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A B S T R A C T

Nonlinear registration is critical to many aspects of Neuroimaging research. It facilitates averaging and com-
parisons across multiple subjects, as well as reporting of data in a common anatomical frame of reference. It is,
however, a fundamentally ill-posed problem, with many possible solutions which minimise a given dissimilarity
metric equally well. We present a regularisation method capable of selectively driving solutions towards those
which would be considered anatomically plausible by penalising unlikely lineal, areal and volumetric de-
formations. This penalty is symmetric in the sense that geometric expansions and contractions are penalised
equally, which encourages inverse-consistency. We demonstrate that this method is able to significantly reduce
local volume changes and shape distortions compared to state-of-the-art elastic (FNIRT) and plastic (ANTs)
registration frameworks. Crucially, this is achieved whilst simultaneously matching or exceeding the registration
quality of these methods, as measured by overlap scores of labelled cortical regions. Extensive leveraging of GPU
parallelisation has allowed us to solve this highly computationally intensive optimisation problem while main-
taining reasonable run times of under half an hour.
1. Introduction

Nonlinear registration is commonly used in neuroimaging to deform
images of individual brains into some common space (normalising both
size and shape). Often the registration is based on structural, e.g., T1-
weighted, images. The resulting warp is subsequently applied to both
structural images as well as images depicting some function of interest
such as BOLD or diffusion-derived connectivity. The rationale behind this
is typically to facilitate statistical analysis of those functional data across
subjects and populations.

An important distinction in this context is between volume- and
surface-based methods. The former attempt to find the inter-subject
mappings in the original (3D) space. The latter, in contrast, are typi-
cally only concerned with the cortex and attempt to inflate the folded 2D-
manifold (the cortex) onto a sphere before finding the (2D) inter-subject
mapping on that sphere (e.g., Fischl (2012); Robinson et al. (2014)). In
this paper we present a novel volume based method.

Existing volume based methods can broadly be categorised based on:
Construction of warps: As part of the iterative process a warp can be
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updated by adding an update, or by warping the previous warps by an
update. The former is often referred to as an elastic or a small deformation
framework, as opposed to a plastic or large deformation framework for the
latter (Miller et al., 2003). Note that for infinitesimally small displace-
ments, composition of warps can be extended to the concept of inte-
grating a velocity field (Beg et al., 2005).

Regularisation of warps: Warps can be regularised, i.e., have
smoothness imposed on them, by adding a penalty term to the cost-
function, or by explicitly smoothing the updates.

Similarity measure: This is a scalar measure that assesses the simi-
larity/difference between the images and whose maximisation/mini-
misation drives the registration.

The present paper is concerned mainly with the second of these, the
regularisation, though we will touch upon the construction of warps and
the effect of similarity metric choice as well. A thorough review of these
categorisations can be found in Sotiras et al. (2013).

Historically, for the small deformation framework, one important
aspect of the regularisation was to try to ensure that the warps stayed
one-to-one and onto i.e., that each point in image A mapped to a unique
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point in image B, and that each point in image B could be reached from
image A. This also means that the mapping is invertible. This was often
attempted by adding a penalty term to the cost-function such that one
simultaneously minimised the difference between the images (dissimi-
larity) and some function of the warps (regularisation). That function
would often be borrowed from mechanics, such as bending energy
(Bookstein, 1997), membrane energy (Amit et al., 1991) or linear-elastic
energy (Miller et al., 1993) (whose formulations are summarised in
Ashburner and Friston (1999)). However, none of those functions had
any specifically biological relevance to the problem of mapping indi-
vidual brains to each other. Moreover, they do not explicitly guarantee
invertibility. So it was common practice to either ignore the issue of
invertibility, or to empirically calibrate the relative weights of the image
difference and the warp penalty so that the resulting warps were (almost)
always invertible. But that typically meant a quite high weight for the
regularisation term which resulted in an inability to properly model large
deformations.

This limitation led to the development of the large deformation
framework, where warps are updated by warping (resampling) the pre-
vious warp by an update warp (equivalent to a composition of multiple
small warps). If both the previous and the update warps are invertible,
this guarantees that the composed warp is also invertible. Therefore, as
long as one ensures that each update warp is invertible the end result will
be too. Furthermore, certain methods (such as LDDMM (Beg et al., 2005)
and Geodesic Shooting (Ashburner and Friston, 2011)) seek solutions
where the overall set of composed warps (or integrated velocity field) are
as “smooth” (according to some criterion) as possible, rather than
greedily smoothing at each step. The result is then that these methods are
able to model large deformations while remaining invertible by taking
many small update steps, leading to better matching than could be ach-
ieved within the small deformation framework.

However, invertibility is not the be-all and end-all for regularising
warps. It does restrict the space of allowed warps, but some form of
regularisation is still needed for choosing the optimal warp within that
space. Moreover, it is no more clear in the large than in the small
deformation framework how exactly that regularisation of the warps/
velocity fields should be performed. Even when maintaining invertibility
one can, and frequently does, still obtain warps that correspond to
implausibly large local changes in volume and/or shape (Ashburner and
Ridgway, 2013; Mang and Biros, 2016; Coalson et al., 2018). For a more
detailed discussion of some of the tools which address invertibility, see
Section 4.2.

In this paper we suggest using a small deformation framework
together with a penalty function that explicitly penalises changes in both
volume and shape. Furthermore, this penalty approaches infinity as
relative volumes approach zero (which would break invertibility),
meaning that it can be given a small weight in order to allow large de-
formations and still guarantee diffeomorphic warps. Hence, it addresses
the same issue of invertibility as LDDMM based methods as well as the
issue of how to find a particular set of warps within that space. It should
be stressed at this point that the penalty we propose is not the same, or
even particularly similar to, previously suggested penalties based on
some function of the Jacobian determinant (see for example Rohlfing
et al. (2003) or Leow et al. (2007)). We should also be clear that even
though we refer to this as an elastic deformation, the prior is not based on
any linear elastic model with the ensuing small deformation assumption.
We will refer to our penalty as the Symmetric Prior for the Regularisation
of Elastic Deformations (SPRED). The mathematical formulation and
theoretical basis of the penalty are explained in Section 2.3. It has been
used in the past (Ashburner et al., 1999, 2000), but the computational
cost is such that at the time it was not practically feasible. With the
advent of general-purpose computing on graphics processing units (GPGPUs)
that is no longer the case, and we describe our implementation using
NVIDIA’s CUDA framework (NVIDIA, 2019) of a registration algorithm
based on that penalty function in Section 2.4.

The rationale behind the suggested penalty function is twofold.
2

� To minimise geometric distortions, i.e. changes in both shape and
volume, and to ensure the warps are one-to-one and onto.

� To be symmetric in the sense that a geometric (lineal, areal or volu-
metric) change by a factor of 2 is penalised the same as one by a factor
of 0.5.

The first desideratum comes from the notion that brain tissue im-
plements function, be that function integration of signal in the grey
matter or transmission of signal in the white matter. The implementation
of that function will necessarily occupy some physical space and it would
seem unlikely that a given function can be implemented in a very small
fraction of space in one brain compared to in another. A penalty should
therefore favour no volume changes at all. It should also rapidly increase
as the relative volumes become unrealistic, approaching infinity as the
volume changes get close to breaking the one-to-one and onto criteria,
thereby never allowing negative relative volumes. But it should also
prevent unrealistic shape changes. Given what we know about the
structure of both grey and white matter it is hard to picture a situation
where a function implemented in a 1� 1� 1 mm3 cube in one brain
might occupy a 0.01� 10� 10 mm3 sheet or a 0.1� 0.1� 100 mm3 stick
in another. Note that this can all be reduced to penalising lineal changes
since that would automatically also penalise shape and volume changes.

The second property, symmetry, comes from the desire that a regis-
tration algorithm should be inverse consistent, i.e., that the transform
that is obtained from registering image A to image B is the inverse of that
obtained from registering B to A (Christensen, 1999). A necessary, but
not sufficient, condition for this is a prior that is symmetric in terms of
penalising an expansion from A to B equally to the corresponding
contraction from B to A.

2. Methods

2.1. Registration framework

We now broadly describe the registration framework within which
our SPRED penalty is implemented in order that specific details of the
implementation are more readily understandable.

SPRED forms part of the development of our new MultiModal
Registration Framework (MMORF) tool. MMORF is a volumetric regis-
tration tool whose underlying transformation model is a 3D cubic B-
spline parametrised free-form deformation. The parameter space over
which the optimisation is performed therefore represents the spline co-
efficients of three displacement fields (x, y and z-warps). A mean-squares
(MSQ) similarity (or rather dissimilarity) metric is the data-consistency
term optimised during registration. Regularisation penalties are calcu-
lated in the reference image space. A multi-smoothing, multi-resolution
approach is employed to encourage convergence towards a globally
optimal solution. From the outset MMORF has been designed to leverage
GPU parallelisation, which is a largely why SPRED is computationally
tractable within this framework.

The preferred optimisation strategy is the Levenberg variant of Gauss-
Newton (Levenberg, 1944; Press et al., 2007). In this scheme, the
Gauss-Newton Hessian HGN is replaced with HL, where:

HL ¼HGN þ λLI (1)

λLis used to ensure that the update step always leads to a decrease in the
cost function. If an update would successfully reduce the cost function λL
is decreased, otherwise it is increased and the update step re-evaluated.
Additionally, the same strategy is used to ensure no update step is ever
taken which would lead to non-diffeomorphic warps. This is achieved by
checking that the resulting Jacobian determinants are all positive before
accepting any update step, and modifying λL accordingly. Due to memory
constraints, the Hessian can only be stored on the GPU until a warp
resolution of 5 mm isotropic. Beyond this resolution our implementation
offers a choice between two optimisation methods that do not require
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explicit representation of the Hessian. One is the Scaled Conjugate
Gradient (Moller, 1993) method, which is related to other quasi-Newton
methods and which uses the history of cost-function changes from earlier
iterations to calculate a step-length along the next direction, thereby
eliminating the need for line minimisations. The other is the
Majorise-Minimisation (MM) method (Hunter and Lange, 2004) which
replaces the Hessian with a diagonal matrix where the ith value on the
diagonal is the sum of absolute values of the elements in the ith column of
the Gauss-Newton Hessian.

2.2. Intuition

In the following section we will detail how to calculate the suggested
penalty, and why it is an ideal, albeit challenging, candidate for Single
Instruction Multiple Data (SIMD) style parallelisation on a GPU (NVIDIA,
2019). For the estimation of the warp parameters we use the
Gauss-Newton method, so we will also need to calculate the gradient of
the penalty with respect to the spline coefficients of the warps and a
Gauss-Newton approximation to the Hessian.

We attempt now to give an intuitive outline of the technical/mathe-
matical formalism which follows in Section 2.3. At each voxel one can
calculate a Jacobian matrix using the values of the surrounding warp B-
spline coefficients. The singular values of this matrix represent the
orthogonal scalings of that voxel due to the warp. The SPRED penalty
(described in Section 2.3.2) is a function of these singular values, and we
can therefore calculate each voxel’s contribution to the total penalty.
Those calculations are a perfect match for SIMD parallelisation with one
computational thread per voxel, where each thread performs identical
calculations but on different data. The individual voxel contributions are
subsequently summed (a reduction in GPU parlance) to obtain the total
penalty for the warp.

In order to calculate the gradient of the penalty, one needs to apply
the chain rule, which says that:

d
dx

½f ðgðxÞÞ�¼ df
dg

dg
dx

(2)

Remembering that for example gmight be a vector-valued function of
a vector-valued argument xwhich would make df

dg a vector and
dg
dx a matrix.

In our case the contribution to an element of the gradient from a given
voxel is a scalar valued function of the vector of singular values of the
local Jacobian matrix. These in turn are each a function of the vector of
elements of the Jacobian matrix. Finally, these elements are functions of
the vector of spline-coefficients whose support includes that voxel. The
first two factors are again calculated using one thread per voxel, while the
third factor uses one thread per spline-coefficient. Similarly each element
of the total gradient is calculated by one thread per spline-coefficient.

To understand how the Hessian matrix is calculated consider a matrix
A where each row corresponds to a voxel and each column to a warp
spline-coefficient, and where Aij is the rate of change of the penalty
contribution from voxel i with respect to coefficient j. The Gauss-Newton
approximation to the Hessian then becomes ATA. However, for practical
reasons, A is never explicitly calculated or stored and instead the Hessian
H is calculated directly. In this instance we use one thread per non-zero
element ofH for the final calculation, but there are a number of preceding
steps which employ the same one thread per voxel approach as in the
gradient calculations.

2.3. Theory

We now formalise the concepts introduced in Section 2.2 in terms of
the mathematics required for incorporating the SPRED penalty into the
optimisation strategy of our registration framework.

2.3.1. Jacobian matrix
Consider the generic problem of registering some 3D moving image g
3

to a reference image f, where both are defined on R3. Let x, y and z be the

3 orthogonal directions in R3. We define a transformation t! on the
domain of fwith parameters w!, such that gðw!Þ becomes our transformed
moving image. At each point ðx; y; zÞ :

d
!ðx; y; zÞ¼ �

dx; dy; dz
�T (3)

t!ðx; y; zÞ¼ �
tx; ty; tz

�T (4)

¼ �
xþ dx; yþ dy; zþ dz

�T (5)

Where d
!

is a displacement field. If t!defines a continuous, differentiable
function on R3, then we may calculate a local Jacobian matrix J at any
point in f, with:

J¼

2
666666664

∂tx
∂x

∂tx
∂y

∂tx
∂z

∂ty
∂x

∂ty
∂y

∂ty
∂z

∂tz
∂x

∂tz
∂y

∂tz
∂z

3
777777775

(6)

¼

2
666666664

�
1þ ∂dx

∂x

�
∂dx
∂y

∂dx
∂z

∂dy
∂x

�
1þ ∂dy

∂y

�
∂dy
∂z

∂dz
∂x

∂dz
∂y

�
1þ ∂dz

∂z

�

3
777777775

(7)

Where ∂di
∂j is the partial derivative of the i component of d

!
in the j

direction.
JThen describes how the image is locally scaled and rotated by the

action of t!. These actions can be decoupled by applying singular value
decomposition (SVD) to J, such that:

J¼USVT (8)

Uand V are unitary matrices describing the rotational effect of J, and will
not be considered further as they do not geometrically distort the image
in any way. S is a diagonal matrix containing the singular values and
represents the orthogonal scaling effect of J. It is the individual elements
si of S which will be penalised in our regularisation, and we will refer to
them as the Jacobian Singular Values (JSVs).

2.3.2. Penalty function
The penalty is based on the prior belief that the JSVs are drawn from a

lognormal distribution. Such a penalty meets the biological plausibility
arguments set out in Section 1 as:

� si ¼ 1 is most likely
� si ¼ 0 and si ¼ ∞ are infinitely unlikely
� si ¼ a and si ¼ 1

a are equally likely

Now, we define Cðw!Þ as the penalty (or cost) associated with t!:

Cðw!Þ¼
X
n¼1

cnðw!Þ (9)

¼
X
n¼1

vð1þ jJnjÞ
X
i¼1

log2si (10)

Where
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C ¼ total cost/penalty
w! ¼ transformation parameters
N ¼ total voxels in image
cn ¼ cost/penalty at voxel n
v ¼ voxel volume
Jn ¼ Jnðw!Þ ¼ Jacobian matrix at voxel n
si ¼ siðw!Þ ¼ ith singular value of Jn

From Equation (10) we recognise that the log2si term represents our
lognormal prior on the JSVs. However this prior is based on the distri-
bution of singular values only in f. Therefore we have also included a
term vð1þjJnjÞ to ensure that our penalty is truly symmetric in g by ac-
counting for the total volume in both images being penalised.

In practice, computation of the logarithm in Equation (9) (and its
associated effect on the gradient and Hessian) may add a significant
computational overhead (Ashburner et al., 2000). We therefore apply the
following approximation (derived in Appendix A):

log2x� xþ 1
x
� 2 (11)

Recognising that:

log2x¼ log2ðx2Þ
4

(12)

and that:

tr
�
ATA

�¼ X3

i¼1

λi
�
ATA

�¼ X3

i¼1

ðsiðAÞÞ2 (13)

where λiðATAÞ denotes the ith eigenvalue ofATA and where siðAÞ denotes
the ith singular value of A, we may then write:

Cðw!Þ �
X
n¼1

vð1þ jJnjÞ
X
i¼1

�
s2i þ

1
s2i
� 2

�,
4 (14)

¼
X
n¼1

vð1þ jJnjÞtr
�
JTnJn þ

�
J�1
n

�TJ�1
n � 2I

	,
4 (15)

An important benefit of this approximation is that our cost function is
now an explicit function of only the elements of J, and therefore we never
need to calculate the actual SVD of J.

2.3.3. Transformation model

The previous sections have used a generic transformation t!, but at
this point it becomes necessary to define the actual transformation model

used. As in Equation (5), we utilise a displacement field d
!

where each of
the three directional components (dx, dy and dz) in R3 is composed of a
basis set of uniformly spaced, 3D, cubic B-splines (Bx, By and Bz). Our
transformation parameters w! are then defined to be the coefficients of
each of the B-splines in our basis set. If M B-splines are required to fully
cover the N voxels in our reference image f, then we require 3M pa-

rameters to fully describe d
!

(i.e. M parameters for each displacement
direction).

2.3.4. Gradient and Hessian
The penalty function as defined in Section 2.3.2 will be included into

a Gauss-Newton style optimisation framework, and therefore we require
the gradient and the Gauss-Newton approximation to the Hessian of
Equation (14). We note that for a valid application of Gauss-Newton (i.e.,
for being able to use the Gauss-Newton approximation to the Hessian) the
function being minimised must be of the form y ¼ 1

2 aðxÞ2, which Equa-
tion (15) is not (Chen, 2011). However, by making the substitution:
4

Cðw!Þ¼ 1 XN
a2nðw!Þ¼

XN
cnðw!Þ (16)
2 n¼1 n¼1

it becomes of that form. This means that:

rCðw!Þ¼
XN
n¼1

∂an
∂w!anðw!Þ¼

XN
n¼1

∂cn
∂w! (17)

and therefore that the Gauss-Newton Hessian approximation becomes:

Hðw!Þ¼
XN
n¼1

�
∂an
∂w!

�T∂an
∂w!¼

XN
n¼1

1
2cnðw!Þ

�
∂cn
∂w!

�T∂cn
∂w! (18)

i.e., it introduces a factor 1
2cnðw!Þ

compared to how one would ‘‘normally’’

calculate the Gauss-Newton Hessian.
The gradient rCðw!Þ is a 3M � 1 column vector (where M is the

number of B-splines used to represent one directional component of the
warp-field), whose mth element is of the form:

rCm ¼
X
n2Vm



∂cn
∂ s!n

�
|fflfflffl{zfflfflffl}

1�3



∂ s!n

∂ J!n

�
|fflfflffl{zfflfflffl}

3�9



∂ J!n

∂wm

�
|fflfflffl{zfflfflffl}

9�1

(19)

Where :

Vm ¼fvoxels in f where B� spline m has supportg

where n 2 Vm means that the summation is over all voxels n for which the

B-spline m has support, and where J
!

n is a vectorised version of the Ja-
cobian at the nth voxel and s!n is a vector with the three singular values
of that Jacobian.

Similarly the Gauss-Newton Hessian is a 3M � 3M matrix whose jkth

element is:

Hjk ¼
X

n2fVj\Vkg
1

2cnðw!Þ

0
B@


∂cn
∂ s!n

�
|fflfflffl{zfflfflffl}

1�3



∂ s!n

∂ J!n

�
|fflfflffl{zfflfflffl}

3�9



∂ J!n

∂wj

�
|fflfflffl{zfflfflffl}

9�1

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
scalar

0
@


∂cn
∂ s!n

�
|fflfflffl{zfflfflffl}

1�3



∂ s!n

∂ J!n

�
|fflfflffl{zfflfflffl}

3�9



∂ J!n

∂wk

�
|fflfflffl{zfflfflffl}

9�1

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
scalar

(20)

Where :

Vj ¼fvoxels in f where B� spline j has supportg

Vk ¼fvoxels in f where B� spline k has supportg

where n 2 fVj \Vkg denotes summation over all voxels n for which both
B-spline j and k have support. It should be noted that although 3M � 3M
can be a very large number, especially for high warp-resolutions/small
knot-spacings, the vast majority of elements are zero because most
spline combinations jk have no overlap in support.

We will demonstrate the practicalities of actually calculating these
entities in the sections which follow.

2.4. Implementation

We now present how we achieved computational tractability of the
SPRED penalty, its gradient, and GN Hessian.

2.4.1. Parallelising calculation of gradient and Hessian
As with all but the simplest optimisation strategies, calculating the

value of the SPRED penalty itself is not the computationally costly part of
this algorithm. Rather, it is the corresponding gradient and Hessian
calculations which are massively computationally complex. See, for
example, Equation (19), where we have multiple applications of the
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chain rule to vector valued functions of vectors, leading to intermediate
matrices. These intermediates then need to be multiplied together,
further increasing the complexity. It is easy to see that this complexity is
compounded even further in Equation (20) when calculating the Hessian.

If these calculations were all performed sequentially the problem
would become computationally intractable, and the suggested form of
regularisation would be a mathematical nicety with no practical impact.

However we will demonstrate how the problem can be framed in
terms of the application of multiple massively parallelised SIMD opera-
tions, rendering it realistic to use.

As an example, let us consider how one might parallelise the gradient
calculation in Equation (19). Firstly we note that the part:

∂cn
∂ s!n

�
|fflfflffl{zfflfflffl}

1�3



∂ s!n

∂ J!n

�
|fflfflffl{zfflfflffl}

3�9|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
1�9

(21)

depends only on entities dependent on which voxel n is currently being
considered. Each of these 1� 9 vectors can therefore be calculated and
stored independently by one GPU thread. We represent these pre-
calculated vectors as an N � 9 matrix (where N is the total number of

voxels in image f) which we denote


∂c
∂J

�
where the nth row is:



∂c
∂J

�
n*
¼


∂cn
∂ s!n

�

∂ s!n

∂ J!n

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

1�9

(22)

The columns of


∂c
∂J

�
can be thought of as partial derivative images and

can be visualised as demonstrated in Appendix B. Note also that in these
calculations one can use the approximation given in Equation (15) to
avoid explicit computation of the JSVs.

The next part:



∂ J!n

∂wm

�
|fflfflffl{zfflfflffl}

9�1

(23)

is ‘‘constant’’ in the sense that its elements are given by the spatial de-
rivatives of the B-spline basis-functions and can be calculated (analyti-
cally) once and for all for a given knot-spacing. If we denote a column-
vectorised version of a single 3D B-spline basis-function (whose di-

mensions are given by the knot-spacing) by Bwe can create a matrix


∂J
∂w

�
containing all the elements we need as:

∂J
∂w

�
¼ ½BðxÞBðyÞBðzÞ�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

NS�3

(24)

where Bð*Þ denotes the spline basis-function spatially differentiated in the
ith direction andNS denotes the total size of the 3D spline (determined by
the knot-spacing).

Finally each element rCm of the gradient can be calculated by in-
dependent threads as:

rCm ¼
X
n2Vm

X
k2Lm



∂c
∂J

�
nk



∂J
∂wm

�
n’k’

(25)

Where :

Vm ¼fvoxels in f where B� spline m has supportg

Lm ¼felements of Jn where B� spline m has an effectg
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k 2 Lmdenotes that k will select the three columns of


∂c
∂J

�
that contribute

to the mth element of the gradient. To be concrete, if 1 � m � M the
element pertains to the x-component of the warp-field and k will select

the columns of


∂c
∂J

�
corresponding to the first row of J (see equation 6),

and ifM < m � 2M it will select the columns of


∂c
∂J

�
corresponding to the

second row etc. The ’ superscripts on n’ and k’ indicate transformed
versions of n and k such that n’ takes into account the offset of the mth
spline into the image, and k’ will select the corresponding column
(regardless of row) in J.

Equation (25) can also serve as an illustration of some of the chal-
lenges of SIMD parallelisation. We have chosen a strategy where each
element of rC is calculated by one thread. That choice means that we
avoid having to synchronise writes to rC or having to perform re-
ductions, both of which reduce occupancy and speed. The downside of
that choice is that the different threads within a warp will access global
memory in a non-coalesced fashion. This is because each thread will
access a 3D sub-volume in each of the nine “partial derivative images”
defined in equation (22), where these sub-volumes are offset by an
integer multiple of the knot-spacing in one or more dimensions. In the
supplementary material there are timings and more detailed examples of
the challenges of parallelising the proposed regulariser.

So, in summary the calculation of the gradient can be divided into
three parts:

� One which is separable over voxels (or more generally ‘‘sample
points’’) where the calculations for one voxel can be performed and
stored independently by one GPU thread.

� One which is ‘‘constant’’ and can be performed once and for all and
stored where the results can be accessed by all threads.

� One which is separable over warp parameters (spline coefficients)
where calculations for one warp parameter can be performed and
stored independently by one GPU thread.

Following this line of reasoning, we may similarly divide the Hessian
calculation of Equation (20) into portions which are constant, separable
over samples, and separable over warp parameters.

As it is this process which is central to how using the SPRED penalty is
made tractable, we provide an intuitive understanding of what imple-
menting the parallelisation of equation (19) actually looks like in practice
by considering a simple 2D example. This can be found in Appendix B.
2.5. Testing

As assessing the performance of a registration tool is non-trivial, we
here try to strike a balance between considering some measure of data-
consistency, and some measure of anatomical plausibility. It is known
that image similarity is a poor choice for measuring registration accuracy
as it is just a proxy for what we are truly interested in, i.e., alignment of
common anatomical structures (Rohlfing, 2012). Image-wide tissue maps
are not a good option either, as they are global in nature and only really
test tissue classification rather than anatomical alignment (Rohlfing,
2012). We therefore choose the overlap of manually segmented cortical
regions as our data-consistency measure, which is an established method
by which to assess the quality of registration (Klein et al., 2009).

The focus of this work is not primarily on assessing our method’s
ability to maximise data consistency. However, if a set of warps was
unable to produce high quality overlap results then it would not be of
interest irrespective of how plausible the deformation is. High registra-
tion accuracy therefore simply allows us to evaluate the anatomical
plausibility of the warps in a meaningful way.

For any method, regardless of the specifics of the regulariser, there is
a trade-off between the image similarity term and regularisation term.
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That trade-off is determined by their relative weights, something that is
typically calibrated empirically (however see Simpson et al. (2012) for an
attempt to determine it probabilistically). Therefore, in order to compare
two methods in terms of plausible warps it is crucial to calibrate both
methods so that they achieve (close to) identical overlap scores.

We ensured a high registration accuracy by using ANTs (Avants et al.
(2008)) with similar settings to those used in Klein et al. (2009) as a
yardstick for registration accuracy. To make sure warp comparisons were
meaningful we calibrated the other methods to yield very similar overlap
scores. If we could not achieve that for a method we did not include that
in the comparison of warps.

We use two main indices for assessing what we consider to be
anatomical plausibility. One is the Jacobian determinant that quantifies
local volume change. We consider both the histogram of Jacobian-
determinants within the brain, which provides information about how
aggressively the warp is squeezing or expanding the volume on average,
and how the Jacobian-determinants are spatially distributed, i.e.,
whether the deformation appears to be spatially sensible.

The second index is the cube-volume aspect ratio (CVAR, Smith and
Wormald (1998)) which quantifies shape changes. In three dimensions it
is the cube root of the ratio of the volume of the smallest possible
enclosing cube to the actual volume. Similarly to the Jacobian determi-
nant above we consider both the histograms and the spatial distributions
of the CVAR.

2.5.1. Registration Tools
In order to make a meaningful and relevant evaluation of the effect of

the SPRED penalty on registration performance, four volumetric regis-
tration tools were included in this comparison, namely:

FLIRT (Jenkinson and Smith, 2001) We chose to include a linear
registration method in order to provide a yardstick by which to compare
the overlap scores, and in particular the differences in overlap, of the
other methods.

ANTs (Avants et al., 2008, 2014) ANTs has been shown to perform
well in a direct comparison with other methods (Klein et al. (2009); Ou
et al. (2014)). A method performing significantly worse would not be of
any practical interest, so it provides a minimum accuracy bar for the
other methods in the comparison. We ran ANTs both with cross corre-
lation (ANTs-CC) (Avants et al. (2011)) and mean sum of squares
(ANTs-MSQ) image similarity metrics. In both cases the greedy SyN
transformation model was used.

FNIRT (Andersson et al., 2007) We included FNIRT because it uses
the same image similarity and warp representation as MMORF, but em-
ploys a different strategy to ensure invertibility (Karacali and Davatzikos,
2004) and a different regulariser (bending energy).

MMORF Implements the regulariser (SPRED) that we propose in the
present paper. In order to demonstrate just how different to a Jacobian
Determinant regulariser (for example Rohlfing et al. (2003) or Leow et al.
(2007)) SPRED is, we also implemented a regulariser based on the sum of
squares of log-determinants of the Jacobians in the exact same
framework.

Whilst there are myriad other tools that may also have been included
in this comparison (e.g., SPM Unified Segmentation (Ashburner and
Friston, 2005), DARTEL (Ashburner, 2007), elastix (Klein et al., 2010),
MIRTK (Rueckert et al., 1999; Schnabel et al., 2001), Diffeomorphic
Demons (Vercauteren et al., 2009), ART (Ardekani et al., 2005)), the
chosen methods represent a broad enough overview of the types of tools
available for the purposes of characterising the performance of MMORF.

2.5.2. Registration parameter selection
An important aspect when comparing registration algorithms is

ensuring that the user-selectable parameters are as optimal as possible
(Klein et al., 2009).

FNIRT was run with an optimised strategy proposed by the tool’s
author. This consisted of a multi-resolution, multi-smoothing level
registration, to a final knot spacing of 1 mm isotropic, and is explained in
6

detail in Andersson et al. (2019).
ANTs-CC was run using the antsRegistrationSyn.sh script, but with

the gradient step and smoothing values changed to match those supplied
by the tool’s author for use in previously published comparative studies
(Klein et al., 2009). ANTs-MSQ was run with hand tuned parameters.
Both versions of ANTs employed a multi-resolution, multi-smoothing
level approach, to a final resolution of 1 mm isotropic.

MMORF was run using parameters that were shown to perform well
during the development of the tool. Again, a multi-resolution, multi-
smoothing level approach was used, but with a final knot spacing of 1.25
mm.

Note that whilst significant effort has been made to ensure that each
tool performs as well as possible, the overarching goal was not to
definitively classify which tool performed best in terms of overlap scores.
But rather to investigate how the SPRED penalty affects the nature of the
deformations when compared to similar performing tools. In other
words, the main goal was to calibrate their respective performances in
terms of overlap accuracy so that they were not significantly different.
Further details regarding parameter selection can be found in Appendix
C.

2.5.3. Test dataset
We have chosen to use the Non-rigid Image Registration Evaluation

Project (NIREP) dataset (Christensen et al., 2006) in testing the regis-
tration methods. This dataset consists of the T1-weighted scans of 16
healthy subjects, eight male (average age 32.5 years) and eight female
(average age 29.8 years). Each subject’s scan has been brain extracted,
bias corrected, and 32 cortical regions (16 left hemisphere, 16 right) have
been expertly hand-segmented. The segmented regions provide a ground
truth for anatomical correspondence of a finer granularity than simple
tissue maps.

2.5.4. Evaluation strategy
The registration tools were evaluated using pairwise registrations of

each combination of the 16 subjects (240 warps in total).
Each of the 32 segmented cortical regions were transformed through

these warps and various overlap metrics calculated, namely: Jaccard
Coefficient, Dice Coefficient, Specificity, Sensitivity. The distributions of
these overlaps in each region were then compared between registration
methods.

Additionally, distributions of Jacobian determinants and of cube-
volume aspect ratios (CVAR, see Appendix D for a definition) were
calculated in order to gain some insight into how aggressive each method
is in terms of volume and shape changes. These were inspected and
compared as histograms, spatial maps and by summary statistics such as
min, max, mean, 5th and 95th percentiles. The comparisons were per-
formed only for the methods for which we achieved overlap scores that
equalled those of ANTs-CC.

3. Results

3.1. Overlap scores

Combined left/right hemisphere overlap scores are shown in Fig. 1.
All overlap measures showed similar trends, and therefore we focus only
on the Jaccard Coefficient as our measure of choice. FLIRT, as expected,
achieves the lowest levels of overlap, with mean overlaps varying
depending on the region being considered. The change in overlap be-
tween FLIRT and the nonlinear methods also provides a useful yardstick
against which to gauge the differences between those methods. All of the
nonlinear methods, again as expected, improve the degree of overlap
considerably. ANTs-MSQ has the lowest average overlap of the nonlinear
methods. FNIRT has the second lowest overlap scores, although in certain
areas it is outperformed by ANTs-MSQ. Note that the FNIRT results are
significantly better than in previously reported comparisons (e.g. Ou
et al. (2014) who used the parameters from Klein et al. (2009), which



Fig. 1. Comparative Jaccard coefficients - Jaccard coefficients of 16 regions (32 original cortical segmentations combined left/right) for each of the 4 nonlinear and
1 linear registration methods. The FLIRT result provides a baseline for evaluating the improvement in overlap between linear and nonlinear methods. Overall ANTs-CC
and MMORF perform similarly. In some areas ANTs-CC produces better results (e.g., cingulate gyrus), and in some area MMORF performs better (e.g., inferior parietal
lobule). In all cases, both methods outperformed ANTs-MSQ and, to a lesser extent, FNIRT.
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were unsuited for skull stripped data), but are in line with those from the
tool’s author (Andersson et al., 2019). ANTs-CC andMMORF perform the
best and equally well on average, but one or the other performs better in
individual areas. These observations are supported when one considers
the overall distributions of overlap scores in Fig. 2 which display the
same trends.

It is perhaps surprising that the two versions of ANTs produce such
different results, given that they differ only in their choice of similarity
metric. However, this is in line with what the creators of ANTs report
themselves (Avants et al. (2011)) on the LPBA40 data set, so we believe
this to be an accurate representation of their respective performances.

Because the best overlap performance we could achieve with ANTs-
MSQ was significantly worse than that of MMORF and ANTs-CC we did
not consider it meaningful to include it further in the comparison of warp
metrics (Jacobian determinant and CVAR).

We did include FNIRT in one of the warp-comparisons, even though it
did perform slightly worse than ANTs-CC and MMORF. That was because
the difference was considerably less than for ANTs-MSQ, and also
because it used the same image similarity metric and warp-construction
as MMORF, differing only with respect to the strategy for ensuring
invertibility and regularisation.

Our main interest was in the comparisons between ANTs-CC, being a
very accurate and widely used method, and MMORF. The fact that we
managed to calibrate the two methods so that they have almost identical
overlap scores means that the warp distributions can be compared in a
fair and meaningful way.

The joint distribution of overlap scores for MMORF and ANTs-CC for
all regions and warps shown in Fig. 3 confirms that the two methods are
on average very comparable.
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3.2. Jacobian Determinant distributions

Fig. 4 shows the Jacobian determinant distribution of the warps
generated with MMORF, ANTs-CC and FNIRT for a randomly selected
image pair. We show both the non-log and log distributions since they
highlight slightly different behaviours. It should be noted that although
these warps represent a single pair of subjects, we could have chosen any
of the 240 warps and the relationship would remain essentially the same.

The Jacobian determinant distribution for FNIRT has a shape that is
quite distinct from that of MMORF and ANTs-CC. It is seen very clearly in
the non-log distribution where instead of tapering off smoothly towards
zero there is an almost linear drop. This is most likely due to FNIRT
projecting its warps onto the nearest B-Spline field which has no negative
Jacobian determinants (Karacali and Davatzikos, 2004). The shapes of
the distributions for MMORF and ANTs-CC are much more similar, but
with ANTs-CC having a notably greater dispersion.

Of the three methods that had the most similar overlap scores it is
clear that FNIRT causes substantially greater volume distortions, in
addition to having slightly lower overlap scores. We therefore drop
FNIRT from further analysis at this stage and focus onMMORF and ANTs-
CC.

From the log distribution, the range of the 5th to 95th percentile for
each method can be calculated. This was done for every warp, and the
results are summarised in Fig. 5. It can be seen that both themean and the
dispersion of the ranges are considerably greater for ANTs-CC than for
MMORF. Fig. 6 plots for each of the 240 registrations the log 5th–95th
range for ANTs-CC against that of MMORF. In all but 4 cases the
percentile range is smaller for MMORF.



Fig. 2. Comparative Jaccard coefficients - Distribution of Jaccard coefficients combined across all regions and subject pairs for each of the 4 nonlinear and 1 linear
registration methods. This confirms the trends observed in Fig. 1, with MMORF and ANTs-CC performing best, followed by FNIRT and then ANTs-MSQ. The MMORF
and ANTs-CC distributions are remarkably similar, despite the slight region-to-region differences in performance.

Fig. 3. Jaccard coefficients - Joint histogram of Jaccard coefficients across all
regions and warps for MMORF and ANTs-CC. Note the tight, linear relationship,
supporting the observation from Fig. 1 that MMORF and ANTs-CC have very
comparable overall performance across the NIREP dataset.
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3.3. CVAR distributions

Unlike the Jacobian determinant, the mean (across sample points
within the brain) of the CVAR is a meaningful statistic. We therefore use
8

that as our summary measure of shape distortions for a given warp. Fig. 7
demonstrates that the mean is both lower on average, and has smaller
dispersion for MMORF compared to ANTs-CC.

3.4. Spatial maps

In the previous section we showed that of the methods with compa-
rable overlap scores ANTs-CC caused substantially more volume distor-
tions than MMORF. In order to better understand the source of that
difference we look at the spatial maps of the Jacobian determinants and
of the CVAR. Fig. 8 shows maps of Jacobian determinants and Fig. 9 of
CVAR for the same randomly selected pair of subjects as Fig. 4. There are
clear visual differences between the results of the two methods. In areas
where the T1-weighted signal intensity has strong contrast and carries
information about the tissue type, such as along the cortex, both methods
produce similar looking maps with varying amounts of expansion and
compression. Where they differ in appearance is predominantly within
areas displaying a relatively flat T1-weighted signal profile, such as in
white matter. Here MMORF produces smoothly changing values with
magnitudes close to 1. ANTs-CC by contrast displays highly oscillatory
behaviour, with a higher proportion of values deviating away from 1.

As a T1-weighted volume contains minimal information within the
white matter, there is little reason to believe that the deformation should
be anything other than smooth within these regions. Clearly this has not
detrimentally affected the performance of ANTs-CC in terms of achieving
high cortical overlap scores. However, if this warp was used to transform
a modality rich in white-matter information (such as diffusion tensor
imaging) the results could potentially be very deleterious.

By contrast, the MMORF result is more balanced. In areas where there
is a large amount of information to drive the deformation (tissue
boundaries) the warps are correspondingly larger and more variable,



Fig. 4. Jacobian determinant distributions - Jacobian determinant and log-Jacobian determinant distribution of a randomly selected registration pair from the
NIREP dataset. Only values within the brain itself have been considered. As desired, all three methods produce Jacobian determinants with few to no negative values.
There are distinct differences in appearance though. FNIRT is the most different, with a visibly heavier negative log-Jacobian tail. This is an effect of projecting the
Bending-Energy regularised registration onto a field without negative Jacobian determinants. ANTs-CC displays the next widest log-Jacobian distribution, but with
more evenly weighted tails.

Fig. 5. Log-Jacobian determinant range distributions - The 5th to 95th
percentile is used as a summary measure for the log-Jacobian determinant
distributions in Fig. 4. The distribution of this percentile range over all 240
registrations is shown for the two best performing methods. ANTs-CC displays a
significantly higher range on average, as well as a greater dispersion of ranges
when compared to MMORF.

Fig. 6. Log-Jacobian determinant 5th to 95th percentile range - Scatter plot
of MMORF and ANTs-CC log-Jacobian determinant 5th to 95th percentile
ranges. The key feature here is that ANTs-CC produces systematically wider
ranges compared to MMORF, with only 4 of the 240 registrations favouring
ANTs-CC. This is despite ANTs-CC and MMORF producing comparable Jaccard
coefficients overall, as shown in Fig. 3.
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whereas areas with minimal information are left relatively unchanged.
When looking at Fig. 9 it should be noted that the particular

(randomly selected) registration we chose for displaying spatial maps
happens to be one of 65 (out of 240) for which the mean CVAR was
greater for MMORF than for ANTs-CC.

4. Discussion

We have implemented and investigated a previously suggested
9

method for regularising warps by penalising volume and shape distor-
tions (Ashburner and Friston (1999) and Ashburner et al. (2000)). The
regulariser has some very attractive properties, but is computationally
very expensive. This meant that the implementation in the original paper
used a voxel-by-voxel optimising scheme rather than a global optimiser,
which can potentially cause order effects and convergence to a
non-optimal minimum. We implemented the regulariser on a GPU, using
a B-spline basis to represent the warps and a Gauss-Newton optimiser,
resulting in run-times of under half an hour for a full multi-level



Fig. 7. Mean CVAR distributions - Distribution of mean CVAR within the
brain over all 240 registrations is shown for the two best performing methods.
ANTs-CC displays a significantly higher mean CVAR on average, as well as
greater variance when compared to MMORF.

Fig. 8. Jacobian determinant spatial maps - Spatial distribution of Jacobian dete
white matter for ANTs-CC. The SPRED penalty has resulted in smooth changes with
image contains little information within the white matter, the anatomical plausibili
white matter, MMORF produces a result that is more anatomically believable given
irregularity introduced by ANTs-CC is not necessary for achieving high overlap scores
overlap scores of grey matter regions, the effect of transforming a modality rich in w
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registration. This has allowed us to run a large number of registrations
and compare the results to one of the best performing algorithms in
popular use (Avants et al. (2008); Klein et al. (2009)). We have been able
to show that it performs as well as ANTs in terms of overlap scores, and
that it achieves that with significantly less volume and shape distortions.
4.1. Relationship to earlier work

Pennec et al. (2005) suggested a very similar penalty function based
on the concept of a Riemannian manifold for the allowed (diffeomorphic)
warps. Other regularisers (Burger et al. (2013)) with similarities to that
investigated by us are based on models for hyperelastic materials. These
are models that describe the stress-strain relationships of materials, for
example rubber, which are not well described by linear elastic models.
These models have also been used as regularisation for correcting sus-
ceptibility artefacts in diffusion-weighted MRI (Ruthotto et al. (2012)).
Similar hyperelastic models have additionally been used to model
cortical growth in the developing brain (Knutsen et al., 2010) and for
regularisation of surface based cortical registration (Robinson et al.,
2018).

It should be noted that neither the present work, nor that in Ash-
burner et al. (2000), is explicitly based on hyperelastic models. Nor do we
believe that hyperelastic models are necessarily meaningful descriptive
generative models for explaining anatomical differences between sub-
jects. Any such model (see for example Van Essen, 1997) is unlikely to be
simple enough to be described by a fewmaterial constants. The reasoning
behind our regularisation function is purely empirical, based on fulfilling
our criteria for a useful function and on proving to produce smooth and
rminants for MMORF and ANTs. Note the distinct visual differences within the
in this region, whilst ANTs-CC has produced high frequency variations. As a T1
ty of those rapid variations is not clear. By maintaining smoothness within the
the information present within the images being registered. Importantly, the

, as Figs. 1 and 3 show. Finally, whilst this may not have any deleterious effect on
hite matter information through such a warp could be significant.



Fig. 9. CVAR spatial maps - Spatial distribution showing the Cube-Volume Aspect Ratio (CVAR) for MMORF and ANTs-CC. CVAR is a measure of shape change which
extends the concept of aspect ratio to arbitrary dimensions, and is described in detail in Appendix D. Values above 1 correspond to increasing deviations from the
original shape. Note that the appearance for MMORF and ANTs-CC is very similar to that in Fig. 8.
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plausible warps in parts of images with little or no anatomical
information.
4.2. Beyond enforcing diffeomorphic warps

It is widely agreed that invertibility is a desirable property in a
nonlinear spatial transform. There are two principle ways in which this
can be enforced.

Warp Construction: Any warp that is a composition (integration in
the limit) of diffeomorphic warps is itself diffeomorphic. Hence, methods
that estimate warps as compositions of many small updates will by
construction ensure that the end result is invertible.

Warp Penalisation: A highly nonlinear penalty function that goes to
infinity as the local Jacobian determinant approaches zero will allow
large deformations while maintaining invertibility. It should be noted
that functions such as membrane energy or bending energy do not fall
into this category.

For completeness both of these approaches will be discussed in more
detail below. However, diffeomorphic warps are not the be all and end
all. A warp can be invertible and yet highly unrealistic in that it causes
very big volume and/or shape distortions. For this reason most methods
that enforce invertibility using one of the methods mentioned above will
combine that with one or more “traditional” regularisers that enforce
smoothness. Ashburner and Ridgway (2013) have shown very convinc-
ingly that even within the space of diffeomorphic warps one will obtain
very different solutions depending on the exact details and weights of the
additional regularisers.

Hence, what we aim to achieve with our choice of regulariser goes
much beyond just ensuring diffeomorphic warps. The aim is to find the
maximally plausible, in terms of volume and shape distortions, of all
possible warps within the space of diffeomorphisms. And to do this with a
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single penalty function (and a single weight) that achieves the joint
objective of ensuring invertibility and simultaneously minimising vol-
ume and shape distortions.

We recognise that a judicious choice of forms and weights of addi-
tional penalty functions within inherently diffeomorphic frameworks,
such as LDDMM and viscous fluid based methods, could potentially find
an equally advantageous solution. But it is nevertheless the case that
when comparing our regulariser to a state-of-the-art diffeomorphic
method we were able to obtain invertible warps with equally good
overlap scores and significantly less volume and shape distortions.
Furthermore, there is no intrinsic superiority of inherently diffeomorphic
methods over any other method that also guarantees invertibility, but
achieves that with equally good, or better, registration accuracy.

4.2.1. Diffeomorphism by Warp construction
Methods such as ANTs fall into the category of inherently diffeo-

morphic warps. In particular, ANTs is an example of a greedy approxi-
mation of the general LDDMM method. LDDMM methods seek to find a
time varying velocity field which minimises a metric based on total path
length in the space of diffeomorphisms. Originally introduced by Beg
et al. (2005), these methods guarantee that the total deformation remains
diffeomorphic when the velocity field is integrated over sufficiently small
timesteps. A downside to these methods is the large number of param-
eters which need to be estimated at each timepoint. Tools such as
DARTEL (Ashburner, 2007) seek to overcome this by instead para-
metrising a stationary velocity field, thereby greatly reducing the
parameter space, but at the expense of potentially larger path lengths.
Subsequently, Geodesic Shooting (Ashburner and Friston, 2011) based
methods have been able to reformulate the original LDDMM problem
such that instead of estimating the entire sequence of time-varying ve-
locity fields, only the initial velocity need be estimated, thereby greatly
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reducing both the parameter space and convergence time of the
optimisation.

Whilst all of these methods are capable of ensuring warps remain
diffeomorphic, they differ from our method in that the prior on which
they are based is that deformations follow the shortest path-lengths,
rather than deformations conserving the shape of underlying anatomy.
As such, diffeomorphism is an intrinsic rather than a controlled property
of the transformation model. It is certainly not impossible to include
explicit regularisation of shape changes in these models, however it is not
the norm.

4.2.2. Diffeomorphism by Warp Penalisation
An alternative method of enforcing diffeomorphism is by using a

penalty function that goes to infinity as the local Jacobian determinant
approaches zero.

Most commonly, the Jacobian determinant itself is used as a hard
constraint that bounds the allowed range (Haber and Modersitzki, 2004;
Sdika, 2008; 2013; Haber et al., 2010), or fixes it to a particular value
(Mansi et al., 2011), or a smoothly varying function of the Jacobian
determinant is used as a soft constraint (Borzì et al., 2003; Yanovsky
et al., 2007; Leow et al., 2007; Heyde et al., 2016; Mang et al., 2018). It
should be noted that when modelling the warps as a velocity field the
local divergence can be used as a proxy for the Jacobian determinant.

The crucial difference between our penalty and those based on a
function of the Jacobian determinant is that the latter only penalises
volume distortions. Not only does that mean that shape changes are not
penalised, in practice such a function will result in a method where very
large shape changes are used to circumvent the volume change limita-
tions. In Appendix E we show the results obtained with a Jacobian
determinant penalty function (

P
n
vð1 þ jJnjÞlog2jJnj) where the weight

was calibrated so as to yield the same overlap score as our SPRED pen-
alty. It can be seen that the Jacobian determinant penalty yields equally
good overlap scores (Fig. E.1 and E.2) and results in warps that are dif-
feomorphic, with a very narrow range of Jacobian determinants (Fig. E.3
and E.5). However, this has been achieved by completely ignoring shape
changes, and has resulted in much larger CVARs (Fig. E.4 and E.6).
Looking at a randomly selected warp (Fig. E.7) it is very clear that the
Jacobian determinant penalty has resulted in lots of gratuitous
distortions.

This is the reason that many groups have combined a hard or soft
constraint on volume changes with an additional regulariser (see for
example Haber et al. (2010), Yanovsky et al. (2007), Leow et al. (2007)
or Mang et al. (2018)). While that may work well, it means that an
additional weight factor needs to be empirically determined.

There is another group of algorithms (Loeckx et al., 2004; Ruan et al.,
2006; Staring et al., 2007; Modersitzki, 2008; Mang and Biros, 2016) that
use functions that penalise deviations from local rigidity (i.e. anything
beyond local translation and rotation). In that respect they have simi-
larities to our penalty, but they have mostly been used to enforce
near-total rigidity in selected parts of images containing a mix of rigid
tissue (e.g., bone) and non-rigid tissue (e.g., muscle).

Within this category of registration methods, Loeckx et al. (2004) and
Mang and Biros (2016) are probably the most closely related to ours of
which we are aware. Mang and Biros (2016) acknowledge the issue of
excessive shape changes and seek to combat it by explicitly penalising the
shear of the velocity field. In Appendix A we show the relationship be-
tween our SPRED penalty and the local rigidity penalty of Loeckx et al.
(2004) (

P
n
v
JTJ� I


F). We present the results of using this penalty in

Appendix E, with the weighting calibrated so as to yield the same overlap
score as SPRED. It can be seen that the local rigidity penalty yields
equally good overlap scores (Fig. E.1 and E.2), but it is unable to preserve
diffeomorphism. Whilst the CVAR values are mostly well controlled
(Fig. E4 and E6), looking at a randomly selected warp (Fig. E.7) dem-
onstrates that topology is not being preserved in the cortex.
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4.3. Other parallelised algorithms

It is increasingly common for registration tools to employ some form
of parallelisation, and it is worth contextualising our approach in com-
parison to some of these methods.

Some of the Insight Segmentation and Registration Toolkit (Yoo et al.,
2002) methods use CPU multithreading on a single device to accelerate
the portions of their code which solve the linear system of equations
necessary to compute update steps. This is a simple method to imple-
ment, but gains tend to be modest.

A recently described (Mang et al., 2018) parallelised version of Mang
and Biros, 2016 utilises distributed-memory parallelism on multiple CPU
nodes. It uses a Gauss-Newton optimisation strategy, and solves for a
stationary velocity field transformation. The primary focus of the paral-
lelism is in the inversion, rather than the calculation, of the Hessian.

Possibly the most closely related method to ours is NiftyReg (Modat
et al., 2010) which employs a B-spline transformation and GPU paralle-
lisation. NiftyReg differs in using a first order optimisation strategy and
therefore does not require calculation of the Hessian. Reported perfor-
mance improvements are very similar to ours, indicating comparable
levels of code optimisation. Their impressive sub-minute runtimes are
aided by a computationally simpler bending energy regularisation
metric. Therefore a direct comparison of runtimes to our method using
SPRED is not meaningful.

As discussed in Eklund et al., 2013, most applications of GPU paral-
lelisation to medical image registration focus on speeding up existing
methods. However, an interesting alternative is the development of more
advanced registration methods which might otherwise have been rejec-
ted on the basis of computational complexity.

4.4. Registration accuracy

As we have previously stated, absolute registration accuracy is not the
primary focus of this work. Instead it stands as a reference point for our
discussion of anatomical plausibility, in that only two methods which are
comparable in terms of registration accuracy can be meaningfully
differentiated based on anatomical plausibility.

Based on the overlap scores in Section 3.1 we see that MMORF and
ANTs-CC are clearly the best performing tools in terms of registration
accuracy. Additionally there is very little to differentiate between their
performance as a whole. We note that the results for ANTs-CC are slightly
better than thosewhichhavebeenpreviously reported (Ouet al., 2014) for
the same validation data set. We therefore believe that the way we have
used ANTs-CC has yielded a close to optimal performance on this dataset.

4.5. Anatomical plausibility

Based on the summary 5th to 95th percentile log-Jacobian determi-
nant range metric, MMORF is significantly more anatomically plausible
than ANTs-CC. Fig. 6 supports this argument, by showing that this is true
for the vast majority of the registrations. In other words, for a given
registration accuracy one is almost guaranteed to have smaller volu-
metric changes when using MMORF over ANTs-CC. Another way of
framing this result is to say that larger volume distortions are not a
necessary trade-off for achieving high registration accuracy.

A striking feature of the Jacobian-range (Fig. 8) and CVAR maps
(Fig. 9) are the seemingly gratuitous warps in white matter. This could
potentially be a particular problem if one intends to use the structural
registration to transform diffusion data. We believe this to be a strong
case for extending the notion of anatomical plausibility beyond that of
simply maintaining diffeomorphism and for building that notion into the
regularisation.

Why this behaviour is observed in ANTs-CC is an interesting question
in and of itself. At first this might be thought to be a case of insufficient
regularisation, however the deformations generated by ANTs-MSQ (data
not shown) did not display this same behaviour. Therefore we must posit



F.J. Lange et al. NeuroImage 219 (2020) 116962
that this is due to the somewhat scale-free nature of the CC metric. In
other words, the gradient of CC does not depend on the amount of signal
contrast present, only on the local correlation of that signal. What this
means in practice is that regularisation on the level of the gradient cannot
alter this behaviour, rather regularisation of the metric itself would be
required. How to achieve this is beyond the scope of this work, however
it highlights the importance of taking a considered approach to evalu-
ating the believability of a deformation.

4.6. Limitations of the current work

The aim of the present paper is to introduce the SPRED penalty and to
show that it can be used to yield large deformation, diffeomorphic and
anatomically plausible warps. It is not yet a finished registration package
that deals with differences in contrast, receive bias-field or B1 in-
homogeneities. These will be the subject of future work. Neither have we
applied it to data where very large deformations are needed, such as when
registering images of severely atrophied brains or inter-species registra-
tion. Finally, whilst our regularisation penalty is symmetric, our simi-
larity measure is not. Thus, for the overall algorithm to be truly
symmetric we would ideally either modulate our similarity measure by
ð1þjJjÞ (Tagare et al., 2009), or simultaneously register both images to a
mid-space (Avants et al., 2008).

4.7. Performance summary

The SPRED penalty allows MMORF to overcome the oft-quoted lim-
itations of small deformation frameworks and achieve levels of regis-
tration accuracy comparable to state-of-the-art large deformation tools
such as ANTs-CC. MMORF achieves this whilst at the same time pro-
ducing warps which are consistently less aggressive in terms of both
volume and shape distortions. Finally, given the information present in a
structural scan, the spatial distribution of the log-Jacobian determinants
MMORF produces appear more plausible compared to ANTs-CC, which
produces variations that are not obviously necessary.

Overall we conclude that SPRED as implemented within MMORF
produces warps which can be used with a high level of confidence.
MMORF’s registration accuracy is on par with state-of-the-art volumetric
methods, and therefore no sacrifice need be made in terms of maximising
data consistency.

5. Conclusion and outlook

We have demonstrated that our SPRED penalty is capable of matching
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the registration accuracy (as measured using overlap scores of manually
segmented cortical regions) of the most well established large-
deformation (ANTs-CC) framework available today. Additionally, we
find that the results from using the SPRED penalty are consistently more
anatomically plausible both in terms of Jacobian determinants and
CVARs. We leverage GPU parallelisation in order to make optimisation of
the penalty computationally tractable, allowing this method to be of
practical benefit as part of a useable registration framework.

We have shown that using a regularisation function such as this can
overcome the shortcomings of elastic small deformation frameworks,
yielding the best of both worlds: large deformation, diffeomorphic warps
with minimal distortions and high registration accuracy. Future work
will focus on extending MMORF to include the simultaneous registration
of scalar and tensor modalities (see, e.g., Irfanoglu et al. (2016)).
Furthermore we wish to investigate the effect of spatially varying the
weighting of the SPRED penalty based on prior information regarding
tissue variability (e.g., allowing larger deformations within the
ventricles).
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Appendix A. Approximation of the SPRED Penalty

In this section we provide the derivation of the approximation shown in Equation (11) of the main text, and provide an interpretation of this
approximation in terms of a local rigidity penalty.

Appendix A.1. Approximation

Given:

log2x� xþ 1
x
� 2 (A.1)

Let:

yðxÞ¼ xþ 1
x
� 2 (A.2)

And:

zðxÞ¼ logx (A.3)
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∴xðzÞ¼ ez (A.4)

Then:

yðzÞ¼ ez þ e�z � 2 (A.5)

Now, taking the Taylor expansion of yðzÞ about z ¼ 0:

yðzÞjz¼0 � yð0Þþ y’ð0Þ
1!

ðz� 0Þþ y’’ð0Þ
2!

ðz� 0Þ2

¼ 0þ 0þ z2

¼ z2 (A.6)

And finally, using Equation A.3:

∴yðxÞ � log2x (A.7)

Fig. A1 graphically demonstrates the relationship between the exact and approximate penalty functions.

Fig. A.1. Exact vs approximate SPRED penalty - Effect of the approximation in Equation A.1 on the SPRED penalty. The approximation is almost indistinguishable
from the exact penalty for singular values near 1. For singular values between 0.25 and 4 the approximation is accurate to within 17%, and within 42% between 0.125
and 8. Note that the approximation maintains the desirable symmetry for expansions and contractions. Note too that the approximation majorises the exact penalty
(i.e., the approximation is always greater than or equal to the exact penalty), and therefore maintains the exact penalty’s ability to ensure diffeomorphism.

Appendix A.2. Interpretation

As shown in Equation (15) of the main text, utilising the approximation leads to a penalty in terms of the local Jacobian containing the term:

y¼ tr
�
JTJþ �

J�1
�TJ�1 � 2I

	
(A.8)

Which may be rearranged as follows:

y¼ tr
�
JJT � 2Iþ �

J�1
�TJ�1

	
(A.9)

¼ tr
�
JJT � JJ�1 � �

J�1
�TJT þ �

J�1
�TJ�1

	
(A.10)

¼ tr
��

J� �
J�1

�T	�JT � J�1
�	

(A.11)

¼ tr
��

JT � J�1
�T�JT � J�1

�	
(A.12)

¼ jJT � J�1j2
F

(A.13)

where k k2F is the squared Frobenius norm.
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This penalty is minimised to 0 when JT ¼ J�1 ⇔ J is an orthogonal matrix. This provides an interesting and intuitive alternative interpretation of the
approximate SPRED penalty as one that penalises transformations for which the local deformation deviates from a pure rotation. Under that inter-
pretation, the similarity to the Local Rigidity penaltyjJTJ� Ij

F
(A.14)

as used by Loeckx et al. (2004); Staring et al. (2007) becomes apparent.
The primary difference between these two methods is that Equation A.13 includes J�1, and consequently tends to ∞ as jJj tends to 0. The SPRED

approximation is therefore able to preserve diffeomorphism, whereas Local Rigidity is not.

Appendix B. 2D Example

We begin by defining a displacement warp field and its values in the underlying image space. The image space is a square with dimensions 21� 21.
The cubic B-splines are placed with their control points (knots) 5 samples apart. Each spline has a spatial support radius of 2 knots (10 samples), and
therefore we place an extra ring of splines around the perimeter of the image space, such that each point in the image has an equal number of splines
with support there. As a result, our x-warp and y-warp parameters are of dimension 7� 7. We initialise the warp with a random set of parameters.
Fig. B1 shows the warp parameters, the resulting warp in image space, and the gradient of the warp in image space.

Based on the spatial gradients of the displacement fields in Fig. B1, the local Jacobian matrix can be calculated at each point in space according to
Equation (7).

The elements of J for each point in the sample space, as well as the resulting Jacobian determinant, jJj, are shown in Fig. B2, which now contains all
of the information necessary to calculate the voxelwise part (Equation (22)) of the calculations for the gradient (Equation (19)).

Based on the elements of J, Fig. B3(a) shows the resulting contribution to the total cost from each point in the image. Fig. B.3(b) to B.3(e) then

constitute the gradient of the cost with respect to the elements of J at each point in the image, i.e., the columns of


∂c
∂J

�
(Equation (22)). Each point in the

four partial derivative images can be calculated completely independently of every other point. The calculation of these images therefore constitutes the
first parallelised step of our algorithm.

We now move onto visualising the result of Equation (25). Note that Equation (24) is constant across the image and identical over the support of
every spline. Therefore, when calculating the gradient in a parallel-per-parameter regime, the operation conforms exactly to the SIMD paradigm and
may be very efficiently implemented on GPUs. In practice, we perform one such calculation for each combination of J element gradient image
(Fig. B3(b) to B3(e)) and warp direction (x or y), the results of which are shown in Fig. B4(b) to B4(e). Finally, we sum over these combinations for each
warp direction, and the result is then the gradient of our penalty with respect to our warp parameters. This is shown in Fig. B.4(f) and B.4(g).

Fig. B.1. 2D B-spline displacement field and spatial derivatives - Example of a warp (or technically displacement) field for a random set of parameters (cubic B-
spline coefficients). The positive x-direction is defined from left to right, and the positive y-direction from top to bottom. The x-warp parameters wx (a) and y-warp
parameters wy (b) are arranged on a regular 7� 7 grid. The resulting x-displacement field Dx (c) and y-displacement field Dy (d) corresponding to wx and wy are
evaluated on a regular grid with knot spacing of 5� 5. Note that only those parts of the warps with full support of the surrounding B-splines are shown (i.e., the area
outside of the green square is considered to be outside of the image we are warping). This leaves a square of 21� 21 samples in image space. The spatial partial
derivatives of the x-warp in the x-direction (e), y-warp in the x-direction (f), x-warp in the y-direction (g) and y-warp in the y-direction (h) are presented, as these
values are used in determining the local Jacobian matrices of the warp field. Cubic B-spline parametrisation ensures that both the warps and their spatial derivatives
have analytical solutions and are smooth-continuous.
15
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Fig. B.2. 2D Jacobian matrix fields - Elements of the local Jacobian matrix of the warp. At each position ½x; y� in image space a local Jacobian matrix J is calculated
according to Equation (7) by adding the identity matrix I2 to the 2� 2 matrix composed of the elements of Fig. B1 (e)–(h) at that position. The resulting 2� 2 2D fields
(each showing how one element of J varies across the image) are presented here in sub-figures (b) to (e). From these a local Jacobian determinant field (a) can be
calculated. The SPRED penalty is based on the singular values of J, and is therefore a function of fields (b) to (e).

Fig. B.3. 2D cost field and Jacobian matrix gradient - From the singular values of the local Jacobian matrices of Fig. B2 a cost field C (a) can be evaluated at each
position ½x; y� of the image. C then represents the contribution to the total cost from each point in image space. The partial derivatives of C with respect to the elements
of J are shown in sub-figures (b) to (e). These partial derivative fields (which together make up the overall gradient ∂C

∂J), can be calculated independently for each
position ½x; y� as they depend only on the values of J at ½x; y�, making this step ideal for a parallel-per-voxel approach.
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Fig. B.4. 2D cost field and warp parameter gradient - The final, and most computationally expensive, step is calculating the gradient of the total SPRED penalty
(being the sum of C over all x and y) with respect to the warp parameters. Given that we have the gradient of C with respect to J, knowing the gradient of the resulting
partial derivative fields (i.e., Fig. B3 (b)–(e)) with respect to the warp parameters would allow us to apply the chain rule to calculate this. We proceed by recognising
that the piece-wise polynomial nature of B-splines means that the gradient of J with respect to each warp parameter is constant. Additionally, the gradient at position
½x; y� is exactly 0 for any B-spline which does not have support at that position. Thus, we can calculate the total gradient with respect to each warp parameter by
summing the result of the chain rule across each position ½x; y� where that spline has support. In (b) to (e) we can see this illustrated in terms of the contributions to the
overall gradient due to the effect of the warp parameters wx and wy on each element of the J fields. These partial derivatives can be calculated independently for each
warp parameter, making this step ideal for a parallel-per-parameter approach. The end result of the process is then the gradient of the total penalty with respect to wx

(f) and wy (g).
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Appendix C. Parameter Selection

Parameter selection in image registration is non-trivial and often leads to discussions regarding whether or not the particular parameters selected
were optimal. As such, the aim of parameter selection in this work was not necessarily to find the absolutely optimal set of parameters for each method,
but rather to find parameters which made the various methods equal in one metric (such as accuracy in terms of overlap scores), in order so that
differences in another metric (such as aggressiveness in terms of Jacobian determinant distributions) can be meaningfully compared.

Appendix C.1. MMORF

We fixed the number of steps in the warp resolution pyramid (40, 20, 10, 5, 2.5 and 1.25 mm isotropic), and then optimised over three parameters,
namely:

� Smoothing as function of warp resolution (λs)
� Initial regularisation (λri)
� Rate of decrease of regularisation (λrd)

The FWHM of the smoothing kernel was defined as the current warp resolution divided by λs. The initial regularisation λri is in arbitrary units and its
exact value is not of interest. The total regularisation at each step of the resolution pyramid was λri � ðλrdÞit where it is the current position in the
resolution pyramid (i.e. 0 to 5).

The parameter values were chosen via a grid search of the parameter space. Half of the NIREP dataset (8 subjects, 56 warps) were used, and overlap
scores calculated as per Section 2.5.4. The parameters which resulted in the best overlap scores were then used for the rest of the analysis. The final
parameters were:

λs ¼ 4:0

λri ¼ 0:15

λrd ¼ 0:75

These parameters are relatively aggressive, but as we were aiming for maximum overlap scores this is to be expected.
17
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Appendix C.2. FNIRT

The parameters for FNIRT were chosen to match those used by the tool’s author in (Andersson et al., 2019).
Appendix C.3. ANTs

For both ANTs-CC and ANTs-MSQ the number of steps in the resolution pyramid were fixed (10, 6, 4, 2 and 1 mm isotropic). Smoothing was chosen
to match MMORF as closely as possible at each resolution level. This left three parameters over which to optimise, namely:

� Gradient step (λg)
� Update field variance (λu)
� Total field variance (λt)

λgdetermines how far each point is allowed to move on each iteration, and increasing this value allows for higher frequency deformations. λu de-
termines howmuch to smooth the gradient field between updates and increasing this value increases smoothness in the velocity field. λt determines how
much to smooth the total displacement field.

The parameters were selected such that the MSQ after registration was similar to that of MMORF. Note that despite our best efforts, we were unable
to get ANTs-MSQ to match MMORF and ANTs-CC in terms of this metric. The best results for ANTs-MSQ were achieved with:

λg ¼ 0:85

λu ¼ 2

λt ¼ 0

And for ANTs-CC with:

λg ¼ 0:5

λu ¼ 2

λt ¼ 0

λtwas found to always increase MSQ and was therefore left at the default value of 0. The final values for λg and λu are more aggressive than the default
(fairly conservative) values of λg ¼ 0:1 and λu ¼ 3, but we found that this was necessary to achieve the required registration accuracy for a fair
comparison.

Note also that the ANTs-CC parameters are very similar to those supplied by the tool’s author for use in Klein et al. (2009).

Appendix D. Cube-Volume Aspect Ratio

To facilitate a quantitative comparison of registration aggressiveness we require metrics to measure changes in both volume and shape. The Jacobian
determinant is useful in that it provides a single number quantifying volumetric changes. Similarly, we use the Cube-Volume Aspect Ratio (CVAR) to
describe the deviation in shape of any cuboid from a regular cube (Smith and Wormald, 1998). CVAR in 3 dimensions is defined as: The cube-root of the
ratio of the volume of the smallest regular cube which can fully enclose the cuboid, to the cuboid’s own volume. Alternatively, for a deformation we may equally
well define it as: The cube-root of the ratio of the largest Jacobian singular value cubed, to the Jacobian determinant (see Equation D.1).

CVAR¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s3i�max

s1 � s2 � s3

3

s
(D.1)

CVAR therefore takes on a value of 1 for a regular cube, and is greater than 1 for any other shape.

Appendix E. Alternative Regularisation Penalties within MMORF

Comparison of different regularisation penalties across registration frameworks is a difficult undertaking. It is not always possible to control all other
potential sources of variability. For completeness, we therefore provide here a comparison between the SPRED penalty and two other related penalties,
all implemented within the MMORF framework.

Appendix E.1. Jacobian Determinant Penalty

Given that we believe the Jacobian determinant is a good measure of warp aggressiveness, the question may arise as to why we prefer to penalise the
Jacobian singular values rather than the determinant itself. Our reasoning, as stated in the main text, is that simply penalising the determinant will lead
to implausible shape distortions in an attempt to minimise volumetric changes. To demonstrate this, we have implemented the following diffeo-
morphism preserving penalty based on the log-Jacobian determinant directly:

CLJðw!Þ¼
X
n¼1

vð1þ jJnjÞlog2jJnj (E.1)
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Appendix E.2. Local Rigidity Penalty

In Appendix A we show that our approximation to the SPRED penalty can be interpreted as promoting transformations which are locally rigid.
However, the SPRED penalty is considerably more computationally complex than alternative methods which also promote local rigidity. We therefore
implemented the following much simpler penalty in order to determine whether the additional complexity is warranted or not:

CLRðw!Þ ¼
XN
n¼1

v
��JTnJn � I

��
F

(E.2)

Appendix E.3. Testing

We registered all subjects of the NIREP dataset to subject NA01 only (i.e. 15 warps in total) using the three different regularisation methods.
The regularisation weighting was chosen such that the average overlap scores were comparable across all methods. We then calculated overlap

scores as in Section 2.5.4 of the main text. For each warp we then calculated the minimum, maximum, mean, 5th and 95th percentile for both the
Jacobian determinant and CVAR metrics. Overlap scores are presented in Fig. E1 and E2. Jacobian determinant ranges are presented in Fig. E3, and
mean CVAR in Fig. E4. Spatial maps of both Jacobian determinants and CVAR are presented in Fig. E5 and E6. Finally, Fig. E7 shows a grid deformed
under each regularisation scheme.

Fig. E.1. Jaccard coefficients for all subjects to NA01 - Jaccard coefficients of 32 cortical segmentations for registration to subject NA01 of the NIREP dataset. No
one method was consistently superior or inferior across all regions leading to comparable results between the methods in terms of overlap scores.
19



Fig. E.2. Comparative Jaccard coefficients - Distribution of Jaccard co-
efficients combined across all regions and subjects pairs for each regularisation
penalty. This confirms what is seen in Fig. E1, that all methods have comparable
overlap accuracy on average.

Fig. E.3. Log-Jacobian determinant range distributions - 5th to 95th
percentile range of Jacobian determinants for warps from all subjects to NA01 of
the NIREP dataset. As would be expected penalising the log-Jacobian determi-
nant directly leads to a much tighter distribution of Jacobian determinants
about 1 than penalising the Jacobian singular values. The local rigidity penalty
performs worst in this regard, with consistently more extreme Jacobian
determinants.
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Fig. E.4. Mean CVAR distributions - Distribution of mean CVAR within the brain for warps from all subjects to NA01 of the NIREP dataset. We observe that SPRED
clearly best preserves the original shape of the underlying anatomy during deformation. The local rigidity penalty, while not quite as good as SPRED, still consistently
outperforms the log-Jacobian determinant penalty.

Fig. E.5. Jacobian determinant spatial maps -
Spatial distribution of Jacobian determinants for
SPRED, logjJj, and local rigidity regularisation.
Penalising the volumetric changes directly clearly
leads to the flattest Jacobian determinant maps. As
the local rigidity penalisation does not guarantee dif-
feomorphism we observe a number of areas where the
Jacobian determinant is either very close to 0, or
negative, particularly in and around the cortex.
SPRED is somewhere between the other two methods,
which agrees with our observations in Fig. E3.
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Fig. E.6. CVAR spatial maps - Spatial distribution of
CVAR values for SPRED, logjJj, and local rigidity
regularisation. It is immediately clear that the flat
Jacobian determinant maps for the logjJj penalty are
accompanied by a marked increase in CVAR, con-
firming that volumetric control has come at the cost of
extreme shape changes. Local rigidity penalisation
leads to excellent preservation of shape within the
white matter, but shows extreme distortion within
some areas the cortex. SPRED performs considerably
better than either of the other methods, confirming
our observations in Fig. E4.

Fig. E.7. Comparison of deformed grids - Warped grid showing the effect of the different regularisation penalties. Penalising the Jacobian determinant alone has led
to extremely convoluted warps, whereas penalising the Jacobian singular values results in smoothly varying warps which are far more plausible. Interestingly,
penalising local rigidity has led to a very similar deformation to SPRED, with the exception of areas where topological folding or collapse has occurred. These areas are
particularly evident within the cortex and at tissue boundaries.
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E.4. Discussion

From Figs. E1 and E2 we see that the choice of regularisation metric need not affect the overall registration accuracy. From Fig. E3 we note that, as
expected, penalising the Jacobian determinant directly leads to warps with less volumetric changes as compared to both SPRED and local rigidity.
However, Fig. E4 shows that this comes at the cost of increased shape distortion as measured by CVAR, where both SPRED and local rigidity are far more
adept at controlling implausible shape changes.

Fig. E5 and E6 provide a clearer understanding of the information in Fig. E3 and E4. The extent to which volumetric and shape changes are traded off
by the different regularisation schemes is clearly evident. Finally, from Fig. E7 we see the extent to which extreme CVAR and Jacobian determinant
values translate into more convoluted warps with reduced spatial smoothness as compared to SPRED.
22
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By combining the log-Jacobian determinant and local rigidity penalties, in a similar manner to Staring et al. (2007), it may be possible to overcome
the limitations of each penalty. However, this would introduce additional regularisation weights to tune. In this respect the SPRED penalty is far more
elegant, as it effectively controls both volumetric and shape changes, preserves topology, and requires only a single tuning parameter.

In conclusion, this example shows that simply penalising the Jacobian determinant is insufficient to ensure plausible deformations, and that the
additional complexity of SPRED compared to a simpler local rigidity penalty is justified.

Appendix F. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuroimage.2020.116962.
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