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Abstract: Benzo(a)Pyrene (BaP) is one of the most widespread polycyclic aromatic hydrocarbons
(PAHs) with endocrine disrupting properties and carcinogenic effects. In the present study, we
tested the effect of BaP on thyroid development and function, using zebrafish as a model system.
Zebrafish embryos were treated with 50 nM BaP from 2.5 to 72 h post fertilization (hpf) and compared
to 1.2% DMSO controls. The expression profiles of markers of thyroid primordium specification,
thyroid hormone (TH) synthesis, hypothalamus-pituitary-thyroid (HPT) axis, TH transport and
metabolism, and TH action were analyzed in pools of treated and control embryos at different
developmental stages. BaP treatment did not affect early markers of thyroid differentiation but
resulted in a significant decrease of markers of TH synthesis (tg and nis) likely secondary to defective
expression of the central stimulatory hormones of thyroid axis (trh, tshba) and of TH metabolism
(dio2). Consequently, immunofluorescence of BaP treated larvae showed a low number of follicles
immunoreactive to T4. In conclusion, our results revealed that the short-term exposure to BaP
significantly affects thyroid function in zebrafish, but the primary toxic effects would be exerted at
the hypothalamic-pituitary level thus creating a model of central hypothyroidism.

Keywords: zebrafish; hypothalamic–pituitary–thyroid axis; endocrine disruptor chemicals;
benzo(a)pyrene; central hypothyroidism

1. Introduction

Thyroid follicles synthesize and secrete thyroid hormones (TH) through the activation
of the hypothalamic–pituitary–thyroid (HPT) axis. Briefly, the hypothalamus secretes the
thyroid-releasing hormone (TRH) that induces the pituitary gland to release the thyroid-
stimulating hormone (TSH) which promotes the synthesis of TH, thyroxine (T4), and
triiodothyronine (T3). TH are essential for regulating development, growth, morphogene-
sis, basal metabolism, reproduction, and behavior in vertebrate species [1]. There is a large
body of evidence accumulated in the last two decades between environmental exposure to a
specific class of chemicals and its effects on the endocrine system. The exposure to environ-
mental toxins termed endocrine disrupting chemicals (EDCs), including polychlorinated
biphenyls, dioxins, phthalates, and polycyclic aromatic hydrocarbons, has been shown to
interfere with production, release, transport, metabolism, binding, and action of hormones
necessary for the regulation of developmental processes maintenance of homeostasis [2,3].
EDCs have potential thyroid disruption effects, but the in vivo studies are scarce. Toxicity
on the HPT axis may be caused by several mechanisms, and each EDCs may affect the
thyroid system at different levels counteracting the expression of TSH, the activity of the
sodium-symporter (NIS) and thyroperoxidase (TPO) enzyme, or the peripheral metabolism
and action of TH operated by the deiodinase (DIO1-3) enzymes and the TH receptors
(THRA and THRB), respectively [2–6].
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Polycyclic aromatic hydrocarbons (PAHs) are a large group of diverse organic com-
pounds that contain two or more fused aromatic rings, many of which are classified as
organic pollutants with toxic and carcinogenic effect, constituting a significant hazard
for human health [7,8]. In fact, PAHs are associated with an increased risk of skin, lung,
bladder, and gastrointestinal cancers, likely causing DNA damage and insertion of dele-
terious mutations [7,9]. PAHs are introduced into the environment via natural emission
(e.g., forest-prairie fires and volcanic eruption), but largely arise from human activities,
such as vehicle emissions, oil shipping, and refineries [7]. Since PAHs are semi-volatile
compounds, they are present in both gas and particulate phases under ambient conditions,
leading to different biologically effective pathways through inhalation, ingestion, or der-
mal contact [10]. Despite improved legislation and monitoring, PAHs are still found in
concentrations above the limits of the law in many countries, and it is fundamental to
establish their sources and potential toxic effects. Currently, 16 PAHs have been designated
as priority contaminants and confirmed as EDCs by the US Environmental Protection
Agency (US-EPA) (archive.epa.gov, accessed on 20 May 2022). In Southern Italy, a case
study reported a potential contamination by PAHs of the metropolitan areas wherein an
increased lifetime cancer risk exists [11,12]. In Chinese surface water, PAH pollution is a
serious problem because it causes reproductive damages to marine organisms [13]. An-
imal studies have shown that exposure to PAHs mixture increased plasma vitellogenin
levels and disrupted gametogenesis in Atlantic cod, and induced lipid peroxidation and
reproductive toxicity in sea turtles and fish [14–17]. Fish can biotransform PAHs into
reactive metabolites with high reactivity for the DNA causing genotoxic effects or inducing
oxidative stress through the production of reactive oxygen species (ROS) [18]. Regarding
the thyroid function, epidemiological studies have associated PAHs exposure to decreased
levels of circulating and tissue TH, which seems to be caused by a direct toxicity on thyroid
gland, or by interfering with DIO2 synthesis or TH binding protein expression [2,4,5].

The present study is focused on benzo(a)pyrene (BaP), one of the most widespread
PAHs and usually used as marker of PAH contamination in the atmosphere and marine
environments [2,19]. BaP was mostly studied due to its carcinogenic properties and re-
productive toxicity on marine species, but its effects on thyroid function are not well
documented. Liza abu fish (mullet) injected with BaP showed a significant decrease in
TH plasma level and increased TSH concentration, and pathological alterations of thyroid
follicles [20], but the mechanism underlying thyroid toxicity is far from clarified.

In this work, we used the zebrafish model to exploit the effects of BaP on thyroid
system, including early specification of thyroid primordium, TH synthesis, HPT axis
regulation, and TH metabolism and action.

2. Results

Zebrafish embryos exposed to high BaP dosage (50 nM) developed normally up
to 3 days post fertilization (dpf), where the survival rates were equivalent to that of
controls treated with 1.2% DMSO. Interestingly, most of the survived BaP treated embryos
died between 3 and 5 dpf, a developmental window characterized by molecular and
morphological changes required for larval transition (Supplementary Figure S1).

Regarding the analysis of thyroid development and function, stable transcription of
the internal control was vital for the validity of the qRT-PCR examination. Among the
house keeping genes, beta-actin proved to be the most suitable as internal reference. The
transcriptional expression of genes responsible for early thyroid specification (nkx2.4b,
pax2a and hhex), TH synthesis (tg, nis and tpo), transport (mct8), metabolism (dio2 and dio3),
and action (thraa and thrb) were investigated in zebrafish embryos after the BaP treatment
at different developmental stages (Figure 1A).

At 28 hpf, no significant differences in the expression of nkx2.4b, pax2a, and hhex were
detected in BaP treated embryos compared to controls (Figure 1A). Consistently, WISH of
nkx2.4b, pax2a at the level of thyroid primordium appeared unaffected in the BaP treated
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embryos (Supplementary Figure S2). The whole data suggested that the early events
responsible for thyroid primordium specification were not disturbed by BaP exposure.

Concerning TH synthesis (Figure 1B), the expression of tg was only slightly reduced
in BaP treated embryos at 54 hpf, while nis and tpo were significantly diminished and
increased, respectively. At 80 and 120 hpf both tg and nis were significantly reduced in
BaP treated embryos, where the tpo levels were mildly reduced. Moreover, BaP exposure
showed to have a strong impact on the HPT axis. At 54, 80, and 120 hpf, both hypothalamic
and pituitary markers (trh and tshba) were significantly lower in BaP-treated embryos. The
tshr was decreased in the BaP embryos at 80 hpf, whereas at 54 and 120 hpf the mRNA
levels appeared only slightly affected (Figure 1C). Mct8 and dio2, which are involved
in TH transport and T4 to T3 conversion, were reduced at 54 hpf. At 80 and 120 hpf,
only dio2 continued to be significantly compromised in the BaP treated embryos, whereas
dio3, responsible for TH inactivation, was expressed at levels similar to those of controls
(Figure 1D). Finally, our data indicate that BaP exposure did not alter the expression of
genes involved in the TH action. In fact, both thraa and thrb expression was not significantly
changed in the BaP treated embryos at all developmental stages (Figure 1E).

To confirm the qRT-PCR results we performed WISH on the BaP treated embryos at
54 and 80 hpf (Figure 2). In the vast majority of BaP treated embryos (>90%), the signals
corresponding to the thyroid markers tg and nis were strongly reduced compared to what
observed in controls at 54 and 80 hpf (Figure 2A–D, A’–D’). The hypothalamic trh and
the pituitary tshba transcripts were barely detectable or absent in the 95% of the embryos
treated with BaP at both stages (Figure 2E’–H’), confirming the central regulation of the
thyroid axis as the most relevant site of the BaP effect. In addition, the BaP treatment
caused a diminished expression of the dio2 in the 98% of the embryos at the pituitary level
at 54 and 80 hpf (Figure 2I’,J’). Immune staining with an anti-T4 antibody was performed
to assess the status of thyroid function at 120 hpf by comparing the control and BaP treated
larvae (Figure 2K–K’). By counting individual T4-positive follicles, we observed that BaP
treatment was associated to a significant reduction of follicles that actively synthetize T4
(DMSO = 5.4 ± 0.81 vs. BaP = 1.6 ± 0.74) (Figure 2L).
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Figure 1. Transcriptome analysis of thyroid system. Relative mRNA expression of genes involved in
(A) Early thyroid primordium specification: nkx2.4b, pax2a, and hhex; (B) TH synthesis: tg, nis, and tpo;
(C) HPT axis regulation: trh, tsh, and tshr; (D) TH transport and metabolism: mct8, dio2, and dio3; (E) TH
action: thraa and thrb. Experiments were performed in triplicate using pools of 1.2% DMSO controls and
50nM BaP treated embryos, at 28, 54, 80, and 120 hpf. Results are expressed by Mean ± SD. Statistical
significance was calculated using Student’s t-test (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Figure 2. WISH and IF of thyroid function. (A–J’) WISH of HPT axis markers in BaP treated embryos
(50 nM) and controls (1.2 % DMSO) at 54 and 80 hpf. (A–B’ and C–D’) tg and nis at the level of
thyroid tissue; (E–F’) trh expression in the hypothalamic region; (G–H’ and I–J’) tshba and dio2 in
the anterior pituitary. Each experiment was performed in triplicate using about 30 embryos/stage.
Embryos were acquired in dorsal (A–D’) or ventral (E–J’) views, anterior to the left. (K,K’) IF of
T4 produced in thyroid follicles of DMSO and BaP treated larvae at 120 hpf. Thyroid regions were
acquired mounting the heads in ventral view, anterior to the left. (L) Number of T4-positive follicles.
Results are expressed by mean ± SD (*** p < 0.001).
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3. Discussion

The present study is the first to address thyroid function after exposure to endocrine
disruptor BaP dissolved in the harvesting water, using zebrafish as a model system. The
findings are consistent with a disruption of TRH-TSH signal, thus creating a model of
central hypothyroidism [21].

EDCs can interfere with thyroid function at multiple levels, falling into two macro
categories: (i) TH synthesis or (ii) TH action disruptors [22]. However, the effects of BaP
of thyroid system are far from clarified. For that reason, we have taken advantage of a
zebrafish model to increase knowledge about the impact of BaP. Zebrafish embryos have
proven to be a suitable model to test the effects of endocrine disruptors on thyroid develop-
ment, since the surrounding morphological and molecular events are well characterized.
Thyroid organogenesis starts around the 20 hpf with the expression of the early thyroid tran-
scription factors (TFTs), nkx2.4b, pax2a, and hhex, forming the so-called thyroid primordium,
differentiated from the 42 hpf expressing the thyroid functional markers tg, nis, tpo and
other factors necessary for TH synthesis. From the 55 hpf the mature thyroid follicles start
to proliferate and migrate along the ventral aorta and produce T4 under the stimulation
operated by TSH signal [23–25]. We show that early specification of thyroid primordium
is not affected, since the expression of the TFTs nkx2.4b, pax2a, and hhex at 28 hpf were
preserved. However, in later stages, the thyroid markers (tg and nis), responsible for proper
TH synthesis, appeared strongly reduced at the level of the thyroid tissue of BaP treated
embryos. Interestingly, the expression profile of HPT axis revealed that both trh and tshba
are reduced by BaP exposure, as confirmed by qPCR and WISH experiments. Additionally,
the expression of dio2 enzyme, necessary for the T3 activation, is strongly reduced in the
pituitary of BaP treated embryos. The abovementioned abnormalities of TH synthesis
resulted in <80% of T4 production by BaP treated larvae.

It has been shown that the early thyroid specification is independent from HPT
axis regulation, since the trh, tshba, tshr, and dio2 start to be expressed from 2 days post
fertilization [26,27]. Opitz et al. also demonstrated that the knock-down of tshr affected the
expression of functional thyroid markers tg, nis, and tpo at 55 and 100 hpf, resulting in a
reduced number of follicles immunoreactive for T4 at larval stage [25]. In light of these data,
since our treated embryos presented defects only in the later phases of thyroid development
associated with hypothalamic and pituitary alterations, we can hypothesize that BaP did
not affect thyroid organogenesis itself but is primarily acting at the hypothalamic-pituitary
level generating a form of central hypothyroidism [21]. Therefore, BaP is a novel chemical
to be added to the quite long list of disruptors known to interfere at various levels of TH
synthesis, likely altering HPT axis functions [3]. Discrepant results on BaP toxicity obtained
in a mullet fish model [20] are likely due to differences in the route of administration of the
disruptor (BaP injected vs. dissolved in the harvesting water).

Many EDCs, including bisphenol A and pesticides, are reported to act as TH agonist
or antagonist and impact mRNA expression of TRs in vitro [22]. Our zebrafish model
displays normal levels of both thraa and thrb, suggesting that TH action is not affected
by this chemical. Moreover, additional BaP effects on TR binding or expression may be
masked by the maternal TH supply stored into the yolk sac and reabsorbed by the embryo
during the first days of development [28]. Thus, studies on juvenile or even adult zebrafish
may better clarify the role of BaP on TH action.

Regarding the effects of BaP on TH synthesis, the aberrant hypothalamic and pituitary
signals make us think about a possible toxic effect on the central nervous system. Neurotox-
icity has been largely overlooked regarding the effects of BaP. In the adult zebrafish brain,
BaP alters locomotor and cognitive ability due to a decreased level of several neurotrans-
mitters, and neurodegeneration associated to accumulation of amyloid b protein and cell
apoptosis [29]. Previous studies performed on zebrafish embryos and larvae also described
an alteration of global and gene-specific DNA methylation patterns after short-term expo-
sure to BaP [30,31]. Moreover, acute exposure to BaP in blood clam (Tegillarca granosa) led
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to neurotoxicity, which has been associated to changes in DNA methylation, affecting the
oxidative stress response and inducing cell apoptosis [32].

4. Materials and Methods

Zebrafish line and maintenance. All experiments were performed according to EU
regulations on laboratory animals (Directive 2010/63/EU). Wild-type adults (AB strain)
were maintained in a flow-through system at a constant temperature (28 ◦C–1 ◦C), with a
photoperiod (light:dark) of 14:10. Zebrafish embryos were obtained from natural spawning
and raised until the desired developmental stages according to established morphological
criteria [33,34]. Starting from 24 h post fertilization (hpf), embryos were harvested in fish
water containing 0.002% of 1-phenyl-2-thiourea (PTU; Sigma-Aldrich, St. Louis, MO, USA)
to prevent pigmentation and 0.01% methylene blue to prevent fungal growth. Such a low
dose of PTU (0.002%) does not affect TH synthesis [35].

BaP treatment. For each experiment, pools of 100 zygotes were raised in glass petri
dish (diam. 150 mm; Merck KGaA, Darmstadt, Germany) and treated with 100 mL of
BaP solution at a concentration of 50 nM in fish water (Sigma-Aldrich, St. Louis, MO,
USA) prepared freshly from a stock solution of 1 mg/mL Treatments were performed from
2.5 to 72 hpf and the BaP solutions were renewed twice a day. After 72 hpf, embryos were
repeatedly washed and transferred in clean fish water until 120 hpf. As control, embryos
were treated with 1.2% of dimethyl- sulfoxide (DMSO, Sigma-Aldrich, St. Louis, MO, USA),
used as solvent for BaP solution.

RNA extraction and quantitative PCR (qPCR). Total RNA was extracted from pools of
40–50 embryos/stage treated with BaP or DMSO at 28, 54, 80, and 120 hpf using TRIzol
Reagent (Thermo Fisher Scientific, Waltham, MA, USA). cDNA synthesis reaction was
carried out following the protocol of GoScript Reverse Transcription System (Promega,
Madison, WI, USA). Quantitative real-time PCR (qPCR) was performed by ABI PRISM
7900HT Fast Real-Time PCR System using SYBR Green Master Mix (Thermo Fisher Scien-
tific, Waltham, MA, USA) and the previous reported primers [27]. Beta-actin gene was used
as endogenous control. Experiments were performed in triplicate and results are expressed
by mean ± SD. Statistical significance was calculated using Student’s t-test (* p < 0.05
** p < 0.01 *** p < 0.001).

Whole mount in situ hybridization (WISH) and immunofluorescence (IF). WISH
experiments were performed according to Thisse and Thisse protocol [35], using DIG-
riboprobes of thyroid (tg and nis), HPT axis (trh and tshba), and TH metabolism (dio2)
markers [23,27,36]. Anti-DIG alkaline phosphatase (AP) and nitro-blue tetrazolium/5-
bromo-4-chloro-3′-indolyphosphate (NBT/BCIP) were used to detect the probes in DMSO
and BaP treated embryos at different developmental stages. After WISH experiments, the
embryos were post-fixed in 4% PFA and analyzed in glycerol 85% under a stereomicroscope.
WISH images were acquired in 90 controls and 90 BaP treated embryos derived from three
independent experiments. Changes in transcript expression after BaP exposure were
qualitatively evaluated counting the embryos with normal (compared to DMSO controls)
or reduced/absent WISH signal.

The analysis of TH production was performed by IF using a rabbit anti-T4 BSA serum
(1:1000; MP Biochemicals, Santa Ana, CA, USA) and the AlexaFluor 555 anti-rabbit IgG
as secondary antibody (1:500, Thermo Fisher Scientific, Waltham, MA, USA) [37]. The
embryos were rinsed in glycerol 85% and 30 controls and 30 BaP treated larvae heads were
mounted in a glass slide and acquired under a fluorescent stereomicroscope. The number of
T4-positive follicles were manually counted, and the results were expressed as mean ± SD.
Statistical significance was calculated by Student’s t-test (*** p < 0.001).

5. Conclusions

Collectively the phenotype observed in our embryos leads us to propose a form
of central hypothyroidism for BaP toxicity. The compromised hypothalamus-pituitary
function would then hamper the adequate functional maturation of thyroid follicles and
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TH synthesis. Future studies will be needed to delineate the biological mechanism through
which BaP affects HPT axis function.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms23105833/s1.
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