1 1 1 1 0
(58) rs72551360 V499M 1 0 1 1 0 0 1
(59) rs199723856 A511P 0 1 1 1 0 1 0
Disease: 1; neutral: 0; references: OMIM, PMID, SNPdbe, HGMD, and Swissvar results.

Table 2: Calculated Matthew’s correlation coefficient (MCC) and accuracy (ACC) of the selected SNP-based pathogenicity detection tools
and suggested model.

Detection tools TP FP FN TN MCC ACC
SIFT 19 7 15 18 34.19% 62.71%
PHD-SNP 1 27 1 34 3.39% 55.56%
PolyPhen2 23 3 20 13 29.89% 61.02%
fathmm 1 27 1 34 3.39% 55.56%
Provean 20 6 18 15 29.99% 59.32%
MutPred 23 3 20 13 29.89% 61.02%
Model 26 2 14 18 46.80% 73.33%
TP: true positive; TN: true negative; FP: false positive; FN: false negative; MCC: Matthew’s correlation coefficient; ACC: accuracy.

Genotype search Phenotype and clinical features
search

SIFT

PHD-SNP

PolyPhen2

Fathmm

Provean

Mutpred

SWISSPROT

dbSNP

Ensembl

OMIM

DECIPHER

HGVBASE

Searching for different mutation in UGT1A1
gene in HGMD, dbSNP, SNPdbe, and

Ensembl

Comparing the results of two groups in
term of pathogenicity (disease or neutral)

Su
gg

es
te

d 
re

gr
es

sio
n 

m
od

el

Figure 1: Flowchart of searching for SNPs.
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Figure 2: The individual and pooled diagnostic OR, sensitivity, specificity, negative likelihood ratio, positive likelihood ratio.

Table 3: Area under curve for all the selected SNP-based patho-
genicity detection tools.

Area under the curve
Tools Area Std. error P value 95% Confidence Interval
Model .639 .071 .046 .499 .778
SIFT .527 .075 .716 .380 .675
PolyPhen2 .516 .076 .829 .367 .666
PHD-SNP .571 .074 .345 .426 .716
Provean .587 .074 .249 .442 .732
Fathmm .560 .075 .427 .413 .707
Mutpred .580 .075 .288 .433 .727
∗Significant, 𝑃 < .05.

point of view, the mutated residues are important for the
proper functioning of a suitable protein structure [28].

Genetic variation in phenotype of the diseases is often
difficult to detect because of the complex genetic nature of
these species. Using functional characteristics of the genetic
mutation will provide a powerful tool to uncovering genetic

traits in more complex species and provide novel insights
into the molecular mechanisms of the diseases [29]. More
importantly, the associations between genetic variations of
SNPs of candidate genes that are selected to represent the
phenotype are variable and an important feature from the
disease study point of view [30].

Sensitivity was not reduced, while higher sensitivity was
observed in our suggested model followed by PolyPhen2,
Mutpred, and SIFT. We compared our suggested model to
several well-established SNP-based pathogenicity detection
tools, by which the satisfactory performance of our model
and SIFT indicates the importance of a mutation position in
the context of the entire protein. It is therefore reasonable
to believe that analyzing the results of some SNP-based
pathogenicity detection tools such as, our proposed model,
SIFT and PolyPhen2 is both feasible and promising but not
very excellent.

Saunders and Baker [31] and Bao and Cui [32] claimed
that in case of unavailability of the conservation score,
structural characteristics are valuable predictors. In this study
we support using the sequence conservation score which is
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Figure 3: The summary receiver operating characteristic (SROC) curve of the selected SNP-based pathogenicity detection tools.

a good predictor and showed that an acceptable level of accu-
racy is achieved using the conservation score. Dobson et al.,
used machine learning methods to measure the sequence
conservation score and showed that it is the most powerful
single predictor and reported a high level of accuracy using
the conservation score alone [33]. They also reported higher
accuracy in structural characteristics in combination with
the conservation score. We also showed that structural
characteristics in combination with the conservation score
improves prediction accuracy and can reduce the error rate
of the conservation score alone.

Ng and Henikoff used sequence and/or structure to
predict the effect of a missense mutation on protein function
in a mathematical model and claimed that their suggested
model is a good SNP-based pathogenicity detection tools
[13]. Capriotti et al. [14] developed a mathematical method
that started from the protein sequence information, which
can predict whether a new phenotype derived from a nsSNP
can be related to a genetic disease in humans. They reported
more than 74% accuracy in predicting whether a single point
mutation can be disease related or not. Stitziel et al. [15] intro-
duced a tool based on the hidden Markov models (HMM)
for analyzing sequence homology of SNPs and reported 68%
accuracy in predicting whether a single point mutation can
be disease related or not. Shihab et al. [16], described a
functional analysisThroughHiddenmarkovmodels software
and server and reported 71% accuracy in the predicton,
which was less than SIFT (74%) but equal to PolyPhen2
(71%). Choi et al. [17] developed a new algorithm, which
provides a generalized approach to predict the functional
effects of protein sequence variations including single or

multiple amino acid substitutions and in-frame insertions
and deletions. They reported 84.8% accuracy compared to
SIFT (84.5%) and PolyPhen2 (84.7%) in whether predicting
that mutation can be disease related or not. In the present
study we observed the highest accuracy with our suggested
model as 73.33% compared with SIFT (62.71%) followed by
PolyPhen2 and Mutpred (61.02%, in both).

5. Conclusions

Our suggested model is comparable to the well-established
SNP-based pathogenicity detection tools and can appropri-
ately reflect the role of a disease-associated SNP in both local
and global structures. A major drawback of the weighted
SNP-based pathogenicity detection tools is the inherited
restriction that falls within conserved protein domains.
Hence, unlike other sequence-based prediction tools, which
are too slow for practical use in large-scale sequencing
projects, the weighted tools are computationally inexpensive
and fast. Although the accuracy of our suggested model is
not relatively high, the functional impact of the pathogenic
mutations at the protein level is highlighted, which improves
the understanding of the molecular basis of mutation patho-
genesis.
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