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Abstract

The purpose of this review is to explore how metabolomics can help uncover new biomarkers and mechanisms for cardiovascu-
lar ageing. Cardiovascular ageing refers to cardiovascular structural and functional alterations that occur with chronological
ageing and that can lead to the development of cardiovascular disease. These alterations, which were previously only detectable
on tissue histology or corroborated on blood samples, are now detectable with modern imaging techniques. Despite the emer-
gence of powerful new imaging tools, clinical investigation into cardiovascular ageing is challenging because ageing is a life
course phenomenon involving known and unknown risk factors that play out in a dynamic fashion. Metabolomic profiling mea-
sures large numbers of metabolites with diverse chemical properties. Metabolomics has the potential to capture changes in bio-
chemistry brought about by pathophysiologic processes as well as by normal ageing. When combined with non-invasive
cardiovascular imaging tools, metabolomics can be used to understand pathological consequences of cardiovascular ageing. This
review will summarize previous metabolomics and imaging studies in cardiovascular ageing. These methods may be a clinically
relevant and novel approach to identify mechanisms of cardiovascular ageing and formulate or personalize treatment strategies.
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Introduction

Metabolomics and cardiovascular imaging have been used as
a strategy to study various disease states. However, combin-
ing metabolomics and imaging to better understand cardio-
vascular ageing is still in its infancy, and there are minimal
published data. The purpose of this review is to consider
the clinical manifestations and pathologic mechanisms for
cardiovascular ageing and explore how metabolomics and
cardiovascular imaging can help uncover new biomarkers
and mechanisms for cardiovascular ageing.

Metabolomics

Metabolomic profiling is a systems biology tool that mea-
sures large numbers of metabolites with diverse chemical
properties. The metabolome differs from the genome/

transcriptome/proteome because its net output is influenced
by genomic, transcriptomic, and proteomic variability. Meta-
bolomics thus provides an integrated profile of an individual’s
biological status: ‘the genome defines what may happen, the
metabolome defines what has happened’.1 Metabolomics
profiles are also influenced by environmental exposure.2–8

There are two main analytical approaches used in metabolo-
mics research: targeted and untargeted. Untargeted
approaches involve comprehensive analysis of all the
measurable analytes in a sample. The advantage to
untargeted approaches is broad coverage of potentially im-
portant analytes and/or unbiased detection of biomarkers.
The disadvantage to untargeted approaches includes a
workflow that makes analysing large sample sets difficult, rel-
ative quantitation of compounds, a bias towards identifying
compounds with high abundance, and frequent inability to
identify peaks of interest. Targeted approaches involve mea-
suring pre-defined metabolites. Advantages to targeted
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approaches include use of internal standards that allows
identification and absolute quantitation of analytes, including
low abundance compounds as well as relatively fast
workflow. The disadvantage of targeted metabolomics is that
clinically important analytes can be overlooked. Metabolo-
mics techniques have been applied to the study of human
disease with novel findings that have helped our understand-
ing of insulin resistance and diabetes,9,10 chronic kidney
disease,11,12 depression,13,14 and cardiovascular disease
(CVD).15–21

Cardiovascular ageing

Description

By the year 2030, approximately 20% of the world population
will be aged 65 years or older.22 CVD is a leading cause of
death in older adults,23 which underscores the importance
of gaining a better understanding of the risk factors for CVD
in older patients. The ageing process can lead to pathologic
effects on the cardiovascular system, which can contribute
to CVD.23 Cardiovascular ageing refers to cardiovascular
structural and functional alterations that may occur with
chronological ageing and that can lead to the development
of CVD. A prominent age-related change is increased stiffness
of central arteries referred to as vascular ageing.24 This re-
sults from loss of elastic fibres and increase in collagen in
the large elastic arteries.25 Arterial stiffness exposes the
endothelium to greater haemodynamic loading, thus promot-
ing endothelial activation, inflammation, and damage.26 In-
creased arterial stiffness can affect ventricular relaxation by
altering afterload.27,28 Altered relaxation is associated with
cellular hyperplasia and fibrosis that can ultimately worsen
left ventricular diastolic function.29 Impairments in left ven-
tricular relaxation cause the left atrium to compensate with
increases in left atrial pressure to fill the left ventricle.30,31 El-
evated left atrial pressure results in left atrial enlargement
secondary to pressure and volume overload.31 With progres-
sive worsening of diastolic function, left atrial volume in-
creases, giving rise to complications including atrial
fibrillation and stroke.32,33 Large-scale cohort studies have
found increased incidences of chronic heart failure, atrial fi-
brillation, and left ventricular hypertrophy among ageing
older adults.33–39 Several mechanisms have been proposed
to be involved in the pathogenesis of cardiovascular ageing
including inflammation, redox stress, and endothelial
dysfunction.

Inflammation

Inflammation is a well-established driver of ageing and
ageing-related diseases.40,41 The inflammatory process

evolved as an immunologic defence system.42 Acute inflam-
mation acts as a response to noxious agents such as path-
ogens, allergens, and toxic substances.42 The response
includes activation of immune cells to eliminate pathogens
and tissue remodelling processes to repair damage. How-
ever, when the acute inflammatory response fails to re-
solve, more components are activated to generate a
continued immune activation that leads to longer-term
chronic inflammation.43–45 Ageing is linked to dysregulation
of the immune response with release of inflammatory me-
diators and cytokines, giving rise to a concept of
age-related chronic inflammation known as ‘senescent
inflammation’.46–48 This chronic low-grade inflammatory
state is characterized by increased levels of circulating
cytokines such as interleukin-1, interleukin-6, and tumour
necrosis factor.47,48 In addition, age-related changes in
adipose tissue content and function enhance release of
pro-inflammatory cytokines.49,50 Inflammation is associated
with changes in metabolism pathways including fatty-
acid-derived lipid signalling molecules.51,52 Dietary and
gut-microbiome-derived metabolites have also been impli-
cated in human chronic inflammatory diseases.53 These
processes promote recruitment of macrophages and T cells
into tissues like myocardium and vascular walls, altering
vascular structure and function, leading to arterial
stiffening, atherosclerosis, and hypertension.54 Cardiac
myofibroblasts respond to cytokines with resulting changes
in cell proliferation, increased expression, and activity of
extracellular matrix degrading metalloproteinases.55,56 Over
time, these lead to fibrotic cardiac remodelling and myocar-
dial dysfunction.57 Furthermore, cardiac fibrosis and
modification contribute to increased vulnerability to cardiac
arrhythmias.58

Redox stress

The ageing heart shows changes in mitochondrial function,
particularly in electron transport chain activity.59,60

Mitochondrial oxidative stress is a molecular hallmark of
cardiovascular ageing. Overproduction of reactive oxygen
species (ROS) in the mitochondrial electron transport chain
leads to formation of highly reactive products such as perox-
ide that promotes cellular damage including DNA mutations.
Redox stress can cause inflammation and activation of cell
death pathways and may eventually contribute to cellular
senescence.61,62 A rodent model of ageing has shown in-
creased vascular endothelium redox stress in older animals.
In this study, elevated levels of a major class of systemic
bioactive lipids known as lysophosphatidylcholines (LPCs)
contribute to the build-up of redox stress.63 LPCs stimulate
oxidative stress through interaction with overactive
5-lipoxygenase pathways in ageing endothelial cells.
LPCs can also stimulate ROS production in human
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monocyte-derived macrophages found in atherosclerotic ar-
terial walls.64 These ROS-stimulated macrophages go on to
activate expression of urokinase-type plasminogen activator
and its cell surface receptor. These observations at the cellu-
lar level may account for clinical findings. Levels of soluble
urokinase-type plasminogen activator receptor have been
useful for predicting risks of myocardial dysfunction in aged
adults.65 LPC has also been shown to be predictive of ageing
phenotypes such as cognitive impairment and gait speed in
older adults.66,67

Endothelial function

Ageing alters the endothelium and leads to reductions in
vasodilatory and antithrombotic properties while also pro-
moting atherogenesis and thrombosis.68,69 The vascular
changes that occur with ageing result in large artery thicken-
ing and stiffness in otherwise healthy older persons who are
prone to increases in systolic and pulse pressures. These
functional changes in vessel haemodynamics precede clinical
disease and are associated with higher risks for developing
atherosclerosis, hypertension, and stroke.23,70–72 Brachial ar-
tery flow-mediated dilation is a standard method for
assessing endothelial function in a clinical research setting.
Nitric oxide supplementation has been shown to improve
brachial artery flow-mediated dilation.73–75 Among
middle-aged and older adults, a 10 week trial of sodium
nitrite supplementation improved endothelial function
and carotid artery elasticity.73 Metabolites such as
glycerophospholipids and fatty acyls predicted improved vas-
cular function with nitrite.76 Interestingly, improved endothe-
lial function occurred independently of well-known risk
factors such as blood lipids, glucose, blood pressure, and
body mass. These findings suggest that circulating metabo-
lites may be helpful in gaining mechanistic insight into thera-
pies that target endothelial function.76–78

Dietary supplements have been shown to alter markers of
redox stress, improve endothelial function, and reduce risks
of chronic disease and premature ageing.79,80 Circulating me-
tabolites derived from dietary polyphenols (such as blue-
berries) have been linked to more robust vascular
flow-mediated dilatation, attenuated lipotoxicity-induced en-
dothelial dysfunction, and may complement therapies to re-
duce vascular complications.81,82 All these suggest an
important role for antioxidant and antioxidant defence for
proper maintenance of endothelial cell function.

These mechanistic and interventional studies have contrib-
uted to our understanding of the pathogenesis of cardiovas-
cular ageing. Circulating metabolites have been figured
prominently in many of these studies, highlighting the poten-
tial role for metabolomics in elucidating the underlying mech-
anisms through which ageing exerts pathological changes in
the cardiovascular system.

Metabolism, ageing, and the heart

Mitochondrial function is altered in the ageing heart.59,60

Changes in mitochondrial function have a knock-on effect on
central carbon and related pathways. Fatty acid oxidation
and ketone use declines with ageing in mouse hearts.83,84

Reprogramming of cardiac metabolism away from fatty acid
oxidation is a prominent feature of heart failure85,86 and may
partly explain changes in heart function with ageing. The
sphingolipids are a major class of lipids that play an important
role in tissue signalling and are active players in diseases such
as insulin resistance87 and CVD.88 Sphingolipid physiology
changes with ageing89 and may contribute to ageing-related
decline in heart function. Declining mitochondrial function
with ageing has been linked to redox state, nicotinamide ade-
nine dinucleotide levels, and the activity of nicotinamide ade-
nine dinucleotide-dependent deacylases known as the
sirtuins.90 The sirtuins can be activated by caloric restriction,
a well-described and potent stimulus for longevity in animal
models,91 as well as resveratrol, a component of red wine.92

Sirtuins can modulate tissue metabolic activity93 and have
been linked directly to CVD.94 Alpha-ketoglutarate is an impor-
tant central carbon metabolite and intermediate in the tricar-
boxylic acid cycle. Alpha-ketoglutarate has been shown to
extend lifespan in worms,95 flies,96 and mice97 likely through
interactions with mammalian target of rapamycin and adeno-
sine monophosphate-activated protein kinase pathways. The
related tricarboxylic acid cycle intermediate succinate has
been shown to accumulate during ischaemia and contributes
to ROS production and damage during reperfusions.98

Metabolomics and cardiovascular
ageing

Challenges

Many biomarkers are in use for detecting risk of CVD as well
as for monitoring response to therapy. In contrast, few bio-
markers have been identified for evaluating cardiovascular
ageing. Because metabolomics provides an integrated profile
of an individual’s biological status, it may serve as a useful
tool to help us understand the complexities that surround
the mechanisms of pathologic ageing. The challenge going
forward will be to design methods and studies to help iden-
tify new biomarkers that can predict risk of disease and/or
follow disease progression.

Metabolomics and environmental exposure

Because ageing is a life course phenomenon, environmental
exposure is an important consideration. Dynamic lifestyle
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factors such as physical activity,99 alcohol use, and food in-
take can alter the course of physical ageing.100,101 Dietary as-
sessment in research studies is challenging. Dietary
exposures are hard to measure, and established methods
such as dietary recall and food frequency questionnaires have
their limitations. Similar challenges exist for quantifying other
important environmental exposures including lifetime exer-
cise patterns, bouts of acute and chronic illness, medication
and other drug use, and exposure to toxins from air pollution.
Given that these dynamic factors all converge upon the
human metabolome, metabolomics might provide a compre-
hensive and integrated picture of these lifelong environmen-
tal exposures. An example of how metabolomics can detect
differences in environmental exposure comes from studies
of host–gut microbiome interactions. The INTERMAP study
performed nuclear magnetic resonance-based urinary metab-
olome analyses among African–American compared with
non-Hispanic white Americans, where they found higher
blood pressure levels among African–American men and
women.102 They found significant differences in metabolites
between the two groups that were related to differing food
intakes between the groups, as well as differences in
gut microbiota. Another series of studies identified
trimethylamine N-oxide, a diet-derived gut microbial metabo-
lite, as an environment-linked factor associated with
increased cardiovascular and mortality risk.103–105 Another
lifestyle exposure such as exercise may also alter metabolo-
mics profiles.106,107 Exercise training may produce wide-
spread changes in energy metabolism, owing to increases in
lipolysis, fatty acid oxidation, or ketogenesis.106 Differences
in exercise intensity may also result in different profiles.
Under moderate-intensity exercise, for example, medium
chain acylcarnitines appear to dominate, to support fat
oxidation.108

These studies highlight the importance of considering envi-
ronmental exposure such as diet on cardiovascular health
and strengthen the evidence base for applying metabolomics
profiling onto life course exposures such as ageing.

Metabolomics and cardiovascular disease in the
elderly

While there are community-based studies that have looked at
the association between metabolomics signatures, CVD, and
cardiovascular function,109,110 few have studied the elderly.
A study by Rizza et al.111 looked at a high-risk cohort of el-
derly subjects in which over half of the participants had doc-
umented coronary artery disease or stroke. Rizza et al. found
a distinct signature comprising medium-chain and long-chain
acylcarnitines that predicted major adverse cardiac events in
this high-risk elderly population. Because these acylcarnitines
are derived from fatty acid oxidation,112 this finding suggests
that mitochondrial beta-oxidation pathways are linked to

increased cardiovascular risk. In an interventional study that
investigated the effect of Mediterranean diet on incident
CVD, participants with higher baseline concentrations of
short-chain, medium-chain, and long-chain acylcarnitines
had higher risk of CVD and stroke.113 In both of these studies,
metabolomics has been able to uncover new associations be-
tween disease and altered fuel metabolism pathways. The
studies also show how metabolomics can be complementary
to other omics technologies that have helped to unravel dis-
ease mechanisms in complex phenotypes such as heart fail-
ure, yielding biomarkers for diagnosis, prognosis, or
identifying new therapeutic targets.114

Table 1 contains a summary of human studies (selected for
older age groups) that have used metabolomics to study CVD
among older adults.

Imaging as a tool to detect and manage
cardiovascular ageing

Modern cardiovascular imaging has evolved to detect under-
lying disease that was previously only detectable on tissue
histology or corroborated on blood samples. Disease pro-
cesses commonly involved in ageing, such as inflammation,
may be characterized by cardiovascular imaging (Figure 1).
For example, in the setting of acute myocardial infarction, im-
aging of the myocardium via absolute native T1 values on
magnetic resonance or fluorodeoxyglucose positron emission
tomography correctly determined level of myocardial injury
as well as systemic inflammation response.120 Mitochondrial
dysfunction has been implicated as a mechanism involved
in cardiovascular ageing and can be assessed with imaging
tools such as hyperpolarized carbon-13 magnetic resonance
spectroscopy in animals121,122 and phosphorus-31 spectros-
copy in humans.123 Endothelial dysfunction has traditionally
been characterized by reactive hyperaemia-peripheral arte-
rial tonometry.124,125 In recent times, coronary endothelial
dysfunction, which leads to coronary microvascular dysfunc-
tion, has been quantitatively measured in humans by posi-
tron emission tomography.126–128 Effects of environmental
exposures such as smoking and infective agents on the car-
diovascular system have also been imaged by cardiovascular
imaging techniques.129–131

Quantifying subtle functional cardiovascular changes
through imaging is important in the setting of preclinical dis-
ease and may be relevant in ageing. In a large community
study from MESA (Multi-Ethnic Study of Atherosclerosis),
older age was associated with presence of myocardial fibrosis
measured by T1 mapping on cardiac magnetic resonance
imaging.132 Cardiovascular imaging has also refined clinical
phenotyping. Most cohorts define the presence of clinical dis-
ease solely by development of cardiovascular events such as
acute myocardial infarction. This clinical event-driven
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Table 1 Summary selection of human studies on metabolomics and cardiovascular disease endpoints among older adults

aHuman studies,
publication year Study population Results Inferences Details/limitations

Rizza et al.,
2014111

N = 67
Mean age 85 ± 3 years
High rate of prior CVD
(85%)

Medium-chain and
long-chain acylcarnitines
were associated with
major adverse cardiac
events (MACE)

Ageing mitochondrial
dysfunction associated
with MACE

Small sample size;
high-risk cohort

Ganna et al.,
2014115

N = 1028
Average age 70 years

Lipid-related metabolites
lysophosphatidylcholine,
monoglyceride, and
sphingomyelin were
associated with incident
coronary heart disease
over 3.9 to 10 years of
median follow-up

Potential causal role in
coronary heart disease
development

Population-based,
longitudinal cohorts;
integrated genetic and
metabolomic analyses

Cheng et al.,
2015116

N = 515
Average age 55 to
64 years across groups

Metabolite panel
consisting of
methylarginine/arginine
ratio, butyrylcarnitine,
spermidine, total
essential amino acids,
and prognosticated
endpoints of death or
heart failure-related
hospitalization over 6
and 12 months

Metabolite panel
provided better
prognostic value over
B-type natriuretic
peptide

Targeted metabolomics;
participants were in heart
failure stages A, B, and C

Zordoky et al.,
201519

Total N = 82
Heart failure with
preserved ejection
fraction (N = 24)
Heart failure with
reduced ejection fraction
(N = 20)
Age-matched controls
(N = 38)
Average age 61 to
67 years across groups

Short-chain
acylcarnitines were
higher in both HFpEF and
HFrEF than in controls
Medium-chain and
long-chain acylcarnitines
were higher in HFpEF
than both HFrEF and
controls

Metabolomics
fingerprint of HFpEF is
distinct from that of
HFrEF and controls

Small sample size; 181
metabolites; other
heterogeneous factors
involved such as
background coronary
artery disease and
medication usage

Hunter et al.,
201616

CATHGEN study of
sequential patients who
underwent cardiac
catheterization
Comparison between
HFpEF cases (N = 282)
and HFrEF (N = 279) and
controls (N = 191)
Average age 55 to
66 years across groups

Long-chain acylcarnitines
were higher in HFrEF
than HFpEF, increasing
linearly with declining
ejection fraction

Possible shared
mechanism in HF
regardless of ejection
fraction

Replication cohort data
unavailable; cardiac
catheterization cohort
could have
over-represented
ischaemic phenotypes;
clinically obtained data;
targeted metabolite
profiling

Ahmad et al.,
201615

N = 453 chronic systolic
heart failure patients (HF-
ACTION cohort)
Median age 59 years

Long-chain acylcarnitines
were associated with
increased risk of all-cause
mortality, all-cause
hospitalization,
cardiovascular death,
and cardiovascular
hospitalization

Greater circulating levels
of long-chain
acylcarnitines predicted
functional status and
mortality in patients
with chronic systolic HF

Subset study from
HF-ACTION cohort

Bedi Jr et al.,
2016117

N = 15 patients with
chronic dilated
nonischaemic
cardiomyopathy
N = 20 controls
Transmural sampling of
the left ventricular
myocardium obtained
during left ventricular
assist device
implantation or heart
transplantation

Increased abundance of
ketogenic
β-hydroxybutyryl-CoA,
decreased levels of
myocardial β-OH-
butyrate, increased
circulating levels of
ketones

Increased ketone
utilization in the end-
stage failing heart

End-stage heart failure;
male gender
predominance in the
failing heart group

(Continues)
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approach may underestimate actual disease among appar-
ently healthy controls who may have substantial asymptom-
atic coronary atherosclerosis.133 The use of non-invasive

imaging techniques to identify and better classify preclinical
disease will enhance potential of novel omics technologies
to discover early biomarkers.

Table 1 (continued)

aHuman studies,
publication year Study population Results Inferences Details/limitations

Wang et al.,
2017118

PREDIMED trial
N = 230 incident CVD
cases
N = 787 random
participants
Patients were
randomized to
Mediterranean diets or
control diet
Average age 67 to
69 years across groups

Plasma ceramide
concentrations
associated with elevated
risk of composite CVD
outcome (acute
myocardial infarction,
stroke, and
cardiovascular death)

Mediterranean diet may
have the potential to
mitigate detrimental
effect associated with
elevated baseline plasma
ceramide concentrations
on CVD risk

Participants were
European Caucasians,
limits generalizability to
other populations; high
CVD risk profiles

Menni et al.,
2018119

N = 617 middle-aged
women
Average age 61 years
TwinsUK cohort

Pulse wave velocity
correlated negatively
with gut microbiome
alpha diversity, adjusted
for levels of gut-derived
metabolites
(indolepropionate,
trimethylamine oxide,
and
phenylacetylglutamine)

Gut microbiome diversity
is inversely associated
with arterial stiffness in
women, only minimally
mediated by metabolic
syndrome

Analyses limited to
middle-aged white
female twins; faecal
sampling not necessarily
taken at time of arterial
stiffness assessment

CVD, cardiovascular disease; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced
ejection fraction.
aStudies selected based on human studies, older age groups, and cardiovascular endpoints/surrogate endpoints.

Figure 1 Cardiovascular ageing: metabolomics and associated approaches. The curved arrow depicts the course of cardiovascular (CV) ageing starting
with normal health. Proposed underlying disease mechanisms are highlighted (left). As cardiovascular ageing progresses through the stages, tools such
as CV imaging and metabolomics may be useful for detecting CV changes and disease mechanisms (unidirectional dashed arrows). As cardiovascular
ageing becomes clinically apparent, insights from these changes and mechanisms may continue to assist in formulating and personalizing treatment
strategies (bidirectional arrows). BP, blood pressure.
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Another key concept is that changes should occur as a re-
sult of ageing and be viewed distinctly from concomitant
risk factors that frequently accompany ageing. Pre-specified
cohorts that study cardiovascular ageing independently of
traditional risk factors might be necessary. Analysis of com-
munity and disease cohorts that include samples acquired
prior to disease development may help to uncover novel
biomarkers and pathways associated with ageing-related
diseases, CVD.

When used in conjunction with metabolomics techniques,
non-invasive cardiovascular imaging represents a way to
understand pathological consequences of ageing-related
cardiovascular changes in preclinical cohorts.134,135 In a
community-based study of older adults without clinical CVD,
left atrial function assessed by cardiac magnetic resonance
was used as a marker of cardiovascular ageing.135 Left atrial
function as represented by left atrial reservoir and conduit
phases is known to decrease with age.136 This study
highlighted the impact of age on left atrial function, indepen-
dent of traditional risk factors. Importantly, these specific left
atrial functions were associated with a metabolic signature
comprising medium-chain and long-chain dicarboxyl carni-
tines, serine, citrulline, and valine molecules,135 highlighting
the potential role of mitochondrial fuel metabolism on path-
ogenesis of atrial ageing. In another similar analysis, an imag-
ing marker of arterial stiffness, known as pulse wave velocity
assessed by applanation tonometry, was independently asso-
ciated with a similar signature of medium-chain and
long-chain dicarboxyl carnitines, independent of blood
pressure.137 These results demonstrate how preclinical imag-
ing using established and new imaging markers, when used in
conjunction with metabolomics, may be a clinically relevant
and novel approach to help identify mechanisms of cardio-
vascular ageing. In a study that integrated whole-genome se-
quencing, comprehensive metabolomics, and advanced
human body imaging (by echocardiography, electrocardiogra-
phy, computed tomography, and magnetic resonance imag-
ing), genomics and metabolomics association analysis
identified over 5% of heterozygotes with phenotypic manifes-
tations affecting serum metabolite levels.138 In the near fu-
ture, precision medicine strategies may require integrated
methodologies to identify and predict risk of disease prior
to disease manifestation.

Risk stratification for cardiovascular ageing

For metabolomics approaches to be clinically relevant for fu-
ture applications in cardiovascular ageing, we must move be-
yond mere cross-sectional type analyses. Examples of how to
proceed can be found in the literature. In the area of cardio-
vascular risk stratification, metabolomics has complemented
well-established risk scoring systems to provide finer cardio-
vascular risk stratification,139 efficiently predicting CVD event

risk in CVD cohorts, such as patients with coronary artery
disease.88,140 In clinical trials that target established risk fac-
tors such as hypertension and dyslipidaemia, metabolomics
has been used before and after intervention to study the ef-
fects of salt-lowering141 and novel statin therapies.142 Life-
style factors such as diet factors have also used
metabolomics to quantify effect of diet interventions on
CVD incidence.143,144 Physical activity, a key lifestyle factor
that influences cardiovascular health, has also been shown
to be associated with wide spectrum of acylcarnitines and
amino acids.145 These studies point to the role that metabo-
lomics can play in a range of clinical settings, from observa-
tional studies, to risk stratification, to clinical trial
interventions, to lifestyle-type evaluations. All of these set-
tings are pertinent to the entire life course phenomenon of
ageing. What remains to be done is for more similar type
study designs to be applied onto ageing cohorts, deeply fo-
cused on measuring age as a key exposure of interest, and in-
tervening on specific mechanisms of cardiovascular ageing.

In summary, as cardiovascular ageing progresses, tools
such as cardiovascular imaging and biological tools such as
metabolomics may be useful for detecting early changes
and also study mechanisms of progression. As cardiovascular
ageing becomes clinically apparent, insights from these
mechanisms may assist in formulating and/or personalizing
treatment strategies (Figure 1).

Conclusions and implications

Cardiovascular ageing is a pathologic process that likely in-
volves inflammation, redox stress, and endothelial dysfunc-
tion as well as other undefined mechanisms. Metabolomics
has the potential to be a powerful tool to help unravel mech-
anisms of cardiovascular ageing and to identify new bio-
markers that predict risk and/or monitor disease
progression. Reaching these milestones will require more
large-scale studies with robust cross-validation across
cohorts.
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