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Besides cytotoxic DNA damage irradiation of tumor cells triggers multiple intra- and
intercellular signaling processes, that are part of a multilayered, treatment-induced stress
response at the unicellular and tumor pathophysiological level. These processes are
intertwined with intrinsic and acquired resistance mechanisms to the toxic effects of
ionizing radiation and thereby co-determine the tumor response to radiotherapy.
Proteolysis of structural elements and bioactive signaling moieties represents a major
class of posttranslational modifications regulating intra- and intercellular communication.
Plasma membrane-located and secreted metalloproteinases comprise a family of metal-,
usually zinc-, dependent endopeptidases and sheddases with a broad variety of
substrates including components of the extracellular matrix, cyto- and chemokines,
growth and pro-angiogenic factors. Thereby, metalloproteinases play an important role
in matrix remodeling and auto- and paracrine intercellular communication regulating tumor
growth, angiogenesis, immune cell infiltration, tumor cell dissemination, and subsequently
the response to cancer treatment. While metalloproteinases have long been identified as
promising target structures for anti-cancer agents, previous pharmaceutical approaches
mostly failed due to unwanted side effects related to the structural similarities among the
multiple family members. Nevertheless, targeting of metalloproteinases still represents an
interesting rationale alone and in combination with other treatment modalities. Here,
we will give an overview on the role of metalloproteinases in the irradiated tumor
microenvironment and discuss the therapeutic potential of using more specific
metalloproteinase inhibitors in combination with radiotherapy.

Keywords: ionizing radiation (IR), metalloproteinases, combined treatment modalit ies, tumor
microenvironment, radiotherapy
INTRODUCTION

History of medicine assigns the first oncologic treatment with ionizing radiation to Emil H. Grubbe
exposing the mammary carcinoma of Mrs. Rose Lee to X-rays in January 1896. Thereby the first
milestone for a radiation-based treatment strategy was defined, which is indispensable nowadays for
cancer therapy (1). Starting from low energy treatments of superficial melanomas towards high
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energy X-ray beams for the treatment of deeply located tumors
in the early 20th century, the therapeutic use of radiotherapy
(RT) has rapidly improved (2–4). Today, up to 50% of all cancer
patients receive radiotherapy either alone, or in combination
with surgery or systematic therapies (5, 6). The main rationale of
radiotherapy is to achieve local tumor control by delivering a
high dose of ionizing radiation to the tumor, while sparing
the surrounding tissue and keeping the adjacent organs
functionally intact.

Advances in intensity-modulated radiation therapy (IMRT)
and image-guided radiation therapy (IGRT) paved the way
towards better treatment planning and enhanced therapeutic
efficacy (7). Despite being a highly localized treatment regimen
with the ability to diminish tumors on a microscopic level,
radiotherapy alone still fails to achieve tumor control for
multiple tumor entities with many patients suffering from high
tumor recurrence rates. Although overlooked for a long time,
early studies already showed that tumor cells could exhibit
intrinsic or acquired resistance mechanisms to ionizing
radiation (IR), which are either due to the mutational status of
the tumor or due to cellular and tumor pathophysiological
processes induced by irradiation itself (8, 9). Tumors do not
only consist of one malignant cancer cell population, but of a
variety of different cell types and their sub-populations, which
constitute the tumor microenvironment (TME). Only the deeper
understanding of the heterogeneous architecture of the TME and
its tight interplay with the tumor cells will lead us to the
identification of related resistance mechanisms and novel
treatment targets for a combined treatment strategy of
radiotherapy with pharmacological agents (10).

In addition to DNA damage, IR also affects intra- and
intercellular processes that trigger a multilayered stress
response and co-determine the tumor response to RT. In this
context, various signal transduction pathways are hijacked by the
tumor for its cellular protection and are even further upregulated
in response to irradiation. Among others, the MAPK axis
represents one of the main signaling pathways controlling the
majority of hallmarks of cancer, such as proliferative signaling,
angiogenesis, inflammation and cell death evasion (11–13).
Hence, upregulated kinase activity along those cascades leads
to a proliferative advantage and cell survival upon IR. The basal
phosphorylation status of a substrate is tightly regulated by the
dynamic interplay between phosphatases and kinases. This
interplay can be disturbed by reactive oxygen species (ROS)
induced by IR. ROS oxidize critical cysteine residues in the
conserved catalytic centers of phosphatases, thus impairing
their function and shifting the balance towards a more
phosphorylated and active state of the substrate (14, 15).
Besides this ligand-independent activation of intracellular
signal transduction cascades, ionizing radiation induces the
secretion of growth factors and cytokines, thereby mediating
intercellular communication via auto- and paracrine signaling
through a wide range of soluble signaling molecules.
Consequently, irradiation-induced secretion of pro-survival
factors into the tumor environment also co-determines
radiation resistance, as reported for multiple tumor entities
including non-small cell lung cancer (NSCLC) and breast
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cancer (16, 17). In this review we will discuss the interplay
between ionizing radiation and Zn-metalloproteinases, which
represent the major class of proteases responsible for the
processing of these secreted factors.

Biochemistry of Metalloproteinases
Metalloproteinases are metal-, usually zinc-, dependent
endopeptidases (metzincins) that play versatile roles in
intercellular signaling pathways and tissue remodeling. The
human superfamily comprises three subfamilies: matrixins
(MMPs), astacins and adamalysins (18). Based on functional
and structural properties, adamalysins can be further subdivided
into a disintegrin and metalloproteinase (ADAM) and ADAM
with thrombospondin motif (ADAMTS) (18).

Structurally the metzincins superfamily was defined by Bode
et al. based on two properties which appear to be almost identical
among all the members (19, 20). They reported an extended Zn2+

binding motif HEXXHXXGXXH in the catalytic site for the
ligation of three zinc ions as well as a conserved methionine
containing segment downstream of the third Zn2+-binding
histidine, that supports the formation of a b-turn and therefore
participates in the structural integrity of the catalytic domain (the
Met-turn) (19, 21).

Besides those common features, the core structures among
the subgroups are varying, depending on their function. While
MMPs and ADAMTS are mainly involved in the remodeling of
the extracellular matrix (ECM), most of the members of the
ADAM family are actively associated with the process of
proteolytic ‘shedding’ of membrane-bound proteins, hence the
rapid modulation of key signals in the TME (22). Thus, MMPs
and ADAMTS are mainly present as secreted enzymes within the
ECM, while ADAMs typically remain membrane-associated
(Figure 1).

In order to prevent dispensable protein degradation, most
proteinases, hence also metalloproteinases, are synthesized as
latent zymogens. The autoinhibitory propeptide harbors a seven
amino acid long motif (PRCGXPD), with the thiol of the cysteine
chelating with the active Zn2+ site of the catalytic domain of the
protein, keeping it inactivated (23). Crucial for the activation of the
latent proenzymes is the “cysteine switch”, a process describing the
disruption of the thiol–zinc interaction (with or without cleavage
of the propeptide) (24). This can be induced by the cleavage
through other (metallo-) proteinases and allosteric disruption, or
most commonly for the membrane-bound members of the
metzincins, via proteolysis by the proprotein convertase furin (25).

Tissue Inhibitors of Metalloproteinases
(TIMP)
Keeping the balance between an active and a latent state of
metalloproteinases, four endogenous TIMPs (tissue inhibitors of
metalloproteinases 1–4) are known to inhibit the active enzymes
in mammalian tissue. Structurally, the small inhibitory molecules
are highly conserved enabling them to inhibit all members of the
metzincin family, but with different affinities and increased
preference towards ADAMs and ADAMTS (26). TIMPs consist
of two functional domains (stabilized via six disulfide bridges),
that act independently from each other, pointing towards separate
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evolution (27). Most of the inhibitory capacity lies within the large
amino terminus, whereas the role of the smaller carboxy tail is not
well understood. Inhibition of the target takes place at the very
end of the N-terminus (Cys1-Pro5) of mature TIMPs. This short
peptide sequence forms five intermolecular hydrogen bonds
within the active-site cleft, binding to the metalloproteinase in
an almost substrate-like manner (28). The only known function of
the carboxy-terminus is the formation of a non-covalent 1:1
complex with the hemopexin domain of proMMP-2/-9.
Secreted as such, the complex remains stable and protected
from degradation, while the amino terminus can still exhibit its
inhibitory function on other MMPs (29).
MATRIX METALLOPROTEINASES
IN THE IRRADIATED TUMOR
MICROENVIRONMENT

Already during the identification of the first matrix
metalloproteinases a clear association with tumor progression
Frontiers in Oncology | www.frontiersin.org 3
was drawn, as various MMPs were found to be upregulated in
human tumors (30). MMPs are mainly acting on the processing
of extracellular matrix components, such as collagen,
glycoproteins, and proteoglycans, and are highly distributed
among different cell types and tissues. In terms of cancer
progression, the increased abundance of active MMPs results
in the disruption of the matrix barrier, enabling tumor cells to
invade into the surrounding tissues and blood vessels. MMPs
are therefore mainly discussed in the context of tumor
dissemination. However, recent studies revisited the role of
different MMPs, differentiating their mode of action into ECM
processing versus non-matrix acting, leading to an increased
focus on the MMP-regulated intercellular communication via
the secretion of cyto- and chemokines, growth and pro-
angiogenic factors (30, 31). The fine-tuned balance between
MMP and TIMP activation controls this proteolytic shedding,
which can be deregulated during cancer progression and in
response to exogenous stress, such as ionizing irradiation.
MMP maturation is a tightly regulated process in which RT
can interfere on many levels. Besides direct cell killing, RT
induces cellular and molecular changes within the TME that
FIGURE 1 | Classification of the metzincins based on their structure and function. Typical for metzincins is their signal peptide, the prodomain, the catalytic domain
containing the zinc motif, followed by the linker (hinge) region. Membrane-associated metalloproteinases typically harbor a transmembrane and cytosolic domain,
lacking in the secreted family members. Depending on their mode of activation, several metalloproteinases have a furin recognition sequence. Distinctive for many
MMPs is the hemopexin (PEX) domain, which facilitates substrate specificity and TIMP interaction.
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can activate MMPs. Overlooked for decades, immunologists have
started to understand the immense ability of RT to induce a pro-
inflammatory environment, susceptible for immune cell
infiltration. No less important, the release of growth factors,
chemo- and cytokines also has a direct impact on tumor
stimulating MMP gene expression (32, 33). At the same time
RT also increases furin gene expression, which results in
increased furin-mediated posttranslational conversion of the
proform and subsequent activation of many MMPs and all
ADAMs/ADAMTS in response to irradiation (16, 25, 34).
Furthermore, irradiation generates cellular reactive oxygen
species, which also directly interact with biomolecules such as
metalloproteinases. Metalloproteinase zymogens are regulated
by the interaction of a cysteine amino acid residue in their
prodomain and the Zn2+ site in the catalytic region. IR-induced
oxidation of these critical cysteine sites leads to disruption of the
inhibitory conformation and subsequent activation of the
metalloproteinases (35, 36).

The diverse mechanisms by which irradiation influences the
status of MMP activity in the irradiated TME renders this class of
enzymes into an important family for the design of novel
treatment strategies.

Role of MMP-2 and MMP-9 for the
Radiation Response
MMP-2 and -9 play crucial roles in ECM remodeling and
cleavage of membrane substrates and have therefore been
associated with several hallmarks of cancer such as
angiogenesis, tumor invasion, and metastasis (37–41). Clinical
studies identified MMP-9 as a potential prognostic biomarker for
various tumor entities such as NSCLC (42), cervical cancer (43,
44), pancreatic cancer (45), and osteosarcoma (46). In many
cases, elevated MMP-9 levels were associated with poor
prognosis and decreased overall survival. In 2014, Yousef et al.
also detected differential expression of MMP-9 in the different
molecular subtypes of breast cancer. Importantly, MMP-9
overexpression was found to be an important endpoint for the
more aggressive subtypes, triple-negative and HER2-positive
breast cancers (41, 47).

Several studies reported irradiation-induced upregulation of
MMP-9, which highly correlates with enhanced metastasis and
cell invasiveness in vitro and in vivo and influences treatment
outcome (48–51). Confirming increased MMP-9 levels upon
sublethal irradiation of Lewis lung carcinoma, Chou et al.
observed enhanced cell invasion in vivo that resulted in RT-
induced acceleration of pulmonary metastases in their C57BL/6
mouse model. This effect could be inhibited by pre-treatment
with zoledronic acid, a prototypical MMP-9 inhibitor.
Interestingly, high-dose treatment (30 Gy) of the primary
tumor decreased MMP-9 serum levels, improved tumor
control and eliminated the amount of disseminating cells (48).
In NSCLC cells (49) and hepatocellular carcinoma (50),
irradiation enhanced MMP-9 expression via the PI3K/AKT/
NF-kB and the PI3K/AKT/MAPK pathway, respectively,
leading to enhanced tumor cell invasiveness. Investigating
drivers of radioresistance, Ko et al. observed increased MMP-9
Frontiers in Oncology | www.frontiersin.org 4
activity and elevated EMT protein levels in their RT-resistant
breast cancer cell line (51). Thus, MMP-9 activity should be
carefully probed as biomarker for putative irradiation-induced
cell dissemination.

Interestingly, the relevance for potent MMP-9 inhibition as part
of a combined treatment modality with RT has also been
demonstrated on the systemic level. MMP-9 activity from bone
marrow-derived CD11b-positive myelomonocytic cells was most
relevant for the process of tumor vasculogenesis. Ahn et al.
demonstrated that not endothelial progenitor cells but primarily
tumor-site infiltrating CD11b+ myelomonocytic cells are involved
in remodeling of the extracellular matrix in the irradiated tumor
bed, in promoting vasculogenesis (instead of angiogenesis). They
thereby represent a risk for local recurrences (52). Of note, genetic
depletion of the respective metalloproteinase activity prevented
tumor growth in these pre-irradiated areas. Eventually, these
insights resulted in the promising development of anti-
vasculogenesis strategies in combination with radiotherapy
(53, 54).

In terms of clinical relevance, MMP-9 has been proposed as a
predictive marker for the efficacy of radiotherapy in NSCLC.
Serum of patients with intermediate and advanced stages of
NSCLC were tested prior and after treatment [prescribed dose of
planning target volume (50–66 Gy)] which was given in fractions
of 1.8–2.0 Gy/day. Only in responders, the MMP-9 serum levels
were significantly reduced at 1–5 weeks after treatment, whereas
for patients with stable disease (SD) and progressive disease (PD)
stage no changes in serum MMP-9 could be detected (55). An
additional study on rectal cancer identified alterations in MMP-9
levels at different stages of treatment. Circulating MMP-9 levels
were significantly reduced after induction neoadjuvant
chemotherapy (NACT), gradually increased after sequential
radiochemotherapy (RCT) and almost recovered to baseline 4
weeks after treatment. Notably, progression free survival (PFS)
correlated with the initial drop of MMP-9 levels after NACT and
RCT (56). One clinical study focused on the impact of
radiotherapy-induced MMP-9 activation in the healthy tissue
surrounding the targeted tumor. After neoadjuvant RCT of
esophageal cancer patients MMP-9 levels increased in the
proximal and even distal healthy esophageal tissue, which
could be associated with post-operative complications such as
anastomotic leakage, and could potentially be avoided by MMP-
9 inhibition (57).

Due to their structural and functional similarities, it is not
surprising that multiple studies report co-upregulation of MMP-9
and MMP-2 upon irradiation, leading to increased tumor cell
invasiveness, metastasis, and angiogenesis. MMP-2, which belongs
to the same gelatinase family as MMP-9, is also highly associated
with various tumor entities such as prostate cancer (58),
gastrointestinal carcinomas (59, 60), and cervical cancer (44, 61).
Similar to MMP-9, IR also induces upregulation of MMP-2
resulting in enhanced tumor growth and cell invasiveness.
Moreover, MMP-2 activity is required for the angiogenic switch
during tumor development and has, together with MMP-9, been
implicated in the regulation of expression and release of vascular
endothelial growth factor (VEGF) (62–65). Combining RT with
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Waller and Pruschy Targeting Metalloproteinases Combined With Radiotherapy
inhibition of MMP-2 activity impaired cancer cell invasion, reduced
VEGF secretion and hindered radiation-induced capillary tube
formation in vivo, expanding its role to an important regulator of
angiogenesis (63, 64).

Bidirectional activation between MMP-2 and the pro-survival
transcription factor FoxM1 influenced cell cycle progression and
thereby impacted the treatment outcome of DNA damaging
agents. Inhibition of MMP-2 abrogated IR-induced FoxM1
expression to overcome G2/M cell cycle arrest, thereby driving
cells into apoptosis (66).

Genotyping of patients with advanced stages of NSCLC after
RT revealed that carriers of selected functional MMP-2
polymorphism had significantly reduced PFS, proposing
MMP-2 as prognostic marker (67). In glioma cells, RT-induced
secretion of MMP-2/-9 enhanced tumor cell migration in vitro
and dissemination in vivo. Conversely, TIMP-2 protein
expression, which antagonizes MMP activation, was strongly
reduced (68). In breast cancer and rectal cancer specimen, MMP-
2/-9 activation was observed to be enhanced in the tumor site in
comparison to the adjacent healthy tissue, and correlated with
dissemination, cancer progression and treatment outcome (69–
71). After radiotherapy, MMP-2/-9 levels increased drastically
within the rectal adenocarcinoma indicating a role of MMP-2/-9
for radioresistance (71). Taken together, serum and even urine
levels of circulating MMP-2/-9 can be used as good clinical
markers for tumor incidence, cancer stages, and treatment
prognosis or success (70, 72–74). At the same time, specific
MMP-2/-9 inhibitors could be promising radiosensitizers in
cancer therapy.
Versatile Roles of Other MMP
Family Members
Even though MMP-2 and MMP-9 represent the most
investigated MMPs in the context of radiotherapy, also other
family members have been associated with the remodeling of the
irradiated tumor microenvironment. Indeed, one of the first in
vivo studies combining MMP inhibition with radiotherapy was
conducted in 1992, with Sotomayor et al., detecting increased
tumor growth control upon treatment with the collagenase
(MMP-1) inhibitor minocycline in combination with RT (75).
In addition to enhanced rates of cancer cell intravasation and
dissemination, RT-induced MMP-activation (MMP-1/-2/-3/-9/-
14) and subsequent degradation of the TME and the mucosal
tissue adjacent to the irradiated tumor site, can induce strong
normal tissue toxicities (76, 77). Elevated levels of secreted MMP-
1/-2/-9 in the mucosa of rectal cancer patients after RT resulted in
gut tissue toxicity increasing the risk for post-operative
morbidity, wound infections as well as metastasis formation
(78, 79). Interestingly, several studies also demonstrated an
increase in MMP-7 gene expression after surgery and pre-
operative high-dose RT in colorectal carcinoma cells but not in
the adjacent mucosal tissue (80–82). Furthermore RT affected
MMP-7 expression in a dose dependent way indicating that
MMP-7 levels are very sensitive to different types of trauma,
which can define treatment outcome and resistance (82). Hence,
Frontiers in Oncology | www.frontiersin.org 5
different MMPs are responding in a differential way to
radiotherapy and combining radiotherapy with specific MMP
inhibitors could not only decrease the risk of local tumor
recurrence but could also protect the healthy mucosa.

In oral squamous cell carcinoma patients, theMMP-13 expression
levels highly correlated with different clinicopathological parameters,
such as staging and grading of the tumor. Additionally, patients
harboring less MMP-13 transcripts showed a better treatment
response to radiotherapy in comparison to patients overexpressing
MMP-13 (83). Similar results were obtained in a glioma patient study
indicating its potential use as a predictive biomarker for RT, while
another study determined MMP-13 as prognostic marker for tumor
aggressiveness and recurrence in head and neck cancer patients
(84, 85).

Among the six known membrane anchored matrix
metalloproteinases, membrane type I matrix metalloproteinase
MT1-MMP (MMP-14) is highly associated with cancer
progression, angiogenesis, and immune response (86–89).
Besides its original role as collagenase and MMP-2 activator,
proteomics analysis of human melanoma cells revealed a broad
influence of MT1-MMP on the tumor microenvironment, based
on the shedding of a variety of adhesion molecules, receptor and
transporter proteins (90). MT1-MMP accumulates on the
migratory front of cells and facilitates the degradation of
collagen, fibronectin and CD44. Disruption of the ECM barrier
enables cell motility, and therefore MT1-MMP was considered as
important protease for (tumor) cell migration and invasion (87,
91). Thus, MT1-MMP is an interesting target in combination
with RT to mitigate cell migration and metastasis formation. In
breast cancer models inhibition of MT1-MMP synergized with
ionizing radiation and reduced cell migration (92–94).
Investigating the invasiveness of triple-negative (TN) breast
cancer cells after RT, MT1-MMP downregulation reduced the
number of circulating tumor cells and lung metastases (93).
Besides its pro-migratory effect, MT1-MMP has also been
identified as an activator of the immune-suppressive cytokine
transforming growth factor (TGF) b (95). Consistent with the
decrease of TGF-b secretion, blockade of MT1-MMP with the
antibody DX2400 polarized tumor-associated M2-like
macrophages towards the anti-tumor M1-like population,
contributing to tumor growth delay and reduced necrosis (94).
In addition, MT1-MMP inhibition improved vessel perfusion
and oxygenation of the tumor. Overcoming tumor hypoxia is
one of the main challenges in the field of RT as hypoxic cells are
radioresistant and negatively influence treatment outcome (96).
Thus, MT1-MMP represents an interesting target in particular
for the combined treatment of hypoxic tumors.

Moreover, an interesting study on intracellular signaling
extended the effect of MT1-MMP beyond the tumor
microenvironment and proposed its involvement in the DNA
damage response along the MT1-MMP-integrinb1 pathway (97).
Inhibition of MT1-MMP reduced integrinb1 signaling and
sensitized TN breast cancer cells to radio-and chemotherapy
by collapsing the replication machinery. Thus, combining RT
with MT1-MMP inhibition could not only prevent cell
dissemination but also enhance direct DNA damage.
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Our own studies on increased MMP activities and
invasiveness of irradiated tumor cells exemplify the complex
network and regulation of metalloproteinase activities in
response to stress. The IR-enhanced invasive capacity of
fibrosarcoma and glioblastoma cells could mechanistically be
linked to increased MMP activities, though irradiation only
partially increased expression of MMP-2/-9/-14. On the other
hand, irradiation specifically induced the secretion of TIMP-1/-2.
Depending on the ratio of TIMPs and MMPs, TIMPs can not
only inhibit but also activate MMPs, with TIMP-2 being relevant
for processing of pro-MMP-2 (98). Interestingly, downregulation
of TIMP-1/-2 not only reduced respective MMP-activities but
also specifically blocked IR-induced invasiveness of these
irradiated tumor cells. Cell invasion induced by low radiation
doses (1.5–2.0 Gy) is of particular importance in the context of
fractionated radiation schedules and sub-lethal irradiation of
peripheral tumor cells of the radiotherapy treatment volume.
Thus, a combined treatment modality reducing IR-upregulated
MMP might reduce the potential risk for IR-induced (glioma)
cell migration and dissemination.
ADAM-INDUCED SECRETOME IN
THE IRRADIATED TUMOR
MICROENVIRONMENT

In the past decades, the importance of the ADAM family
members has shifted from embryonic development to versatile
roles in disease including neurodegeneration, inflammation, and
cancer in particular. ADAMs are recognized as important players
in the ErbB1 (EGFR) signaling axis as ADAMs shed a large
variety of (mitogenic) growth factors, growth factor receptors
and cyto- and chemokines. The ErbB1 pathway is associated with
cancer growth and progression and represents an attractive
target for cancer therapy. However, targeting the pathway
directly with tyrosine kinase inhibitors such as gefitinib has
been challenging due to acquired pro-resistance mutations
(99). The combination of RT with the ErbB1-directed
monoclonal antibody cetuximab improved locoregional control
and survival of patients suffering of advanced squamous-cell
carcinoma of the head and neck, whereas the trimodal treatment
with chemoradiotherapy and cetuximab showed no additive
beneficial effect in stage III NSCLC patients (100, 101).
Therefore, it could be of interest to inhibit not only ErbB1- but
multiple ErbB (ErbB1–4), and other related receptor tyrosine
kinases and signal transduction cascades, via inhibition of
upstream sheddases such as ADAMs. ADAMs are upregulated
in many cancer entities and have been associated with promotion
of cell growth, survival, migration, and invasion (102). Similar to
MMPs, ADAMs are activated in multiple ways, including gene
expression, translocation to the cell membrane, posttranslational
modifications on the cytoplasmic tail, zymogen activation via
furin or their interplay with TIMPs (102, 103).

Among all ADAMs, ADAM10 and ADAM17 share the most
structural and functional properties, being best known for their
Frontiers in Oncology | www.frontiersin.org 6
role in Notch signaling and the clinicopathology of Alzheimer’s
disease. ADAM17 represents the most intensively studied
member of the ADAMs family and gained attention especially
in the context of inflammatory disease due to its processing of
TNF-a. Thus, ADAM17 is also known as TNF-alpha converting
enzyme (TACE). As part of our own TME-oriented research we
investigated how RT-induced secretion of para- and autocrine
stress-response factors modulates cellular radiosensitivity, drives
acquired rescue mechanisms and determines the overall
radiation sensitivity of a tumor. We performed exhaustive
large-scale secretome analysis using antibody arrays for a wide
range of secretory factors (16). Secretion kinetics of selected
factors were determined across different established tumor cells
and in murine blood serum, derived from irradiated tumor
xenograft-carrying mice. RT-induced expression and tumor
cell secretion included top hits, such as amphiregulin, TGF-a
and ALCAM. All these factors were secreted in a similar RT-
induced time- and dose-dependent manner from several NSCLC
cell lines (and other tumor entities), indicative of a common
upstream mechanism without changes at the transcriptional
level, pointing towards ADAM17. Interestingly, irradiation
induced a dose-dependent increase in cleavage of the proform
of ADAM17 by furin, which resulted in enhanced ADAM17
activity and correlated with subsequent substrate shedding.
Pharmacological inhibition of ADAM17 with the small
molecular inhibitor TMI-005 or siRNA-based targeting of
ADAM17 suppressed RT-induced shedding of these factors,
downregulated ErbB1-signaling in target cells and enhanced
RT-induced cytotoxicity in vitro and in vivo (tumor xenograft
model) even in tumors resistant to ErbB-targeting cancer
therapeutics. Ex vivo substrate analysis of murine blood serum
derived from irradiated tumor xenograft-carrying mice
correlated with our in vitro results. Not surprisingly the supra-
additive response to the combined treatment modality of RT and
inhibition of ADAM17 on the in vivo level point towards
multiple mechanisms of action, including tumor cell- and
TME-oriented ionizing radiation-sensitive processes.

Cancer stem cell are often characterized by increased
radiation resistance (104). Investigating the radioresistant and
migratory phenotype of CD133+ liver cancer stem cell (CSC)
Hong et al. observed next to increased MMP-9 and -2 expression
also IR-enhanced ADAM17 activity in the CD133+ enriched cell
population of hepatocellular carcinoma (HCC) (105). Of note
inhibition of ADAM17 sensitized these CSCs to IR and disrupted
their IR-induced metastatic potential. Overall, ADAM17 is
gaining recognition in the field of combined treatment
modalities with RT, in particular for aggressive tumor entities
with high recurrence rates.

Even though ADAM10 and respective inhibitors are highly
discussed as novel targets for cancer treatment, ADAM10 has not
been very much investigated in combination with radiotherapy.
As depicted by Sharma et al., while ADAM17 activity increased
in an IR-dose-dependent manner, irradiation of NSCLC cells did
not upregulate ADAM10 activity in these cells (16). However,
IR-induced upregulation of these ADAM-isoforms might be
tumor entity dependent. In a very recent report, Mueller et al.
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demonstrated IR-increased ADAM10 expression in pancreatic
tumor cells, which correlated with RT-induced fibrosis, tumor
cell migration, and invasion. Targeting of ADAM10 sensitized
orthotopic tumors to IR and prolonged mouse survival (106).
Furthermore, a putative risk for cardiovascular damage exists as
exposure of endothelial cells to irradiation increased the levels of
active ADAM10 in those cells (107, 108). Subsequently
ADAM10-mediated degradation of the endothelial specific
adherens junction VE-Cadherin resulted in increased vascular
permeability. Weakening the endothelial barriers facilitates
transendothelial tumor cell migration and dissemination but
also ischemic disease after RT. Thus, it is important to
appreciate the vascular system as an organ of risk when
irradiating solid tumors.

Most studies investigating the response of ADAMs to IR in
cancer and adjacent endothelial tissues observed an upregulation
of the metalloproteinases on the expression, total protein and/or
activity level. However, studying radiation-induced renal
dysfunction and tissue toxicity in healthy renal epithelial cells
revealed the opposite effect. IR induced a downregulation of
ADAM9/10/17 in vitro (mIMCD-3 cell line) as well as in kidney
tissue derived from BALB/c mice. This phenotype directly
correlated with decreased levels of the soluble anti-aging
suppressor Klotho, a substrate of ADAM9/10/17. The clinical
consequences are premature cellular senescence, nephropathy
and even kidney failure as severe side effects after RT (109).

The reduction of the oxygen partial pressure below a critical
physiological level represents a major radioresistance mechanism
in tumors, due to the altered physico-chemical conditions but
also due to biological adaptations. Tumor hypoxia renders tumor
cells up to threefold more radioresistant than their normoxic
counterparts. The hypoxia-inducible factor (HIF)-1a is
stabilized under hypoxic conditions, accumulates and
transactivates a large variety genes involved in the adaptive
response of the tumor cells to hypoxia, including genes
involved in metabolism, angiogenesis, cell proliferation, and
also different metalloproteinases (110–112). Direct (through
binding to the respective promotor region) and indirect
mechanist ic l inks were ident ified between HIF-1a
accumulation and increased gene expression of MMP-1/-9/-
13/-14 as well as ADAM10/17 (111–117) and correlated in
most cancer cell types with increased aggressiveness and
invasiveness (111–113). To ensure energy sustainability,
hypoxic cancer cells shift their metabolism towards the
glycolysis pathway (118), which generates high amounts of
acidic end products. One important part of the pH-regulatory
machinery plays the tumor-associated zinc-metalloenzyme
carbonic anhydrase IX (CAIX) (118). Induced by HIF-1a, high
levels of membrane-bound CAIX have been associated with
cancer cell invasiveness and therapeutic resistance.
Interestingly, hypoxia-stabilized HIF-1a also promotes
increased ADAM17 expression (117), which recognizes CAIX
on the cell surface as a substrate and releases the enzymatically
active ectodomain of CAIX (119). However, the consequences of
this specific altered extracellular proteome for the exact pro- and
anti-tumorigenic responses have yet to be investigated (120).
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Next to the release of immunosuppressive factors, a hypoxic
tumor microenvironment also impairs anti-cancer immunity
through HIF-1a-mediated upregulation of ADAM10.
ADAM10 is required for shedding of MHC class I chain-
related molecule A (MICA), which activates natural killer (NK)
cell effector function and cell lysis. Decreased levels of MICA
under hypoxic conditions subsequently lead to immune escape
and tumor cell resistance to the cytolytic action of innate
immune effectors (116). Due to their wide range of substrates,
their importance for Notch signaling pathways and as attributes
of almost every cell type of the immune system, ADAM10 and 17
have gained particular attention in recent years in immunology
research (121). Furthermore, ADAM17 is considered the main
protease to cleave the Fcg receptor CD16A (FcgRIIIA) on NK
cells, which is involved in antibody-dependent cell-mediated
cytotoxicity (ADCC) (122, 123). Human NK cells exclusively
recognize tumor-targeting therapeutic monoclonal antibodies
via intact CD16A. Engagement with the target cell induces NK
cell degranulation, followed by the release of cytolytic granules
(124). Complementary to this, ADAM17 also cleaves CD62L (L-
Selectin), an adhesion molecule that facilitates mobility and
homing of lymphocytes , including NK cel ls (122).
Furthermore, NKG2D ligands are also substrates of ADAM17,
and as such ADAM17 plays a major role in the regulation of the
innate immune system through direct cell killing (natural
cytotoxity) (125, 126). Hence, inhibition of ADAM17 on
tumor cells and NK cells could strongly enhance anti-tumor
immunity alone and as part of combined treatment modalities
with different targeting agents and immunogenic cell death
inducers. Moreover, ADAM17-mediated shedding has also
been investigated in CD8+ T-cells towards activation of
proliferation but also as inducer of apoptosis (127, 128).
CD62L shedding positively affected early clonal expansion of
cytotoxic T-cells in virus-transfected mice suggesting ADAM17
as an important regulator of T-cell activation (127). Recent
studies also identified the programmed death ligand 1 (PD-L1)
as a novel substrate of ADAM17 (128, 129). Taken together,
novel immunotherapeutic approaches should carefully consider
the role of ADAMs as additional immune regulatory target and
resistance mechanism to immune checkpoint inhibition, also
when combined with radiotherapy.

The plethora of molecular interdependencies between tumor
hypoxia, the immune system and radiotherapy is not within the
scope of this review and is summarized elsewhere (130–133).
TARGETING METALLOPROTEINASES FOR
CANCER TREATMENT

In addition to the use of metalloproteinases as diagnostic
markers for tumor prognosis and treatment prediction, many
efforts towards the development of potent MMP/ADAM
inhibitors were pursued - unfortunately only with minimal
success, which is primarily due to the lack of high specificity.
Nevertheless, we will summarize the major developments on the
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preclinical and clinical level and point towards combined
treatment modalities with radiotherapy.

Small Molecular Inhibitors
The first generation of small molecular inhibitors comprised two
functional groups: hydroxamic acid motifs that target the
catalytic site of the MMPs by chelating the active zinc ion and
a peptide derivate mimicking the collagen binding motif
(Figure 2) (134). Binding to those peptidomimetics changes
the conformation of the catalytic domain of metalloproteinases
and disrupts the integrity of the enzyme. Batimastat (BB-94) was
the first MMP-inhibitor to enter clinical trials (135). However, it
could not be orally administered, thus, clinical testing was
discontinued (136). The structurally related and orally
bioavailable Marimastat (BB-2516) achieved promising results
in early clinical trials (Table 1) (31). Nonetheless, in phase III
clinical trials for different cancer entities Marimastat did not
show added survival benefit and many treated patients suffered
severe musculoskeletal side effects (31, 137). This high tissue
toxicity is most probably due to the low selectivity of these broad-
spectrum inhibitors towards different zinc-dependent proteases
(137). Lessons from those early therapeutic efforts resulted in
compounds targeting unique structural properties of MMPs.
One structural characteristic that next generation of MMP
inhibitors took advantage of was the variable S1’ pocket of
metalloproteinases. This pocket lies in close proximity to the
Zn2+ binding site in the catalytic domain and defines binding and
substrate specificity (134). Based on amino acid variation on this
primed enzyme site MMPs can be classified into “deep pocket”
and “shallow pocket” enzymes (134, 138). The majority of MMPs
harbor a leucine that forms their S1’pocket, resulting in an open
conformation, whereas the small pocket for MMP-1/-7/-11 is
partially or entirely occluded by larger amino acid residues
Frontiers in Oncology | www.frontiersin.org 8
(arginine, tyrosine, and glutamine, respectively) (134). The
design of the nonpeptidic collagen-mimicking inhibitor
Prinomastat (AG3340) was based on this rationale resulting in
enhanced specificity for “deep pocket” MMP-2/-3/-9/-13.
However, in phase III trials of advanced lung or prostate
cancer Prinomastat did not improve clinical outcome when
combined with chemotherapy, and further clinical studies were
halted (31, 139).

TMI-005 (Apratastat), which shares structural similarities
with Prinomastat, was originally designed for the treatment of
rheumatoid arthritis due to its inhibitory potential of TNF-a
release (140, 141). In contrast to previous clinical investigations
with other small molecular inhibitors, TMI-005 showed very low
tissue toxicity but the program with TMI-005 and other closely
related derivatives was stopped due to lack of efficacy, related to
constitutive activation of the TNF receptor on immunological
cells, but not due to toxicity reasons (140). Based on its low
toxicity profile and target relevance independent of TNF-a,
TMI-005 and other new classes of ADAM17 inhibitors thus
have a strong rationale for repurposing as drug in cancer therapy.
After identifying ADAM17 as an important player for radiation
resistance in NSCLC cells, our own studies demonstrated that
pretreatment with TMI-005 sensitized NSCLC cell lines to RT
and reduced secretion of ADAM17-specific substrates (16).
Determining its efficacy in NSCLC cell-derived xenografts
revealed supra-additive tumor control in combination with RT
and defines its potential in cancer therapy.

Several other small molecular inhibitors have been designed
to target members of the ADAM family with increased affinity
towards ADAM10 and ADAM17. These two sheddases act
upstream of multiple ErbB pathways, and interestingly their
inhibition also synergized with therapeutics agents directly
targeting the ErbB (1–3) pathways. Combining INCB3619,
A

B

FIGURE 2 | Structural formulas of small molecular inhibitors discussed in this review, divided into (A) MMP-directed and (B) ADAM-directed inhibitors.
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a dual inhibitor against ADAM10/17, with gefinitib or paclitaxel
strongly downregulated proliferation of NSCLC cells, whereas
other cell lines, which proliferate independently of ErbB-
signaling, remained unaffected (142). Also in breast cancer
models, selected sheddase inhibition mitigated the release of
ErbB family ligands and enhanced the effect of ErbB-directed
therapies in vivo (143, 144).The structurally related but
pharmacokinetically improved inhibitor INCB7839 underwent
clinical trials for the treatment of HER2 (ErbB2)-positive breast
cancer patients with an interesting rationale to overcome
trastuzumab-resistance. HER2 is a substrate of ADAM10 and
the ADAM10 inhibitor INCB7839 reduced cleavage and release
of the extracellular domain, thereby overcoming resistance to
HER2-directed trastuzumab (145, 146). Indeed, administration
of INCB7839 was well tolerated, decreased the plasma level of the
extracellular domain of HER2. Future trials will show whether
the promising combined treatment strategy will improve clinical
outcome. HER2-mediated resistance mechanisms to other
pharmacological therapies also exist in colorectal cancer cells
and could also be related to upregulated ADAM10/17 (147, 148).
As such treatment of colorectal cancer cells with the dual
ADAM10/17 inhibitor GW280264X sensitized cells to
chemotherapy (5-FU) (148).

Investigating the involvement of ADAM10/17 in the
immunogenicity of glioblastoma-initiating cells, Wolpert et al.
determined their role in regulating the NKG2D receptor-ligand
system (among others MICA, MICB, ULBP2) (149). Inhibition
of ADAM10/17 with GW280264X and the more specific
ADAM10-directed compound GI254023X, increased cell
surface abundance of ULBP2, which directly resulted in an
increased immune response and susceptibility for NK cell
mediated lysis. Studying the effect of ADAM10/17 inhibition
on irradiation-induced cell permeability of endothelial cells,
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GI254023X revealed the strong involvement of ADAM10 in
VE-cadherin regulation and transendothelial migration (108).
Overall, these mechanisms point towards the versatile function
that ADAM10/17 exert in the tumor microenvironment.

Shortly after identifying shark cartilage as the first tissue with
anti-angiogenic (anti-MMP-2/-9/-13) properties, the functionally
active, naturally occurring compounds were extracted and
developed as Neovastat (AE-941) (150). In vivo, treatment with
Neovastat alone showed inhibited neovascularization and
metastasis formation in a Lewis lung carcinoma model.
Combination with cisplatin increased the therapeutic index
showing strong anti-metastatic effects while protecting against
cisplatin-induced myelosuppression (151). Being introduced to
phase I/II trials, Neovastat was well tolerated and demonstrated
increased median survival in patients with solid tumors, including
renal, prostate and lung carcinoma (150). However, in patients
with unresecetable stage III NSCLC, the treatment with Neovastat
to did not improve efficacy of chemoradiotherapy and has not
been recommended for further treatment of lung cancer (152).

Apart from their conventional role as antibiotics, tetracyclines
are effective inhibitors of metalloproteinases in the treatment of
malignant disease. Early studies suggested non-antimicrobial
functions of synthetic tetracyclines as inhibitors of collagenase
and gelatinase activity in periodontitis and anti-proliferative and
anti-migratory effects migration in cancer cells (153–156). This
new, promising function led to a wave in synthesis of improved
chemically modified tetracyclines (CMT) with deletion of the
anti-microbial functional group but enhancing their MMP-
directed inhibitory potencies (157). The main mode of action
is chelation of Zn2+ and Ca2+ ions, but also other mechanisms
including regulation of gene expression and degradation of
MMPs have been proposed (158). One of the most potent and
promising compounds is Metastat (Col-3, Incyclinide) which
TABLE 1 | Summary of discussed metalloproteinase inhibitors in cancer-related clinical trials.

Name Target Tumor entity Identifier

Marimastat
(BB-2516)

Broad spectrum SCLC NCT00003011
NSCLC NCT00002911
Breast cancer NCT00003010

Prinomastat
(AG3340)

MMP-2/-3/-9/-13 NSCLC NCT00004199
Brain and Central Nervous System Tumors plus RT NCT00004200
Prostate cancer NCT00003343

Neovastat (AE-941) MMP-2/-9/-12 NSCLC plus RT NCT00005838
Multiple Myeloma NCT00022282
Kidney cancer NCT00005995

Metastat
(Col-3, Incyclinide)

MMP-2, MMP-9 AIDS-Related Kaposi’s Sarcoma NCT00020683
Advanced Solid Malignancies NCT00003721
Refractory metastatic cancer NCT00001683
Brain and Central Nervous System Tumors NCT00004147

INCB7839 (Aderbasib) ADAM10, ADAM17 Gliomas NCT04295759
Diffuse Large B Cell Non-Hodgkin Lymphoma NCT02141451
HER2+ metastatic Breast Cancer NCT01254136

NCT00864175
Solid Tumors NCT00820560

Andecaliximab
(GS-5745)

MMP-9 Gastric or Gastroesophageal Junction Adenocarcinoma NCT02864381
NCT02545504
NCT02862535

Advanced solid tumors NCT01803282
Glioblastoma NCT03631836
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inhibited the expression and the activity of MMP-2 and reduced
tumor growth and metastasis formation in pre-clinical tumor
models (159). Interestingly, Metastat only minimally reduced
tumor growth in the B16 melanoma model. However, the
combined treatment modality with RT led to strong tumor
growth delay and reduced angiogenesis (64). Four phase I/II
clinical trials and pharmacokinetic studies were completed with
Metastat in the treatment of patients with advanced solid
malignancies, AIDS-related Kaposi’s sarcoma, refractory
metastatic cancer, and recurrent high-grade glioma (160–163).
Metastat was well tolerated, but due to weak responses, no
further clinical trials have been initiated. Notably Metastat was
tested on the clinical level only as single treatment modality and
not in combination with radio-/chemotherapy.

Interestingly, many other MMP inhibitors entered clinical
trials with promising pre-clinical results to fail dramatically
beyond Phase II (137, 158). Approved in 2001 for the
treatment of chronic periodontitis, the doxycycline hyclate
Periostat targeting collagenase activity in the gingival tissue
represents the only FDA approved MMP inhibitor (153, 164,
165). Besides this sole success, decades of research have led us to
reason that metalloproteinases do not represent suitable targets
for cancer treatment (31, 137, 166, 167). Among many others,
the major therapeutic challenge lies in the complexity of the
protease network “protease web” as MMPs do not only act alone
or in linear pathways, but are part of complex and dynamic
amplification cascades or inter-regulatory circuits (166). Disease
but also non-specific drugs perturb the order, adding higher
spatio-temporal complexity to the network.

Therapeutic Antibodies
Targeting the catalytic domain of enzymes appears as an
attractive therapeutic approach. However, these domains are
highly conserved amongst different MMPs, leading to off-target
effects and tissue toxicity. As MMPs act extracellularly they
represent excellent targets for highly specific inhibitory
monoclonal antibodies (mAb). Due to their versatile
involvement in modulating the tumor microenvironment,
inhibitory antibodies against MMP-9, MT1-MMP, and
ADAM17 have recently been developed (168–175).

The strong influence of MT1-MMP on the tumor
microenvironment renders it an attractive target for
therapeutic strategies (90). Therefore, a range of antibodies
have been designed that selectively block MT1-MMP, resulting
in reduced tumor growth, angiogenesis, and dissemination in
ovarian, breast, and melanoma tumor models (169, 172, 176–
178). Discovered using phage display technology, DX-2400
blocked MT1-MMP with high potency and reduced tumor
burden by inhibit ing MMP-2 activation (94, 176).
Subsequently, antibody treatment resulted in improved tissue
perfusion leading to re-oxygenation of the tumor. This effect
could be exploited by combined treatment with radiotherapy
leading to additive tumor control in a murine mammary tumor
model (94).

The challenge of selectively targeting MMP-9 lies in its
structural similarity to MMP-2. The mAb REGA-3G12 solely
binds to the catalytic domain of MMP-9, however and despite its
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strong binding affinity, REGA-3G12 only displays weak
inhibitory activity (179, 180). Combining its target specificity
with a small molecular MMP inhibitor, gave rise to an antibody-
drug conjugate (ADC) consisting of REGA-3G12 and the broad
spectrum inhibitor CGS27023A (181). In vitro, this ADC could
bind to its target with high selectivity, while strongly inhibiting
MMP-9 activity. It will be of interest to observe future validation
and applications of this elegant approach of combining mAb
with a small molecular inhibitor, alone and in combination with
systemic chemotherapeutics and radiotherapy.

Selective inhibition of MMP-9 with the two monoclonal
antibodies AB0041 and AB0046 reduced symptoms of DSS-
induced ulcerative colitis and colorectal tumor burden in
murine orthotopic tumor models (168). Given these
encouraging results, AB0041 was humanized (GS-5745)
towards clinic trials. This makes GS-5745/Andecaliximab the
first anti-MMP antibody to currently undergo clinical
investigation as monotherapy and as part of a combined
treatment modality with chemotherapy (182–184).

Only in the last decade the first promising anti-human
ADAM17 antibody D1(A12) was developed (171) .
Characteristic for this cross-domain antibody is its simultaneous
recognition of catalytic as well as noncatalytic regions, acting as
steric hindrance and allosteric inhibitor at the same time (171). D1
(A12) was shown to bind to ADAM17 in a subnanomolar range
(KD of 0.46 nM), reduced cleavage of ADAM17-specific substrates
in vitro and in vivo, mitigated cell migration, and inhibited tumor
growth with suitable pharmacokinetics (185–187). Two other
antibodies, A9(B8) and MEDI3622, are currently undergoing
pre-clinical investigation and demonstrate anti-tumor effects by
inhibiting EGFR-dependent and -independent pathways (170,
174). Characteristic for MEDI3266 is its high site-specificity and
target-sensitivity as it recognizes the surface loop sIVa-sIVb b-
hairpin on the M-domain, unique for ADAM17 (188). MEDI3266
was shown to inhibit tumor growth of different tumor models.
Combined treatment with EGFR-directed cetuximab led to
complete tumor regression in the OE21 esophageal xenograft
model and others (174). Furthermore, ADAM17-inhibition by
MEDI3266 blocked CD16A cleavage from activated NK-cells (see
above) and resulted in increased production of IFNg in the
presence of antibody-opsonized tumor cells (189). Several
studies have investigated the consequences of CD16A blocking
for antibody-dependent cellular cytotoxicity (ADCC), though
with contradictory results (124). Hence, the precise ways on
how ADAM17-inhibition leads to tumor reduction and the
involvement of ADCC remains to determined. Nevertheless,
based on their specificity, these ADAM17-directed antibodies
represent ideal candidates for a combined treatment modality
with RT.
DISCUSSION

Modern image-guided radiotherapy has reached a level of
technical conformity that nowadays requires biological means
to further increase the therapeutic window towards improved
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treatment outcome e.g. as part of combined treatment modalities
with highly potent pharmacological agents specifically
sensitizing the tumor compartment to ionizing radiation.
While radiotherapy combined with classic chemotherapeutic
agents e.g. cisplatin for head and neck squamous cell
carcinoma became standard clinical practice within the last
twenty years, combined treatment with small molecular agents
or inhibitory antibodies targeting specific signaling moieties are
still considered exceptional. This might be due to the continuous
development of new radiotherapeutic treatment regimens, from
classic fractionated low dose to hypofractionated and stereotactic
single high dose treatment regimens. Indeed, different
radiotherapy regimens induce differential biological processes
and thus require adaptations, also in the choice of a combined
treatment modality. On the other hand, major resistance factors
for successful radiotherapy, such as tumor hypoxia, cannot
be linked to a specific signal transduction cascade or
a defined genetic background, rendering personalized
radiochemotherapeutic approaches very difficult. With the
exception of immune checkpoint inhibitors targeting specific
intercellular signaling moieties and their rapid integration into
clinical radioimmunotherapy protocols within the last five years,
the combined treatment modality of radiotherapy with
molecularly defined targeting agents did not reach maturity.

Thus, the slow progress towards a clinically relevant
combined treatment modality of ionizing radiation with
inhibitors of metalloproteinases is not an exception and
includes additional hurdles. The development of small
molecular compounds targeting selected metalloproteinases
with sufficient specificity has not been successful so far without
inducing limiting toxicities on the clinical level. This might be
further restricted by existing redundancies in between different
metalloproteinases for relevant substrates and represents an
intrinsic challenge even for therapeutic antibodies targeting
Frontiers in Oncology | www.frontiersin.org 11
individual metalloproteinases with highest specificity. On the
other hand, such inhibitory antibodies might be accompanied by
reduced normal tissue toxicities. Recent advances e.g. with
ADAM17-targeting antibodies demonstrate promising results
on the preclinical level (see above) and are currently also
probed in combination with radiotherapy.

Individual metalloproteinases have a plethora of different
substrates thereby co-regulating multiple biological processes,
hallmarks of cancer and thus putative intrinsic treatment-
induced resistance mechanisms at the same time. Thereby
inhibition of individual metalloproteinases might affect at the
same time not only the composition of the extracellular matrix
but also tumor growth, tumor angiogenesis and immune cell
infiltration via reduced shedding of respective bioactive
substrates, such as tumor growth and pro-angiogenic factors,
chemo- and cytokines. Insofar our knowledge on the role and the
complexity of metalloproteinases for tumorigenesis, tumor
growth and dissemination is steadily increasing.

Interestingly, many of the aforementioned processes are also
triggered by radiotherapy. The insult on the level of DNA is most
important for the cytotoxicity of radiotherapy. However,
ionizing radiation also affects multiple intra- and inter-cellular
processes thereby determining the tumor response to
radiotherapy and eventually treatment outcome. Irradiated
tumor, stromal and endothelial cells release auto- and
paracrine factors in response to radiotherapy-induced DNA
damage and radiotherapy-activated intracellular stress-
responses, which subsequently modulate the tumor
microenvironment and the radiosensitivity of the respective
target cells. We currently recognize that these intercellular
processes are often mediated via basal and even more so
ionizing radiation-induced metalloproteinase activities
rendering metalloproteinases to become interesting targets in
this context (Figure 3). Furthermore, the intratumoral bystander
A

B

FIGURE 3 | Combining RT with metalloproteinase inhibitors for improved tumor control. (A) Next to cell killing and tumor shrinkage, RT activates metalloproteinases
that release pro-survival factors (indicated in blue, red, and yellow) into the TME, resulting in tumor cell proliferation, enhanced tumor angiogenesis and pro-
tumorigenic immune responses. At the same metalloproteinases disrupt the ECM barrier (gray), enabling tumor cell dissemination. (B) Combining RT with inhibition of
metalloproteinases mitigates pro-survival signaling and results in more effective tumor cell killing.
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effect induced by inhibition of extracellularly located
metalloproteinase activities will conceptually also take
advantage of and synergize with locoregionally applied ionizing
radiation reaching each individual tumor cell. As such,
targeting of specific metalloproteinases in combination with
radiotherapy represents a highly promising treatment
strategy; however, we still need to identify the best needle in
the haystack.
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