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Severe pneumonia with sepsis is characterized by a dysregulated inflammatory response of endotoxin. In our study, we attempted to
investigate the roles of the immune guardian cells (monocytes) in the immune-inflammatory response of severe pneumonia-
induced sepsis. We performed analysis in the blood samples of human and animals with ELISA, western blot, flow cytometry
(FCM) methods, etc. Results showed that the proinflammatory status shifted to hypoinflammatory phases during the sepsis
process. In a clinical study, the levels of IL-1β, IL-6, TNF-α, etc., except for IL-10, were inhibited in the late phase of sepsis,
while, in an animal study, the immune suppression status was attenuated with administration of the adenovirus Ade-HIF-1α.
Conversely, the amount of IL-10 was lower in the adenovirus Ade-HIF-1α group compared with the sepsis model group and the
Ade-control group. Moreover, in the clinical study, the programmed cell death-ligand 1 (PD-L1) was overexpressed in
monocytes in the late phase of sepsis, while the expression of proteins HIF-1α and STAT3 was decreased in the late phase of
sepsis. However, in the animal study, we found that the HIF-1α factor facilitated the inflammatory response. The expression of
the proteins HIF-1α and STAT3 was increased, and the PD-L1 protein was decreased with the adenovirus Ade-HIF-1α
administration compared with the rats without Ade-HIF-1α injection and with the Ade-control injection. Additionally, the
proteins HIF-1α and STAT3 were coregulated at transcriptional levels during the inflammatory responses of sepsis. Taken
together, monocytes undergo reprogramming to generate immunosuppression through the HIF-1α signaling pathway in the late
phase of sepsis.

1. Introduction

Severe pneumonia with sepsis caused the highest mortality in
intensive care units worldwide due to endogenous endotoxin.
Data revealed that there are nearly 5.3 million deaths from
severe pneumonia-induced sepsis every year [1]. Sepsis
contained two stages: hyperinflammatory and hypoinflam-
matory phases. During the hyperinflammatory stage, the
immune cells are triggered, such as the immune guardian
cells: monocytes and neutrophils, which in turn release abun-
dant inflammatory cytokines (IL-1β, IL-6, and TNF-α), che-
mokines (CXCL1), myeloperoxidases, and proteases to
induce subsequent adaptive immune responses and induce
the activated neutrophil degranulation [2, 3]. In the case of

the hypoinflammatory phase, the immune system is dysregu-
lated likely owing to the impairment of the phagocytic capac-
ity of monocytes and monocyte-derived macrophages [4].
Studies showed that the expression of major histocompatibil-
ity class II antigens and the complement receptor-1 (CR1 and
CD35) was reduced [5, 6] in monocytes, the production of
inflammatory cytokines TNF-α and IL-12 was decreased
and the release of anti-inflammatory cytokines IL-10 and
PGE2 was enhanced, etc. [7, 8], all of which induced the pro-
liferation and function of T cells and natural killer (NK) cells
in the adaptive response [9]. However, some researchers had
identified that the predominant immunosuppressed charac-
teristic was that the monocytes cocommunicate with T cells
in the sepsis process [10]. The monocytes, a kind of antigen-
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presenting cells (APC), acted as instigators of T cell suppres-
sion in adaptive response by mediating the expression of
inhibitory coreceptors such as programmed cell death pro-
tein 1 (PD-1) and cytotoxic T lymphocyte-associated protein
4 (CTLA4) [10, 11]. The researches of Avendano-Ortiz et al.
[12] and Shalova et al. [13] showed that hypoxia-inducible
factor-1α (HIF-1α) regulated functional reprogramming of
monocytes in sepsis to suppress T cells with inhibitory cor-
eceptors, cytokines, and chemokines. It was also shown by
Tsukamoto et al. [14] that the myeloid-derived suppressor
cells (MDSCs) were more suppressive in nature by upregu-
lating the expression of PD-L1 to impair antigen-specific T
cell priming and IgG production in sepsis. Hence, based on
bioinformatic analysis of the GSE46955 data [13], we con-
ducted this study to investigate the inflammatory response
characteristics of the functional disability in monocytes
through the transcription activator hypoxia-inducible fac-
tor-1α (HIF-1α) in mediating the protein signal transducer
and activator of transcription 3 (STAT3) during the severe
pneumonia with sepsis.

2. Materials and Methods

2.1. Data Collection. Data extraction of GSE46955 was
obtained from the Gene Expression Omnibus (GEO;
http://www.ncbi.nlm.nih.gov/geo/) database. From the data,
peripheral blood samples were collected from gram-negative
sepsis patients during sepsis (sepsis) and following their recov-
ery (recovery) status as well as the healthy donor (control).
The platform used in the GSE46955 data was the GPL6104
Illumina HumanRef-8 v2.0 expression beadchip.

2.2. Human Blood Samples. Peripheral blood samples of 30
patients diagnosed with severe pneumonia with sepsis were
collected in the early phases and late phase. Then, the sam-
ples in each phase were equally divided into two groups. 30
blood samples of the healthy participants for the control
group were also collected. Besides, the diagnostic criteria of
early phase sepsis were patients with symptoms of chills, high
fever, poor appetite, fatigue, limb joint soreness, etc., while
the patients showed symptoms of respiratory failure, delir-
ium, etc., in the late sepsis phase. Additionally, permission
to carry out this study was obtained from the Ethical Com-
mittee of our Hospital, and informed consent was obtained
from all the patients participating in the study.

2.3. Animal Sepsis Model. Eighty SD rats aged 8-10 weeks
were purchased from the SiBeiFu Laboratory (Animal Tech-
nology Company, China) and equally divided into four
groups. The rats in one group were used as the control and
the rats in the other three groups were infected with S. pneu-
moniae for more than fifteen days until they had been diag-
nosed to have pneumonia-induced sepsis. The diagnostic
criteria of early sepsis were rats with chills and shortness of
breath, and the rats showed coma and were slightly breathless
in the late phase of sepsis. Besides, one group of rats from the
three experimental groups in the late phase of sepsis were tail
vein-injected with the adenovirus Ade-HIF-1α (175μL, at a
concentration of 1:5 × 106 PFU) for 5 days of treatment; also,

the other sepsis model rats were injected with the same
amount of adenovirus control plasmid for 5 days (Gemma
Biotechnology Co., Ltd., Shanghai). Thereafter, collection of
blood was done from the eyeball and tail vein in the SD rats
in the late phase of sepsis and normal control group. Six lung
tissues from each group were also obtained.

2.4. ELISA Assay. The blood samples obtained both from
the patients and the animals were centrifugated at 1500 g
for 10min, two times. Then, the serum of the blood samples
was dividedly analyzed with ELISA assay kits as per the
manufacturer’s protocol to quantify the concentration of
IL-1β (catalog:70-EK101B-96, homo; catalog:70-EK201B/3-
96, mus; MultiSciences, China), IL-18 (catalog: 70-EK118-
48, homo; catalog: 70-EK218-96, mus; MultiSciences, China),
IL-6 (catalog: 70-EK106/2-96, homo; catalog: 70-EK206/3-96,
mus; MultiSciences, China), IL-10 (catalog: 70-EK110/2-96,
homo; catalog: 70-EK210/3-96, mus; MultiSciences, China),
TNF-α (catalog: 70-EK182-96, homo; catalog: 70-EK282/3-
96, mus; MultiSciences, China), CCL3 (catalog: 70-EK161-
96, homo; catalog: 70-EK261/2-96, mus; MultiSciences,
China), and CCL5 (catalog: 70-EK1129-96, homo; catalog:
70-EK2129/2-96, mus; MultiSciences, China) in triplicates.

2.5. Western Blot. Lymphocytes were obtained from the
blood samples of the patients and the animals with a
Ficoll-Hypaque Solution of humans (catalog: p8900, Solar-
bio, China) and rats (catalog: P8620, Solarbio, China), then
the monocytes were isolated from the lymphocytes with
the Dynabeads® FlowComp™ Human CD14 kit (catalog:
11367D, Invitrogen, supplementary file (available here)).
Later, they were lysed in 1mL of RIPA buffer (Beyotime)
for a duration of 20 minutes on ice; besides, the PMSF, a pro-
tease inhibitor cocktail, was also mixed in the RIPA buffer.
Then, the extracted protein was quantified with a BCA kit
(Pierce, Rockford, IL). Afterwards, separation of proteins
was carried out with sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE), then the protein gel was
transferred to a PVDF membrane (Bio-Rad, Hercules, CA).
After that, the protein membranes were blocked with 5%
nonfat milk for 1 hour, then the protein membranes under-
went incubation overnight at 4°C with primary antibody
STAT3 (1 : 500, catalog: 4904S, CST), HIF-1α (1 : 500, catalog:
36169S, CST), PD-L1 (1 : 500, catalog: 13684S-homo/29122S-
mus, CST), and GAPDH (1 : 1000, catalog: 5174S, CST).
Thereafter, the membranes were washed for 3 times in
TBST/1% Tween-20, then they were incubated with rabbit
polyclonal antibody at 4°C for 60min. Besides, GAPDH
was used as a control. Finally, an ECL detection instrument
(Thermo Fisher Scientific) plus a chemiluminescent sub-
strate were added to visualize the immunoreactive bands
with Bio-RAP.

2.6. Flow Cytometry (FCM). The monocytes were obtained
from peripheral blood samples of the patients with the
Ficoll-Hypaque Solution of human (catalog: p8900, Solarbio,
China) and the Dynabeads® FlowComp™ Human CD14 kit
(catalog: 11367D, Invitrogen); the details of the method
were listed in the supplementary file. Then, the obtained
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monocytes were placed in RPMI-1640 medium with FBS
(Thermo Fisher Scientific, USA). Afterwards, the expression
of CD274 was analyzed by FCM. The brief methods are
listed: the monocytes were fixed and labeled with FITC-
conjugated anti-human CD274 antibody (catalog: MA5-

16848, Invitrogen), anti-mouse CD274 antibody (catalog:
558065, BD Pharmingen™), and allophycocyanin- (APC-)
conjugated anti-human CD14 antibody (catalog: 17-0149-
42, Invitrogen). Thereafter, the cells were washed twice and
resuspended in PBS for flow cytometry analysis. Finally, the
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Figure 2: Its cytokine production in the blood serum. (a) In the clinical study, the higher levels of TNF-α, IL-1β, IL-6, IL-18, CCL3, and CCL5
except for IL-10 in the early phase of sepsis compared with the late phase of sepsis and the healthy participants, n = 30. ∗∗P < 0:01 represented
the significant difference; ##P < 0:01: compared with the healthy participants, the difference was of significance. (b) Ade-HIF-1α injection
increased the production of TNF-α, IL-1β, IL-6, IL-18, CCL3, and CCL5 except for IL-10 in the late stage of the sepsis rat model. ∗∗P <
0:01: compared with the normal control group, the difference was of significance; #P < 0:05: compared with the sepsis rat model group
and the adenovirus control group; &P < 0:05: compared with the sepsis rat model group. Besides, data were presented as mean ± standard
deviation, and data was repeated in triplicate.
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Figure 1: Gene Set Enrichment Analysis of the dataset GSE46955 from the GEO database with Geo2R and DAVID software tools. KEGG and
reactome pathway analysis of the major signaling pathways (a). Gene ontology analysis of the differentially expressed genes, the major
biological process (b), the major cellular component (c), and the major molecular function (d).
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expression of PD-L1 on the monocytes was analyzed with the
FACSCalibur (Bioscience, BD, USA) instrument.

2.7. Immunofluorescence (IF). Monocytes were obtained
from the patients’ blood samples in the primary sepsis stage,
late sepsis stage, and healthy control. Then, the cells were
fixed with 4% polyformaldehyde for 30min and perme-
abilized with 0.1% TritonX-100 for 3min; afterwards, they
were blocked with 10% BSA for 60min at room temperature.
Finally, the cells were incubated overnight with PD-L1 (cat-
alog:13684S, CST) and HIF-1α (catalog: 36169S, CST) at

4°C. Besides, the nucleus DNA was stained with DAPI for
5min (catalog: D9542, Sigma, USA). The images were then
visualized under a confocal microscope (Leica scanning
microscope, Germany).

2.8. Coimmunoprecipitation (Co-IP) Assay. The proteins
were extracted from the collected blood samples of the
patients with a protein extraction RIPA buffer with PMSF
(Beyotime, China). The protein A/G Sepharose (Santa Cruz
Biotechnology) was preincubated with anti-HIF-1α (catalog:
36169S, CST) or anti-STAT3 (catalog: 4904S, CST) antibody
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Figure 3: Its expression of proteins in the monocytes. (a) The protein bands of HIF-1α, STAT3, and PD-L1 in the clinical study. (b) The
downregulated expression of proteins HIF-1α and STAT3 in the late phase of sepsis compared with the primary phase of sepsis; #P < 0:05
represented significant difference. While the upregulation of the immune checkpoint protein PD-L1 expressed on the monocytes in the
late phase of sepsis, #P < 0:05 represented significant difference vs. the primary phase of sepsis. ∗P < 0:05 of proteins HIF-1α and STAT3
in the primary phase of sepsis versus the normal control group. (c) The protein bands of HIF-1α, STAT3, and PD-L1 in the sepsis rat
model study. (d) Upregulated expression of proteins HIF-1α and STAT3 and downregulated protein PD-L1 expression in the sepsis rat
model with Ade-HIF-1α injection; besides the highly expressed protein PD-L1 in the sepsis rats model, ##P < 0:05 of PD-L1 and HIF-1α
versus the normal control group and ov-HIF-1α adenovirus-injected group, ∗P < 0:05 of PD-L1 versus the normal control group; ∗∗P <
0:05 of HIF-1α and STAT3 versus the normal control group, sepsis rat model group, and adenovirus control group; #P < 0:05 of STAT3
versus the normal control group and ov-HIF-1α adenovirus-injected group; data were presented as mean ± standard deviation, and
analysis was replicated in triplicate.
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for 60min at 4°C and IgG antibody as a control. Then, we
suspended the bead-antibody complexes with protein lysate
and washed the beads with an extraction buffer 3 times.
The samples were centrifuged at 3000 g to obtain the immu-
neprecipitates. Then, the immuneprecipitates were analyzed
with the western blot.

2.9. Statistical Analysis. The results were analyzed in the one-
way ANOVAmethod with SPSS 19.0 statistical software. The
results were considered statistically significant at P < 0:05.
The differences presented in graphs were analyzed with
GraphPad Prism 6.0 software.

3. Results

3.1. Bioinformatic Analysis of the Data GSE46955. Gene Set
Enrichment Analysis of the mRNA expression profiles was
carried out for the differentially expressed genes (P < 0:05)
in monocytes of the gram-negative bacteria-induced sepsis
patients from the GEO database (GSE46955). Data showed
that the major signaling pathways were the interaction of
the inflammatory cytokines, TNF signaling pathway, JAK-
STAT signaling pathway, etc. (Figure 1(a)), while the Gene
Ontology of the biological processes was mainly a response
to bacterial, positive regulation of the defense response, leu-
kocyte activation in immune response, etc. (Figure 1(b));
the cellular components were mainly involved in the cell or
granule membrane, etc. (Figure 1(c)); besides, the molecular
functions were mainly about cytokine or chemokine activity,
etc. (Figure 1(d)).

3.2. Immunosuppression of Monocytes via HIF-1α Signaling
Pathway. The analysis of inflammatory cytokine generation
from blood samples of patients and the normal control
showed that during the early phases of sepsis, there was a
proinflammatory status with higher levels of TNF-α, IL-1β,
IL-6, IL-18, CCL3, and CCL5, compared with the late phase
of sepsis except for the production of IL-10 (Figure 2(a)),
while, in the animal study, the administration of adenovirus
Ade-HIF-1α alleviated the immune suppression status in
the late stage of sepsis and results showed that TNF-α, IL-
1β, IL-6, IL-18, CCL3, and CCL5 levels were higher in the
Ade-HIF-1α group than in the Ade-control group, the sepsis
model group without adenovirus injection, and the normal
control group (Figure 2(b)), while the amount of IL-10 was
increased more obviously in the sepsis rat model group com-
pared with the Ade-control group (Figure 2(b)). Addition-
ally, in the clinical study, the western blot analysis of the
proteins HIF-1α and STAT3 showed that the expression of
protein STAT3 was significantly reduced in the late phase
of sepsis compared with the primary phase (Figures 3(a)
and 3(b)). Meanwhile, in the animal study, data presented
that administration of Ade-HIF-1α resulted in an increased
expression of HIF-1α and STAT3 compared with the sepsis
rat model group and the Ade-control group (Figures 3(c)
and 3(d)). Conversely, in the clinical study, the expression
of protein PD-L1 was upregulated in the late phase of sepsis,
while, in the animals’ study, the protein PD-L1 expression
was higher in the sepsis rat model group compared with the

Ade-control group and the Ade-HIF-1α group (Figure 3).
Interestingly, with the coimmunoprecipitation assay, results
showed that proteins HIF-1α and STAT3 coregulated at the
transcriptional level in the immune process of sepsis
(Figures 4(a) and 4(b)). Therefore, monocytes undergo
immunosuppression in the sepsis late phase through the
HIF-1α signaling pathway.

3.3. Overexpression of Immune Checkpoint Protein PD-L1.
As we had found that the monocytes undergo immunosup-
pression through the HIF-1α signaling pathway (Figure 3),
the further study of FCM analysis identified that PD-L1
expressed on the monocytes was higher in the late phase of
sepsis compared with the early phase (Figure 5). Addition-
ally, the immunofluorescence results displayed that the pro-
tein HIF-1α expressed on the nuclear and PD-L1 expressed
on the monocyte membrane (Figure 6). Therefore, mono-
cytes undergo immunosuppression in the late phase of sep-
sis through the HIF-1α signaling pathway, which induced
the upregulation of protein PD-L1 expressed on the mono-
cytes (Figure 7).

4. Discussion

Based on this study, we further confirmed that sepsis was an
uncontrolled inflammatory response syndrome. During the
sepsis process progression, it shifted to the immunosuppres-
sion status. Results showed that the primary phase of sepsis
was associated with hyperinflammation with higher amounts
of proinflammatory cytokine secretion. Conversely, there
was an increased production of anti-inflammatory cytokine
IL-10 in the late phase of sepsis. This conclusion is in consis-
tent with the finding of Shalova et al. [13]. Moreover, we also
found that the HIF-1α was activated in hypoxic condi-
tions during the primary phase in sepsis, which then coacti-
vated the signal transducer and activator of transcription 3
(STAT3) to engage in the inflammatory process. HIF-1
protein is a heterodimer consisting of two subunits: HIF-a
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Figure 4: Coimmunoprecipitation assay of the proteins HIF-1α and
STAT3. (a, b) In clinical blood samples, the proteins HIF-1α and
STAT3 were coregulated at transcriptional levels.
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Figure 6: Its immunofluorescence analysis of proteins HIF-1α and PD-L1 (200x) in the clinical study. (a) The protein HIF-1α (red) is located
in the nuclear, the immune checkpoint protein PD-L1 (green) is expressed on the monocyte membrane, and DAPI was used to stain the
nucleus (blue). (b) Reducing the mean fluorescence intensity (MFI) of protein HIF-1α in the late phase of sepsis, ∗∗P < 0:05 of HIF-1α and
PD-L1 versus the normal control group represented significant difference, while increasing the fluorescence intensity (MFI) of protein PD-
L1 in the late phase of sepsis versus the early phase, #P < 0:05 of PD-L1 versus normal control group represented significant difference.
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and HIF-1b. Under hypoxia condition, the nonhydroxylated
HIF-1α is not degraded. Then, the unmodified protein
dimerizes with HIF-1b and p300 (or CBP) binding to HIF-
1α to activate the transcription of HIF-1 target genes in its
downstream [15, 16]. In a tumor study, researchers Niu
et al. showed that STAT3 activation was proposed to be
upstream of HIF-1α and regulated HIF-1α transcription in
its pathway [17]. Hence, in sepsis, STAT3 also mediated
HIF-1α transcriptional activity in its signaling pathway.
Furthermore, in our clinical study, results also showed that
the proinflammatory response was suppressed in the late
phase of sepsis. Data revealed it not only inhibiting the pro-
inflammatory cytokine/chemokine production, but also
upregulating the expression of protein PD-L1. However, in
the late stage sepsis rat model study, results identified that
hypoxia-inducible factor-1α adenovirus injection alleviated
the immunosuppression status along with higher secretion of
proinflammatory cytokines/chemokines and lower expression
of protein PD-L1. Hence, the immune checkpoint protein
PD-L1 expressed on the monocyte membrane also partici-
pated in the sepsis immunosuppression response. Dissatis-
fied, in our study, we did not identify which gene or protein
directly regulated the expression of PD-L1 in the HIF-1α
downstream signaling pathway.

Immune checkpoints (ICs) played pivotal roles in
immune surveillance in cancer [18]. They were ligands of
lymphocyte receptors engaging in modulating the duration

and initiation of adaptive immune response [19]. Therefore,
it is possible that the induction of immune tolerance in
sepsis inhibited the T cell effector response through PD-L1
in monocytes, which was in line with the work of Chang
et al. [20] and Zhang et al. [21]. It was declared that PD-L1
was a sepsis phenotype playing roles in the communication
among monocytes and T lymphocytes. Therefore, further
studies are required to reveal the mystery of PD-L1 in the
communication among monocytes and T lymphocytes. In
addition, a study by Deng et al. [22] claimed that the core
circadian clock gene, BMAL1, upregulates the pyruvate
kinase M2 (PKM2) to prevent the development of sepsis
by coregulating programmed cell death-ligand 1 (PD-L1) in
macrophages. Hence, this is also a new approach for us to
direct our further study.

The inflammatory response through the HIF-1α signal-
ing pathway is mainly due to IL-6/STAT3 axis and NF-κB.
Studies indicated that the axis NF-κB2/p100 [23] or the
phosphorylated NF-κB [24, 25] and the NF-κBp65/RelB het-
erodimers [26] played pivotal roles in endotoxin tolerance
during sepsis in human monocytes. Furthermore, the study
of Qin et al., clearly declared that SIRT5 competed with
SIRT2 to interact with NF-κBp65 to increase acetylation of
p65, which promoted the production of cytokines against
the progression of sepsis [27]. Hence, it is possible that the
protein NF-κB also engages in the sepsis immune response
in the HIF-1α signaling pathway, which also awaits further
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Figure 7: The inflammatory response through the HIF-1α signaling pathway. The inflammatory cytokine IL-6 and other inflammatory
signals bind with the receptors expressed on the immune cells (monocytes, etc.) to activate the downstream signals. In our study, the
proteins HIF-1α and STAT3 were activated to induce inflammatory response in the early phase of sepsis. While, in the late phase of
sepsis, the immune checkpoint protein PD-L1 expressed on the monocyte membrane was upregulated to generate immunosuppression.
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study. Taken together, based on our study, the immune
checkpoint protein PD-L1 overexpressed in monocytes dur-
ing the late phase of sepsis contributed to immunosuppres-
sion in severe pneumonia-induced sepsis through the HIF-
1α signaling pathway.

5. Conclusion

Monocytes undergo immunosuppression in the late phase of
sepsis through the HIF-1α signaling pathway, which thus
inhibited the production of proinflammatory cytokines and
induced the upregulation of protein PD-L1 expressed on
the monocytes.
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