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A B S T R A C T   

Background: Analysis of fluid metabolites has the potential to provide insight into the neuropathophysiology of 
injury in patients with traumatic brain injury (TBI). 
Objective: Using a 1H nuclear magnetic resonance (NMR)-based quantitative metabolic profiling approach, this 
study determined (1) if urinary metabolites change during recovery in patients with mild to severe TBI; (2) 
whether changes in urinary metabolites correlate to injury severity; (3) whether biological pathway analysis 
reflects mechanisms that mediate neural damage/repair throughout TBI recovery. 
Methods: Urine samples were collected within 7 days and at 6-months post-injury in male participants (n = 8) 
with mild-severe TBI. Samples were analyzed with NMR-based quantitative spectroscopy for metabolomic 
profiles and analyzed with multivariate statistical and machine learning-based analyses. 
Results: Lower levels of homovanillate (R = − 0.74, p ≤ 0.001), L-methionine (R = − 0.78, p < 0.001), and 
thymine (R = − 0.85, p < 0.001) negatively correlated to injury severity. Pathway analysis revealed purine 
metabolism to be a primary pathway (p < 0.01) impacted by TBI. 
Conclusion: This study provides pilot data to support the use of urinary metabolites in clinical practice to better 
interpret biochemical changes underlying TBI severity and recovery. The discovery of urinary metabolites as 
biomarkers may assist in objective and rapid identification of TBI severity and prognosis. Thus, 1H NMR 
metabolomics has the potential to facilitate the adaptation of treatment programs that are personalized to the 
patient’s needs.   

1. Introduction 

Traumatic brain injury (TBI), which occurs as a result of a blow or 
jolt to the head, is a leading cause of death and disability worldwide 
(Popescu et al., 2015). In Canada, the incidence of TBI is increasing; a 
recent cross-sectional analysis revealed that the proportion of Canadians 
who reported having a TBI has more than doubled from 2005 to 2014 
(Rao et al., 2017). Due to the heterogeneity of TBI presentation and 
underlying cause, no two TBIs are the same; therefore understanding the 

underlying pathophysiology of injury and recovery can be difficult. 
Despite advances in TBI fluid biomarker research, there is little known 
about the change in metabolites initially following injury and 
throughout recovery. The discovery of urinary metabolites that are 
altered following TBI would provide a valuable window into under-
standing the pathophysiological processes underlying TBI and subse-
quent recovery. Further, these biomarkers have the potential to guide 
future therapeutic interventions through an improved understanding of 
recovery processes. 
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Metabolomics is a powerful approach to provide quantitative 
assessment of endogenous small molecules within biological fluids 
(Beckonert et al., 2007). Nuclear magnetic resonance (NMR) spectros-
copy is an amenable technique to studying metabolomics, as it permits 
identification of novel compounds and it requires no chemical deriva-
tization (Emwas, 2015). NMR is capable of detecting 209 metabolites in 
human urine, with 108 of these being unique to NMR (Bouatra et al., 
2013). Metabolomic fingerprinting has been shown to be a useful 
biomarker tool for a variety of neurological conditions including stroke 
(Naccarato et al., 2010), spinal cord injury (SCI) (Peng et al., 2014; 
Bykowski et al., 2021), and sport-related concussion (Wanner et al., 
2021). Though recent studies hold promise, more research is needed to 
gain a better understanding of the pathophysiological processes 
involved in TBI injury severity and recovery. 

The present study used a 1H NMR-based metabolomics approach to 
identify novel biomarkers in patients with mild-severe TBI subacutely 
and 6-months post-injury. It is predicted that TBI will lead to a cascade 
of metabolic effects detectible in urine and that alterations in the 
metabolomic profile will reveal biomarkers of injury severity and re-
covery. In line with a precision medicine approach, this study (1) 
determined metabolomic differences in the initial injury and 6 months 
post-injury urine samples in male patients with TBI; (2) based on the list 
of significant metabolites, revealed the underlying biochemical path-
ways contributing to TBI severity; (3) determined the predictive accu-
racy of the identified metabolites as biomarkers of TBI, and (4) indicated 
how these changes correlated to injury severity. 

2. Materials and methods 

2.1. Patient characteristics and sample collection 

The present study was embedded in the UCAN Study: Understanding 
Neurological Recovery at the University of Calgary, Calgary, Alberta, 
Canada. The UCAN Study followed patients with TBI, stroke, and SCI 
throughout their recovery from initial injury to 6 months post-injury. 
Patients with TBI admitted to the Level 1 Trauma Ward at the Foot-
hills Medical Centre, Calgary were recruited from December 2014 to 
September 2018 (n = 8 males, average age 45+/- 18.4 years; Table 1). 
Fasting morning urine samples (acquired between 6 a.m. and 9 a.m.) 
were collected at two different time points: within 7 days after TBI and 
again at 6 months post-injury. Patient’s urethral opening were wiped 

with an antiseptic alcohol tissue and allow the passage of urine for three 
seconds before filling the collection cup approximately halfway. 

Urine samples were stored at − 80 ℃ until further processing. In this 
study, the samples were paired using a within-subject control design to 
reduce the impact of confounding factors, such as diet, lifestyle factors, 
body mass index, and medical history. This study was reviewed and 
approved by the University of Calgary Conjoint Health Research Ethics 
Board (CHREB) and the University of Lethbridge Human Participant 
Research Committee in accordance to the standards set forth by the Tri- 
Council Policy Statement: Ethical Conduct for Research Involving 
Humans. 

2.2. Clinical assessments 

The Glasgow Coma Scale (GCS) was used to rate the initial severity of 
TBI for each patient. It measures three different functions: eye opening, 
verbal response, and motor responses, where higher scores indicate 
better function (Sternbach, 2000). The final GCS score was the sum of 
these numbers, with the following ranges: severe (GCS less than 8), 
moderate (GCS 8–12), and mild (GCS 13–15). The Montreal Cognitive 
Assessment (MoCA) was used to screen for short term memory, visuo-
spatial abilities, executive functions, and language (Nasreddine et al., 
2005). A score of 26 and higher was considered to be normal, whereas a 
score below 26 indicated impairment. In addition, the Functional In-
dependence Measure (FIM) served as a global assessment of physical, 
social, and psychological function (Kidd et al., 1995). It included six 
areas of evaluation including self-care, continence, mobility, transfers, 
communication, and cognition. Each item was graded on a scale from 1 
to 7, where 1 indicates total dependence and 7 indicates complete in-
dependence. Both the MoCA and FIM assessments were taken initially 
and at 6 months post-injury to measure both injury severity and 
recovery. 

2.3. NMR sample preparation, data acquisition, and processing 

Urine samples were prepared for nuclear magnetic resonance (NMR) 
spectroscopy as described previously (Bykowski et al., 2021). A 700 
MHz Bruker Avance III HD NMR spectrometer and a room-temperature 
triple resonance broad band observe (TBO) probe was used to acquire 
the NMR data. Three-dimensional and one-dimensional shimming ex-
periments were conducted prior to NMR data acquisition on the urine 

Table 1 
Patient characteristics (n = 8 males) indicating age, initial Glasgow Coma Scale score, TBI type, comorbidities, medication use, and both the initial and 6 months post- 
injury Montreal Cognitive Assessment (MoCA) and Functional Independence Measure (FIM) scores.  

Patient 
Code 

Age Glasgow 
Coma Scale 
Score 

TBI Type Co-Morbidities Medication Use Initial 
MoCA 
Score 

6 Months 
MoCA 
Score 

Initial 
FIM 
Score 

6 Months 
FIM Score 

TBI_02  18  3 Frontal Injury to right ear, right 
petrous temporal bone fracture 

Tylenol  25  30  126  126 

TBI_03  49  10 Frontal Depression, asthma, EtOH 
abuse 

Ducosate, sodium, fentanyl, 
lorazepam, phenytoin, senokot, 
thiomine, tobradex, multi-vits  

23  26  113  122 

TBI_07  18  6 SDH None None  26  27  124  125 
TBI_13  64  13 DAI- Left Multiple face lacerations, nasal 

fracture, liver laceration, 
dental injuries 

Acetaminophen, ducusate sodium, 
heparin, quetiapine  

20  27  112  121 

TBI_19  46  8 SDH/SAH 
bifrontal 

None Trazadone, testosterone, seroquel  25  26  113  124 

TBI_24  68  15 SDH/SAH Chronic lower back pain, liver 
laceration, bilateral shoulder 
injuries, torn right rotator cuff 

None  21  23  126  123 

TBI_26  48  14 SDH/SAH None Tylenol  27  27  124  126 
TBI_29  48  12 SAH- right 

frontal 
L2, L4, L5 fracture, sciatic 
nerve damage, eczema, history 
of smoking 

Tylenol, Baclofen, Pantoprazole  23  23  115  122 

Abbreviations: SDH = subdural hematoma, SAH = subarachnoid hemorrhage, DAI = diffuse axonal injury, MoCA = Montreal Cognitive Assessment, FIM = Functional 
Independence Measure. 
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samples to correct for any inhomogeneities in the static magnetic field. 
The data were acquired using a one-dimensional 1H Nuclear Overhauser 
Effect Spectroscopy experiment with water suppression, 128k points, 
and 128 scans. The data was processed using zero filling to 256k points, 
line broadening to 0.3 Hz, and automatic phase and baseline correction. 
The spectra obtained from the NMR experiment were then imported into 
MATLAB where they underwent dynamic adaptive binning (Anderson 
et al., 2011), followed by manual inspection and correction of the bins, 
and recursive segment-wise peak alignment (Veselkov et al., 2009). In 
total, 354 bins were created for this analysis. 

Metabolites were identified using a combination of resources, 
including Chenomx 8.2 NMR Suite (Chenomx Inc., Edmonton, Alberta, 
Canada), the Human Metabolome Database (HMDB) (Wishart et al., 
2018), and Table 3 from The Human Urine Metabolome study (Bouatra 
et al., 2013). Once the significant metabolites were identified, they were 
used to carry out metabolic pathway topology and visualization tests in 
MetaboAnalystR version 2.0.4 package running inside R version 3.5.3 
(Pang et al., 2020). Pathway topology analysis was conducted by 
selecting hypergeometric test for over-representation analysis and 
relative betweenness centrality for the topology analysis. This was done 
using the list of significant metabolites (Supplementary Table 1), the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) database for Homo 
sapiens as the pathway library, and the HMDB (Wishart et al., 2018; Xia 
and Wishart, 2010), to provide metabolite pathways that have been 
potentially altered. 

2.4. Statistical analysis 

Multivariate statistical analyses were used to determine if urinary 
metabolite profiles distinguished between the initial injury and 6 
months post-injury samples. Prior to modeling, the data were normal-
ized to the total metabolome (excluding the regions corresponding to 
water and urea), log-transformed, pareto-scaled, and mean-centered 
(Box and Cox, 1964; Craig et al., 2006; van den Berg et al., 2006). 
Bins containing significant metabolites were sorted according to the 
F-ranked Variable Importance Analysis based on random Variable 
Combination (VIAVC) analysis (Yun et al., 2015). This MATLAB based 
statistical programming algorithm enables identification of significant 
metabolites based on the Receiver Operator Characteristic (ROC) test 
and the subsequent Area-Under-the-Curve (AUC) analysis (Fawcett, 
2005). It also employs a binary matrix resampling method, which is a 
more robust method for randomly sampling the data, and all multivar-
iate supervised models were double ten-fold cross-validated (Szymanska 
et al., 2012). This machine learning algorithm validates the model by 
setting aside a randomly selected independent test set and repeating 
model validation multiple times until every sample has been included in 
the test set at least once. 

An orthogonal projection to latent structures discriminant analysis 
(OPLS-DA) was also conducted to visualize between-group separation as 
a function of within-group separation (Wiklund et al., 2008). This was 
complemented by a Principal Components Analysis (PCA) which 
demonstrated the degree of separation between groups without the 
presence of an algorithm (unsupervised). In addition, either a paired 
T-tests or paired Wilcoxon-Mann-Whitney U test was used in the case of 
parametric or non-parametric data, respectively. A Shapiro-Wilk test 
was used to determine if the data for each bin was parametric or not 
(Goodpaster et al., 2010). 

Pearson R correlations were performed between concentrations of 
urinary metabolites and the GCS measure (Table 2). For the correlations, 
the change in concentration (delta) was calculated by subtracting the 
initial concentration from the concentration at 6 months. The signifi-
cance is assessed based on the Bonferroni corrected p-value (0.001), 
obtained by dividing alpha < 0.05 by the number of VIAVC F-ranked 
bins. 

3. Results 

3.1. Overview 

The current study set out to determine urinary metabolomic finger-
prints of injury severity following TBI. Significantly altered metabolites 
were identified using univariate and multivariate statistical analyses. 
The clustering of the two groups as seen in the PCA and OPLS-DA 
revealed differences in the metabolomic profiles of TBI patients before 
and 6-months post-injury. The area under the curve of the ROC illus-
trates that the VIAVC model was able to discriminate between initial and 
6-months post-injury samples with nearly perfect predictive accuracy. 
Furthermore, biological pathway analysis provided insights into the 
biochemical pathways that are altered during the recovery process. To 
determine the statistical relationship between metabolite levels and 
clinical measures, GCS scores taken at admission were correlated to 
changes in metabolite levels. The results obtained from the correlation 
revealed potential metabolites that play a role in TBI severity. 

3.2. Patient characteristics 

A total of 8 patients with TBI were recruited. GCS scores reveal the 
number of patients with severe (n = 2), moderate (n = 3), and mild (n =
3) TBI. Initial MoCA scores display two patients with normal scores and 
six patients with impairment. MoCA scores at 6 months revealed six 
patients with normal scores and two patients with impairment. These 
values and FIM scores are summarized in Table 1. 

3.3. Metabolomic analysis 

The spectral bins found to be significant by either the paired T-test/ 
Wilcoxon Mann-Whitney test (134 bins) or the VIAVC best subset (27 
bins) were used for subsequent analysis. PCA demonstrated a large de-
gree of unsupervised group separation (Fig. 1A). The OPLS-DA plot il-
lustrates significant group separation between the initial injury and 6 
month post-injury samples (R2Y = 0.96, p < 0.001; Q2 = 0.79, p <
0.001), Fig. 1B). This supervised model indicates a change in the 
metabolic profiles of patients over the course of the recovery process. 
Metabolites that contributed the most to the group separation are pro-
vided in Supplementary Table 1. Metabolites are ranked in order of 
significance according to the paired T-test/Wilcoxon Mann-Whitney 
analysis. Receiver Operator Characteristic (ROC) curves were also 
generated. An area-under-the-curve equal to 0.998 was achieved, with a 
95% confidence interval of 1–1 (Fig. 2). 

Pathway topology analysis (Fig. 3) illustrates the potential pathway 
impact based on changes to the patients’ urinary metabolic profiles, 
presented in increasing order of impact. Metabolic pathways signifi-
cantly affected were purine metabolism (p < 0.01), and phenylalanine, 
tyrosine, & tryptophan biosynthesis (p < 0.05). Pathway analysis was 
based on bins significant by the VIAVC best subset, the paired T-test, and 
the Wilcoxon Mann-Whitney test. 

3.4. Metabolomic signatures correlate with injury severity 

Table 2 provides the Pearson R correlation values when comparing 

Table 2 
Pearson R values and associated p-values in n = 8 males for the change in me-
tabolites (6 month post-injury concentration – initial concentration) correlated 
to the Glasgow Coma Scale score. Reported metabolites are significant based on 
the Bonferroni corrected threshold (alpha < 0.001).  

Metabolite Δ Metabolites to initial injury severity (GCS) 

Homovanillate 
L-Methionine 
Thymine 

R = − 0.74, p = 0.001 
R = − 0.78, p = 0.0004 
R = − 0.85, p = 0.00003  
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the change in concentration of each metabolite (delta) to the GCS scores. 
Homovanillate (R = − 0.74, p ≤ 0.001), L-methionine (R = − 0.78, 
p < 0.001), and thymine (R = − 0.85, p < 0.001) negatively correlated 
to injury severity and were significant based on the Bonferroni corrected 
threshold. 

4. Discussion 

The present study evaluated the feasibility of identifying metab-
olomic signatures in urine that correlate to initial injury severity and 
recovery in patients with TBI. These findings suggest that a metab-
olomics approach combined with machine learning analysis of urine 
samples is feasible, and specific metabolite profiles can be correlated to 
injury severity. The ROC model indicates high predictive accuracy and 
near-perfect classification of the initial metabolomic profiles compared 
to 6 months post-injury (Fig. 2). This observation demonstrates that the 
TBI profiles are separated with a high degree of sensitivity, and that the 

model provides a robust predictor of the group separation shown within 
the OPLS-DA analysis (Fig. 1B). Thus, there are profound differences in 
the types of metabolites found in urine over the course of the patients’ 
recovery. The following discusses the most robust metabolic pathways 
altered by TBI and recovery processes. 

4.1. Adenosine, inosine, and deoxyinosine 

Adenosine is a purine derivative and was significantly up-regulated 
over the course of recovery. A previous study suggested that adeno-
sine, derived from the breakdown of ATP, mitigates ischemia and that 
traumatic insult coincides with a concomitant increase in brain inter-
stitial adenosine levels (Kochanek et al., 2013). Several studies support 
the presence of adenosine in cerebrospinal fluid as an endogenous 
neuroprotective agent. For instance, adenosine may reduce excitotox-
icity and moderate the risk of microvascular thrombosis (Clark et al., 
1997). Adenosine has also been experimentally proven to inhibit the 
generation of toxic oxygen metabolites and play a role in regulating 

Fig. 1. (A) Principal Components Analysis 
(PCA) and (B) Orthogonal Projections to Latent 
Structures Discriminant Analysis (OPLS-DA) 
scores plots for n = 8 males. This analysis was 
carried out using a list of urinary metabolites 
found to be statistically significant by either 
paired t-test/Wilcoxon Mann-Whitney or 
VIAVC testing. The 95% confidence interval is 
indicated by the shaded ellipses. In the case of 
the PCA scores plots the x- and y-axis show the 
data variance explained by principle compo-
nents 1 and 2, respectively. In the case of the 
OPLS-DA scores plot the x- and y-axis show the 
predictive (between group) and orthogonal 
(within group) variation, respectively. The 
numbers represent the patient code for each 
individual sample. The following are the cross- 
validation and permutation measures for the 
OPLS-DA figure: R2Y = 0.959 (p < 0.0005), Q2 

= 0.785 (p < 0.0005).   

Fig. 2. Receiver Operator Characteristic (ROC) curve for n = 8 males. The 
corresponding area under the curve (AUC) and confidence interval are indi-
cated. The ROC curve was constructed using the metabolites determined to be 
significantly altered based on the VIAVC best subset which corresponds to 27 
bins. The predictive accuracy was 99.7% when all bins from the best subset 
were included. 

Fig. 3. Metabolic Pathway Analysis; a higher value on the y-axis indicates a 
lower p-value for the pathway and the x-axis provides the pathway impact, 
which is a measure of how affected each pathway is by the metabolites iden-
tified as significantly altered. The color of each circle is an indication if the p- 
value, with darker colors being more significant. The size of the circle is pro-
portional to the pathways impact factor. Only pathways with a p-value less than 
0.05, represented by the dotted line, are labeled. This analysis was carried out 
using the list of metabolites that were identified to be significantly altered by 
the paired t-test/Mann-Whitney test or the VIAVC best subset. (For interpre-
tation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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neutrophil activity during the immune response (Cronstein, 1994). To 
date, there is paucity of evidence in the literature supporting the pres-
ence of adenosine in urine as an additional marker of this phenomenon. 
Findings from this study may address this gap. 

As a major degradation product of adenosine, inosine has been 
shown to have neuroprotective and immunomodulatory effects. The 
observed up-regulations of inosine in this study supports its postulated 
roles in suppressing macrophage, neutrophil, and lymphocyte activity 
and attenuating levels of pro-inflammatory mediators (Hasko et al., 
2004). Deoxyinosine is a constituent of DNA and is the equivalent of 
inosine found in RNA, and both are the result of the deamination of 
adenine to hypoxanthine (Novotny et al., 2000). Deoxyinosine was 
up-regulated following recovery and may have a similar neuroprotective 
role to inosine, although this has not been explored further in literature. 
In combination, metabolomic signatures of adenosine and its associated 
purine derivatives, inosine and deoxyinosine, support their implication 
in pathological processes following TBI. 

4.2. Xanthine, hypoxanthine, and xanthosine 

Xanthine and hypoxanthine are part of the purine nucleotide 
degradation pathway (Yamamoto et al., 2005) and were present at 
increased levels following recovery. Xanthosine is a purine nucleoside 
whereby xanthine is bound to ribofuranose (PubChem, 2020). Thus, the 
presence of these three metabolites in the urine further confirms the 
abundance of purine metabolites following TBI. 

4.3. ADP and guanosine 

As breakdown products of ATP and GMP, respectively, ADP and 
guanosine are also part of purine nucleotide degradation (Yamamoto 
et al., 2005) and were both up-regulated in this study. ATP is one of the 
most abundant purine molecules in the body, and dephosphorylation 
yields ADP. Increased glycolytic flux in the wake of TBI and ATP pro-
duction may underlie this finding (Jalloh et al., 2015). Similarly, Stovell 
et al. (2020) found a decline in ATP during the acute phase of TBI and 
hypothesized that this reduction stems from neurons undergoing energy 
failure. However, this decrease has also been found in stroke, which may 
suggest that ATP is a biomarker for CNS injury or other types of tissue 
injury more generally. Further recent experimental findings have 
demonstrated that increased guanosine levels attenuate neurochemical 
alterations following TBI (Dobrachinski et al., 2019). 

Overall, the above altered metabolites revealed purine metabolism 
as a major pathway significantly altered during recovery from TBI and 
this is supported by ample previous evidence for the neuroprotective 
role of purines in the nervous system (Stone, 2002; Jackson et al., 2016). 
For example, purine derivatives can restore tissue perfusion and 
down-regulate inflammation (Morelli et al., 2011) and their consistent 
observed up-regulation throughout recovery suggests that they are ful-
filling a neuroprotective role. 

4.4. Homovanillate 

The change in homovanillate concentration had a significant nega-
tive correlation to patients’ initial injury severity as assessed by the GCS. 
Homovanillate is the major metabolite of dopamine, and therefore, its 
levels may be reflective of the body’s dopamine levels (Felice and Kis-
singer, 1976). Jenkins et al. (2018) demonstrated that patients with TBI 
have been shown to have reduced binding to dopamine transporters in 
the striatum. They explained that the reduced dopamine transporter 
expression could be due to damaged striatal regions resulting in dopa-
mine cell loss or simply due to low levels of dopamine itself. The present 
data corroborate this claim by showing that the change in homovanillate 
levels is negatively correlated to initial severity scores, hence homo-
vanillate levels are higher initially than at 6 months. This observation 
may indicate that dopamine abnormalities become more evident in later 

stages of TBI pathology, as the reduction in homovanillate in the urine 
may reflect a concurrent reduction in circulating dopamine levels. 
Homovanillate therefore has the potential to serve as an indirect 
biomarker of reduced circulating dopamine. 

4.5. L-Methionine 

L-Methionine also presented with a significant negative correlation 
to patients’ GCS scores. This essential amino acid is implicated in 
angiogenesis and vascular remodeling, which are processes stimulated 
by TBI (Zhang et al., 2013). In addition, a decrease in blood methionine 
levels amongst patients with mild to severe TBI may be related to injury 
severity (Dash et al., 2016). Accordingly, the opposite trend would be 
expected in urine, where increased levels of methionine would indicate 
greater severity. At 6 months post-injury, the concentration of 
L-methionine was lower than the initial levels, suggesting attenuation of 
TBI pathology, and potentially indicating recovery. 

4.6. Thymine 

Lastly, thymine also revealed a significant negative correlation to 
GCS scores. Raised urinary thymine levels may indicate dihydrothymine 
dehydrogenase deficiency, which catabolizes thymine to beta- 
aminoisobutyric acid (Bakkeren et al., 1984). This by-product has 
been shown to down-regulate the production of proinflammatory cyto-
kines in adipose tissue in obesity (Tanianskii et al., 2019). Because the 
concentration of thymine in initial samples were on average greater than 
at 6 months post-injury, this pathway involving thymine could poten-
tially provide a neuroprotective role to attenuate inflammation in the 
later stages of brain injury. It should be noted that the reduction in 
pro-inflammatory cytokines orchestrated by thymine appears to oppose 
a pro-inflammatory response resulting from the purines. This finding 
may reflect the heterogeneous inflammatory response linked to a 
cascade of neurochemical events after TBI. After brain injury, both pro- 
and anti-inflammatory cytokines are released. Some processes are 
beneficial and promote repair, whereas other processes may be detri-
mental and exacerbate injury (Ziebell and Morganti-Kossmann, 2010). 
Furthermore, many downstream mediators released after injury have 
opposing roles in the acute and chronic phases. Thus, they may have 
pro-inflammatory actions in one phase, and anti-inflammatory actions 
in another (Correale and Villa, 2004). Thus, increased levels of thymine 
initially appear to be neuroprotective in the acute injury phase by sup-
pressing inflammation after injury. On the other hand, lower levels of 
purines initially may also be neuroprotective by promoting a beneficial 
acute inflammatory response and reducing inflammation during the late 
recovery stages. 

5. Conclusion 

The present study identified endogenous individual urine bio-
markers that serve as indicators of initial injury severity and subsequent 
recovery following TBI. The rigorously tested metabolites specific to 
males represent a suitable starting point for uncovering injury mecha-
nisms following TBI. Future work should explore the effects of sex- 
dependent injury mechanisms by comparison with an equal or greater 
female sample size. The within-subject design ensured that the regula-
tion of metabolite concentrations provides a robust indicator of change 
in TBI symptom severity. Further validation will be needed to ascertain 
the prognostic potential of the identified metabolites in clinical practice. 
For example, to determine prognostic potential, future studies could 
correlate initial metabolite levels to the change in clinical scores from 
initial injury to 6 months post-injury. Nevertheless, the present findings 
indicate that analysis of urinary metabolites following TBI using 1H 
NMR spectroscopy is feasible and specific metabolic profiles can be 
associated with symptom severity. By providing potential biomarkers 
indicative of injury severity and recovery, 1H NMR metabolomics may 
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lead to new and refined clinical approaches for the identification of 
injury severity and decision making in rehabilitation strategies. Overall, 
metabolomics-based biomarkers could improve personalized treatment 
programs for patients with TBI. 

6. Limitations 

Given the exploratory nature of the present study in 8 male partici-
pants, we intended to investigate potential urinary biomarkers of re-
covery from TBI and inform future research. This proof-of-principle 
study focused on males because TBI afflicts disproportionately more 
men than women (Colantonio et al., 2010), making it difficult to recruit 
female study participants. Hence, future studies should consider meta-
bolic sexual dimorphisms in follow-up work in a mixed male and female 
cohort. Another limitation to this study is that the patients’ diet and 
mobility were not controlled for. Dietary and mobility factors are likely 
to change during inpatient treatment and return to home. 

Other limitations include the absence of assessments of renal func-
tion and catecholamine levels. Previous studies have shown a surge of 
catecholamines following TBI (Woolf et al., 1987) which increases the 
risk of renal failure (Lim and Smith, 2007). Hence, future studies that 
examine urine should control for markers of renal function, including 
assessment of glomerular filtration rate and tubular function. Further-
more, dopamine, epinephrine, and norepinephrine cannot be directly 
quantified using NMR-based metabolomics. However, NMR is able to 
identify the breakdown products of dopamine and epinephrine, homo-
vanillate and vanillylmandelate, respectively. Accordingly, homo-
vanillate was identified as significantly altered in this study. Future 
studies should attempt to quantify catecholamine levels using LC-MS to 
confirm that homovanillate is a suitable proxy for dopamine levels. 
Moreover, further research is needed to confirm the present results are 
biomarkers for TBI exclusively, not markers for injury in general. For 
example, TBI patients should be compared to orthopedic controls to 
verify the role of ATP/ADP in TBI. Other confounding factors, such as 
body mass index, acute versus chronic drug treatment, and medical 
history, also require appropriate controls. Nevertheless, statistical 
power of the present study was improved through pairwise analysis 
across initial and post-injury time points, which was able to minimize 
the impact of confounding factors on the results. 
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