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Helminth infection and
helminth-derived products:
A novel therapeutic option for
non-alcoholic fatty liver disease
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2Department of Nuclear Medicine and Institute of Digestive Diseases, The Affiliated Hospital of
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Non-alcoholic fatty liver disease (NAFLD) is closely related to obesity, diabetes,

and metabolic syndrome (MetS), and it has become the most common chronic

liver disease. Helminths have co-evolved with humans, inducing multiple

immunomodulatory mechanisms to modulate the host’s immune system. By

using their immunomodulatory ability, helminths and their products exhibit

protection against various autoimmune and inflammatory diseases, including

obesity, diabetes, and MetS, which are closely associated with NAFLD. Here, we

review the pathogenesis of NAFLD from abnormal glycolipid metabolism,

inflammation, and gut dysbiosis. Correspondingly, helminths and their

products can treat or relieve these NAFLD-related diseases, including

obesity, diabetes, and MetS, by promoting glycolipid metabolism

homeostasis, regulating inflammation, and restoring the balance of gut

microbiota. Considering that a large number of clinical trials have been

carried out on helminths and their products for the treatment of

inflammatory diseases with promising results, the treatment of NAFLD and

obesity-related diseases by helminths is also a novel direction and strategy.

KEYWORDS

helminth infection, helminth-derived products, NAFLD, glycolipid metabolism,
inflammation, gut dysbiosis
Introduction

With the improvement of living standards in modern society, obesity and related

metabolic syndrome have become a global epidemic, especially in developed western

countries and wealthy regions in other countries. Non-alcoholic fatty liver disease

(NAFLD) has become an important cause of modern chronic liver disease (1, 2).

NAFLD has a global prevalence of 25.8% (3, 4), and the population with NAFLD is

expected to increase by 21% by 2030 (2). Moreover, NAFLD is being diagnosed in a
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growing number of obese children and adolescents (5). Despite

the increasing prevalence of NAFLD, which imposes a health

burden on society and a huge economic burden on the medical

industry, no medicines are available yet for the treatment of

NAFLD (6, 7). Therefore, new therapeutic strategies for NAFLD

should be explored.

Since the 1980s, the incidence of allergic diseases and

autoimmune diseases has increased significantly in western

countries and most modern countries because of the

improvement of people’s living environment and the decrease

in the incidence of major infectious and parasitic diseases.

Accordingly, experts have coined the term “hygiene

hypothesis” (8, 9). A consensus among the general public

states that helminths are harmful to humans. However,

“hygiene hypothesis” suggests that helminth infections can, in

some cases, have beneficial effects on the host and their products

may be potential therapeutic modalities (10, 11). Parasite can

prevent inflammatory, autoimmune, and metabolic diseases

through their excretory/secretory products (ESPs), such as

extracellular vesicles, glycans, proteins, and microRNAs (10,

12–18). Parasitic infection can induce the type 2 immune

response, effectively control the host inflammatory response,

promote wound healing, and regulate tissue repair (19, 20). A

recent epidemiological investigation manifested that previous

schistosome infection is negatively associated with fatty liver and

coronary heart disease (CHD) (21). Schistosoma infection may

provide new direction for the prevention and treatment of fatty

liver and CHD (21). Therefore, the ability of worm infection

and/or its products to intervene with NAFLD needs to be

determined. In this review, the pathogenesis of NAFLD is

discussed, and the effect of helminth infection and their

products on the pathogenesis of NAFLD for improved

NAFLD was determined.
Pathogenesis of NAFLD

NAFLD is a progressive disease that describes a continuum

of clinical liver abnormalities, showing changes from non-

alcoholic fatty liver disease (NAFL) to non-alcoholic

steatohepatitis (NASH). In this process, liver fibrosis and

cirrhosis gradually progress. Patients with NASH are at high

risk for eventual end-stage liver disease and hepatocellular

carcinoma (2, 3, 22). NAFLD is histologically defined as more

than 5% of hepatocytes, excluding hepatocyte damage caused by

alcohol and other specific factors (23). The pathogenesis of

NAFLD is complex, and NAFLD is related to metabolic

dysfunction. Considering the heterogeneity of NAFLD, experts

have introduced the term “metabolism-related fatty liver disease

(MAFLD)”, which is considered to be a more accurate

expression of the current understanding of NAFLD, that is,

hepatic manifestations in the systemic metabolic disorders (24,

25). NAFLD is a disease caused by multiple factors, including
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overnutrition, obesity, type 2 diabetes mellitus (T2DM),

metabolic syndrome (MetS), and genetics (26). These

conditions can cause various injuries, such as lipid

accumulation in the liver, insulin resistance (IR), glycolipid

metabolism disorder, oxidative stress, release of inflammatory

cytokines, and changes in the gut–liver axis, affect the occurrence

and development of NAFLD (26, 27). Here, the pathogenesis of

NAFLD is discussed from the aspects of glucose and lipid

metabolism, inflammation, and gut microbiota.
NAFLD and glycolipid metabolism

T2DM is substantially associated with NAFLD (28).

NAFLD, T2DM, and MetS are frequently coexisting.

Generally, MetS is a major risk factor for T2DM. Additionally,

among the risk factors that induce NAFLD and NASH, MetS is

the strongest (29). MetS is affected by various environmental

factors mainly because of high-fat and high-carbohydrate diet,

resulting in hyperglycemia, hypertension, dyslipidemia, and a

high incidence of fatty liver disease. The main feature of MetS is

IR, indicating that insulin’s ability to make use of glucose is

declining, particularly in non-hepatic tissues such as adipose and

muscular tissues. Hyperinsulinemia, a direct manifestation of IR,

is caused by increased blood glucose levels caused by decreased

glucose utilization, followed by increased insulin compensatory

activity (30, 31). Thus, IR is a pathogenic factor for NAFLD.

Considering that obesity is common characteristic in

patients with NAFLD (4), obesity along with overnutrition

may contribute to various injuries and thus lead to lipid

accumulation in the liver (32). Therefore, the mechanisms of

hepatic steatosis development driven by excessive hepatic lipid

accumulation need to be understood. The main components of

lipids or triglycerides (TG) accumulated in the human liver are

primarily derived from circulating free fatty acids (FFAs) in

adipose tissue (33, 34). De novo lipogenesis (DNL) and dietary

fat intake are two important pathways for hepatic lipid

accumulation (27, 32, 34). Lipolysis is a process in which fat is

hydrolyzed into glycerol and fatty acid (FA) under the action of

lipase, thus providing energy for the body (32). The lipase that

catalyzes TG is a rate-limiting enzyme and is governed by a large

number of hormones. When the lipid content in the body

exceeds its processing capacity, the synthesis and utilization of

TG are out of balance, leading to the accumulation of TG in the

liver, which may be the first inducing factor of NAFLD (35).

Liver lipid metabolism homeostasis is regulated by multiple

mechanisms, such as hormones, metabolic pathways, and

signaling pathways, such as phosphatidylinositol 3-kinase

(PI3K)/AKT/PTEN pathway in hepatocytes (36), among which

insulin signaling plays a crucial role (37). In general, plasma

circulating FFA concentration increases during fasting because

of insulin signaling and declines after feeding because of the

inhibition of lipolysis. By contrast, in the presence of IR, the
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decomposition of fat is not restricted, thus increasing the degree

of steatosis, thus remarkably increasing the level of circulating

FFA, leading to hepatic steatosis (27, 32).

The incidence of liver DNL was substantially increased in

patients with NAFLD (38, 39). DNL is the process by which excess

carbohydrates are converted into FFAs. In this process, the acetyl-

coenzyme A (acetyl-CoA) produced by glycolysis is initially

converted to malonyl-coenzyme A (malonyl-CoA) through

acetyl-CoA carboxylase (ACC) and ultimately to palmitate, a

saturated fatty acid. These FFAs can be converted to TG for

storage along with glycerol (39, 40). DNL in patients with NAFLD

is regulated by insulin and glucose at the transcriptional level and

is negatively correlated with insulin sensitivity (41). Two key

transcription factors are involved in the regulation of DNL,

including the sterol regulatory element binding protein 1C

(SREBP1c), also named as sterol regulatory element binding

transcription factor 1 (SREBF1), and the carbohydrate

regulatory element binding protein (ChREBP). The activation of

SREBP1c is mediated by insulin and liver X receptor (LXR), while

ChREBP is activated by carbohydrate metabolites (32, 40–43).

Hyperinsulinemia caused by insulin resistance increases the

activity of SREBP1c. SREBP1c activation results in the

transcription of lipogenic genes such as stearoyl-CoA desaturase

1 (SCD1) and stimulates elevated liver DNL. Hyperglycemia

stimulates ChREBP and further induces the transcription of

pyruvate kinase, contributing to the conversion of

phosphoenolpyruvate and ADP into ATP and pyruvate, and the

decarboxylation of pyruvate into CoA, which is then used in DNL,

a synthetic pathway (44, 45). Based onmouse studies, the presence

of excess lipids enhance liver DNL, creating a vicious cycle (46).

A diet in high calories, fat, and sucrose is closely associated with

the occurrence of NAFLD and can promote the synthesis of FAs

(4). Sucrose can be decomposed into fructose and glucose in the gut.

Fructose is essential because of its ability to activate the key

transcription factor SREBP1c and ChREBP in liver DNL (47).

Although both glucose and fructose are metabolically regulated in

the liver, fructose metabolism is more detrimental, because fructose

can be directly extracted from the portal vein circulation and then

transported to the liver. As a result, hepatocytes are exposed to

higher concentrations of fructose than other tissues (47–49).

Fructose activates ChREBP by increasing the intracellular

concentration of fructose-1-phosphate and enhancing glycolysis

flux. ChREBP, together with SREBP1c, induces the increased

expression of acetyl-CoA carboxylase (ACC) and fatty acid

synthase (FAS), thus increasing the very low-density lipoprotein

(VLDL) TG secretion and DNL (35, 50–52). Therefore, abnormal

glucose lipid metabolism can lead to NAFLD (Figure 1).
NAFLD and inflammation

In NAFLD, inflammation may be chronic, and liver biopsy

may be ignored to some extent, but nearly one-third of patients
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will develop from simple fatty liver to NASH (35). Excess lipids

are ectopically deposited in multiple organs and tissues and

impair their function because of overnutrition. In NASH,

lipotoxicity caused by excess FFAs delivered to the liver can

upregulate mitochondria b oxidation, thus increasing reactive

oxygen species (ROS) generation, and inducing oxidative stress.

Oxidative stress is a prominent driver of hepatic inflammation

(53–55).

The inflammatory response generally occurs after the

appearance of tissue damage, and after liver injury in patients

with NAFLD, a large number of immune cells (e.g., resident and

recruited macrophages, dendritic cells, neutrophils, monocytes,

innate lymphoid cells, and mast cells), endothelial cells, and liver

parenchymal cells participate in the inflammatory response.

Resident liver macrophages such as Kupffer cells (KC),

endothelial cells, and liver parenchymal cells have surface

receptors that recognize DAMPs and PAMPs, which can bind

the receptors and induce the synthesis and release of

inflammatory mediators, leading to the recruitment of

inflammatory immune cells into the damaged liver tissue (26,

56–59).

The innate immune response triggers hepatic inflammation,

thus inducing disease progression toward NASH. Macrophages

play a central role. Macrophages that are stimulated by different

environmental factors are activated to transform into two

distinct functional phenotypes, namely, the classically

activated macrophages (M1) and the alternatively activated

macrophages (M2) (60). However, this M1/M2 paradigm is

only suitable for in vitro research (61). Instead of fixed

phenotypes in vivo, macrophages exhibit high plasticity and

can adopt different activation states according to the

environment (62, 63). Adipose tissue macrophages (ATMs)

accumulate in obese individuals, causing chronic low-grade

inflammation. Long-term chronic inflammation leads to

insulin resistance and metabolic imbalances. Kratz and

colleague found that ATMs from obese humans converts

“metabolically activated” phenotype, which is distinct from

M1 or M2 markers . These metabolical ly act ivated

macrophages regulate the balance between cytokine

production and lipid metabolism and are driven by

independent pro-inflammatory and anti-inflammatory

pathways (64). Metabolic disease-specific macrophage

phenotypes are also found in NAFLD. Xiong and colleague

conducted single-cell RNA sequencing analysis and found that

NASH-associated macrophages (NAMs) are highly expressive

of triggering receptors expressed on myeloid cells 2 (Trem2)

(65). These NAMs are also associated with disease severity and

are highly responsive to drug and dietary interventions (65).

KCs are replaced by bone marrow-derived macrophages and

thus reduced in MAFLD. These recruited macrophages in the

liver of MAFLD have two different activation states, one similar

to homeostatic KCs and the other to lipid-associated

macrophages (LAMs) from obese adipose tissues (66). These
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LAMs express NASH patient marker osteopontin, which is

associated with fibrosis development (66). Compared with the

traditional M1/M2 phenotype, the macrophage pool has

considerable heterogeneity and requires more specific

macrophage-targeting strategies in MAFLD. Tran and

colleague also found that liver-resident KCs are replaced by

Ly-6C+ monocytes during NASH (67). These monocyte-derived

KCs (MoKCs) reduce hepatic triglyceride storage, increase

inflammation, promote liver damage, and are linked to

disease progression during NASH (67). Seidman et al. (68)

also identified a subset of MoKCs that resembles scar-associated

macrophage (SAM) phenotype. These SAMs express Trem2

and CD9 and are also profibrogenic in liver cirrhosis (69). A

dual C-C chemokine receptor type 2 and 5 dual antagonist

(named cenicriviroc) can inhibit macrophage infiltration and

antifibrosis in NASH animal models. Cenicriviroc entered

phase 2b trial in the CENTAUR and improved antifibrosis

compared with that in the placebo group (70). Thus, targeting

macrophages as inflammation mediators can improve disease

progression in NASH or NAFLD. The inflammatory response

in the liver promotes the progress in NAFLD (Figure 1).
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NAFLD and gut microbiota dysregulation

Another well-recognized risk factor in the progression of

NAFLD is the gut microbiota. Extensive research has confirmed

that the gut microbiome of patients with NASH and normal

subjects have different characteristics. The liver and the gut are

inextricably linked to some extent through the “gut-liver axis”,

which is an important two-way communication pathway

between the gut and the liver. The products of the liver, such

as bile acids, can influence the composition of the intestinal flora,

the integrity of the intestinal barrier, and intestinal permeability;

in turn, the intestinal microbiota influences bile acid synthesis

and glycolipid metabolism in the liver (71, 72). Changes in the

abundance and diversity of gut microbes are closely related to

the progression of NAFLD. Each stage of NAFLD has its special

gut microbiota signature (73, 74). Notably, the microbes,

bacterial lipopolysaccharides (LPS), and the metabolites of the

microorganisms, can affect the function of the liver (75). Thus,

the enterohepatic axis plays a non-negligible role in NAFLD and

is an effective and important target for the prevention and

treatment of NAFLD in the future.
FIGURE 1

Main pathogenic mechanism of NAFLD. NAFLD is a multifactorial disease; Obesity, diet, and insulin resistance are linked to pathogenesis. ① The increase
in free fatty acids (FFAs) is essential to the development of NAFLD. The FFAs produced by the lipolysis of TG in adipose tissue are delivered to the liver,
resulting in hepatic steatosis. T2DM causes IR and decreases insulin sensitivity, thus triggering an increase in DNL, which is another major contributor to
the increase in FFAs. The excessive delivery of FFAs to the liver upregulates b-oxidation and promotes lipotoxicity, leading to oxidative stress. ② In
addition, the activated immune cells secrete pro-inflammatory cytokines. These processes initiate hepatic inflammation and contribute to the transition
from NAFLD to NASH. ③ Gut microbiota dysregulation has also been implicated in the pathogenesis of NAFLD. Gut dysbiosis disrupt the intercellular
tight junctions, thus allowing the entry of bacterial lipopolysaccharide into the systemic circulation and increasing liver input. Ultimately, it results in liver
exposure to inflammatory mediators. NAFLD, nonalcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; HCC, hepatocellular carcinoma;
FFAs, free fatty acids; TG, triglyceride; T2DM, type 2 diabetes mellitus; IR, insulin resistance; DNL, de novo lipogenesis; LPS, lipopolysaccharide; ROS,
reactive oxygen species; IL, interleukin; TNF, tumor necrosis factor; Th1, T helper type 1; M1, classically activated macrophage; ATMs, adipose tissue
macrophages; NAMs, NASH-associated macrophages; LAMs, lipid-associated macrophages; MOKC, monocyte-derived KCs; SAMs, scar-associated
macrophage; TREM2, triggering receptors expressed on myeloid cells 2; CD, cluster of differentiation; CoA, coenzyme A; ACC, acetyl-CoA carboxylase;
SREBP1c, sterol regulatory element binding protein 1C (SREBP1c); ChREBP, carbohydrate regulatory element binding protein.
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NAFLD is associated with dysbiosis and intestinal bacteria

overgrowth (76, 77). Dysbiosis occurs when the beneficial and

harmful bacteria in the gut are in imbalance qualitatively and

quantitatively, generating a pathological combination. Many

researchers speculated that differences in gut bacterial

composition cause obese individuals to develop NAFLD. For

example, obesity was replicated by transferring the gut

microbiota from obese mice or humans to germ-free mice

(78). In NAFLD, Firmicutes and Proteobacteria were

increased, and Bacteroidetes were reduced at the phylum level.

Ruminococcaceae and Rikenellaceae were decreased, and

Enterobacteriaceae was increased at the family level.

Anaerosporobacter, Faecalibacterium, Eubacterium, Prevotella,

and Coprococcus were reduced, and Peptoniphilus, Dorea, and

Escherichia were increased at the genera level (79). Therefore,

fecal microbiome transplantation (FMT) that regulates the gut

microbiome can be used to treat NAFLD. Xue and colleague

found that FMT can improve intestinal microbiota disorders,

thereby reducing fat aggregation and relieving fatty liver.

Moreover, FMT improves the reconstruction of gut microbiota

in lean NAFLD compared with that in obese patients with

NAFLD (80). However, Craven et al. (81) found that allogenic

or autologous FMT did not improve IR and hepatic proton

density fat fraction but allogenic FMT decreased the small

intestinal permeability in patients with NAFLD. Indeed,

altered intestinal permeability is associated with liver disease

(81). The intestinal mucosal barrier prevents the invasion of

bacteria and the absorption of toxins. The mechanical barrier,

also known as the physical barrier, is of utmost importance

among the intestinal mucosal barriers and rests on the

physiological structure of the mucosal epithelium, the lamina

propria, and the mucosal base, where the intestinal epithelial

cells are tightly arranged by cell junctions. Tight junction protein

(TJP), including Zonula Occludens (ZOs), occluding, and

claudin, connect the intestinal epithelial cells and maintain the

integrity of the intestinal barrier (82). The dysbiosis of the gut

microbiota leads to impaired TJP and the disruption of the tight

junction between intestinal cells, thus increasing intestinal

permeability (83). Under such circumstances, the LPS of

gram-negative bacilli is translocated from the intestine to the

portal system, and bacterial translocation leads to the exposure

of the liver to inflammatory mediators (84, 85). HFD can induce

proinflammatory signal, increase intestinal permeability, and

cause the development of severe steatohepatitis (86). In

comparison with healthy controls, patients with NAFLD

increase intestinal permeability. Inflammation and early liver

damage alter intestinal permeability in patients with NAFLD

(87). Gut dysbiosis caused by inflammasome deficiency leads to

the abnormal accumulation of bacterial metabolites in the portal

circulation. Liver exposure to high concentrations of portal

system products, especially pre-conditioned by lipid

accumulation in hepatocytes by excessive nutrient, make it

vulnerable to the development of NAFLD/NASH (88). The
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dysregulation of gut microbiota involved in NAFLD

pathogenesis in shown in Figure 1.

It is worth noted that white adipose tissue (WAT) is an

inflammatory organ where adipocytes interact with immune

cells to maintain tissue homeostasis. In general, IL-10, IL-4, and

other anti-inflammatory cytokines secreted from T regulatory

cells (Tregs) and eosinophils polarize ATMs towards M2 or

alternatively activated macrophages, thereby maintaining a

tolerogenic phenotype (89, 90). However, excessive nutrition

leads to WAT amplification and fat cell hypoxia, followed by

chemokine production to induce immune cell infiltration and

IL-6, TNF-a, and IL-1b release, resulting in a low-grade

inflammatory response in obese individuals (91). Moreover,

obesity, T2DM, and other environmental factors can alter

intestinal permeability, causing gut-derived endotoxins to

penetrate into the circulatory system, affecting liver lipid

deposition, and accelerating liver inflammation and fibrosis

processes in NAFLD (92).
Parasite-mediated protection
against NAFLD

Helminth infections can antagonize allergic and autoimmune

disorders, as suggested by the hygiene hypothesis (8, 93, 94).

However, helminth-mediated protection is not limited to

autoimmune and allergic diseases. Recent studies have found

that chronic helminth infection or helminth-derived products

have beneficial effects on host metabolism and improve insulin

resistance and T2DM (10). NAFLD is closely related to insulin

resistance, T2DM, and MetS. Therefore, helminth may provide

the protection against NAFLD.
Parasite regulates glycolipid metabolism
in NAFLD

Considering that NAFLD is closely related to disorders of

glycolipid metabolism, the effective intervention of metabolic

dysfunction can further influence the development of NAFLD.

Numerous mouse experiments and several human studies have

confirmed that helminth infection and its derived molecules

attenuate obesity, improve IR, glucose tolerance, and MetS (15,

95). Nippostrongylus brasiliensis (N. brasiliensis) infection

decreases weight gain and adipose tissue mass, relieves hepatic

steatosis, reduces the expression of key lipogenic enzymes, and

improves glucose metabolism in HFD mice (96). Schistosoma

japonicum (S. japonicum) infection upregulates glycolysis-

related genes, such as Ldha, Glut4, Pkm2, Glut1, Pfkfb3,

Aldoc, HK2, and Pfk, and downregulates gluconeogenesis gene

G6pc in mouse liver. Furthermore, S. japonicum infection

downregulates FA synthesis genes and lipid uptake gene and
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upregulates FA oxidation-related gene. SEA-stimulated

macrophages showed increased gene expression related to

glycolysis and FA oxidation but decreased gene expression

related to gluconeogenesis, FA synthesis, and lipid uptake.

Therefore, S. japonicum infection promotes the catabolism of

glycolipids and inhibits their anabolic metabolism in mouse

livers, possibly via the AMPK, AKT, and mTORC1 pathways in

macrophages (97). The mice in S. japonicum infection reduces

miR-802 and lipid metabolism. The reduced miR-802 decreases

hepatic lipogenesis by AMPK phosphorylation. Sjp40, a main

component of SEA from S. japonicum binding with CD36 on

hepatocytes to suppress miR-802, leading to the activation of

AMPK pathway and mitigation of lipogenesis in liver. Sjp40

shows therapeutic potential in treating obesity-related fatty liver

(14). da Silva Filomeno CE et al. demonstrated that Schistosoma

mansoni (S. mansoni) infection improves glucose tolerance,

body mass and liver steatosis in HFD mice but aggravates

pathological damage to the liver in mice (98). Similarly,

Taenia pisiformis infection decreases body weight and

cholesterol level in obese rabbits and changes the metabolic

features in rabbits (99). Bhargava et al. further demonstrated that

lacto-N-fucopentaose III (LNFPIII) or soluble egg antigen (SEA)

from S. mansoni improves glucose tolerance and insulin

sensitivity, suppresses lipogenesis in the liver, and provides a

strong protective effect against HFD-induced hepatosteatosis in

mice. The upregulation of IL-10 in activated macrophages and

dendritic cells and extracellular signal-regulated kinase (Erk)-

Ap1 pathway in liver mediate the effects of LNFPIII on glucose

and lipid metabolic pathway, respectively (15). The synthetic

smal l molecule ana logues (SMAs) of ES-62 from

Acanthocheilonema viteae (A.viteae) exhibit antimetabolic

disorder activity in mice on a high calorie diet (HCD) by

reducing fasting glucose levels in male mice and mitigating

ileal villus length and liver fibrosis caused by HCD in female

mice. Thus, SMAs have the potential to prevent or treat

metabolic disorders associated with obesity (100).

Human studies also found that helminth infection improves

glycolipid metabolism. Rennie C et al. found that helminth

infection induces lower fasting blood glucose, HbA1c levels,

prevalence of MetS, and T2DM than without infection people by

using meta-analysis (101). Helminth infections generally

improve metabolic function, but different species have

different effects, and S. mansoni infection remarkably improves

metabolic outcomes (101). Zinsou JF et al. found that individuals

infected by Schistosoma haematobium (S. haematobium) exhibit

decreased serum triglyceride (TG), total cholesterol (TC), and

high-density lipoprotein (HDL)-C, especially in overweight/

obese individuals. TC, HDL-C, LDL-C, and TG levels in

serum are inversely correlated with the intensity of S.

haematobium infection in overweight/obese individuals. S.

haematobium infection can improve lipid profile in

overweight/obese individuals and contribute to the decreased

risk of cardiometabolic diseases caused by hyperlipidemia (102).
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Thus, helminth infection or helminth-derived molecules can

improve NAFLD by regulating glycolipid metabolism (Figure 2).
Parasite regulates inflammatory response
in NAFLD

Obesity is a chronic low-grade inflammation, also named

meta-inflammation, which easily alters glycolipid metabolism

and insulin resistance and ultimately results in the development

of T2DM (103). Various innate and adaptive immune cells are

activated in metabolic organs, especially adipose tissue and liver,

which produce pro-inflammatory cytokines, such as IL-6 and

TNF-a, resulting in insulin resistance and metabolic

dysregulation (104). Helminth infection potently induces type

2 immune responses characterized by Th2 phenotype

polarization, secretion of IL-4, IL-5, and IL-13, and type 2

innate lymphoid cells (ILC2s). Helminth infection also induces

immune tolerance, which is characterized by the abundance of

IL-10 and TGF-b secreted by regulatory T cells (Tregs),

regulatory B cells (Bregs), tolerogenic dendritic cells (DCs),

and M2 macrophages (105–107). Thus, the tolerable response

to helminth infection can inhibit the inflammation of allergic

and autoimmune diseases (10) and the inflammation of obesity,

T2DM, MetS, and NAFLD (108).

Helminth infection and their products can decrease

inflammation in adipose tissue and improve glucose tolerance

and weight gain in obese individuals and mice (10). Litomosoides

sigmodontis (L. sigmodontis) infection resulted in the recruitment of

eosinophil and M2 macrophages in epididymal adipose tissue

(EAT) and promoted glucose homeostasis in HFD mice. L.

sigmodontis antigen (LsAg) treatment also improved glucose

tolerance, reduced inflammatory responses, and promoted insulin

signaling in EAT. However, LsAg-mediated glucose homeostasis

was independent of Foxp3 Tregs (109). Heligmosomoides polygyrus

(H. polygyrus) infection improved insulin sensitivity and reduced fat

accumulation in the liver and obesity-related inflammation in HFD

mice. Treg frequency and suppressor function in adipose tissue

increased after H. polygyrus infection. H. polygyrus contributed to

improve weight gain andMetS by regulating adipose tissue Tregs in

obese mice (110). N. brasiliensis infection increased IL-5 and IL-13

levels in visceral adipose tissue (VAT) and promoted insulin

sensitivity in HFD mice. IL-33 promoted ILC2s, produced IL-5

and IL-13, promoted eosinophils, and alternatively activated

macrophages in VAT, thus promoting metabolic homeostasis

(111). Similarly, S. mansoni infection increased eosinophils and

M2 macrophages in white adipose tissue (WAT), enhanced insulin

sensitivity, and decreased weight gain, fat mass, and adipocyte size.

SEA injection also induced type 2 immune responses in WAT and

liver and promoted whole-body metabolic homeostasis (112).

Individuals infected with Strongyloides stercoralis infection (Ss+)

showed a decrease in various pro-inflammatory cytokines and

chemokine levels in plasma, but anthelmintic treatment restored
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the reduced inflammatogenic cytokines and chemokines (113).

Peroxisome proliferator-activated receptor-g (PPAR-g), a key

master transcription factor for adipogenesis, stimulates lipogenic

enzyme expression, thereby promoting lipid storage in adipose

tissue (114). PPAR-g suppress inflammation, resulting in lower TG/

HDL cholesterol ratio when activated by its agonist pioglitazone in

diabetic patients (115, 116). Lysophosphatidylcholine (LPC) from S.

mansoni induces M2 macrophage polarization by increasing

PPARg expression in macrophages (117). The T2 ribonuclease

omega-1 (w1) is an RNase that degrades host RNA. w1 from S.

mansoni treatment improves glycolipid metabolism, and this

phenomenon is associated with the induction of type 2 immunity

in HFD mice. Th2 cells, eosinophils, and M2 macrophages are

increased in the WAT of mice after w1 injection. Furthermore, w1
induced type 2 immunity, thus promoting whole-body metabolic

homeostasis by suppressing food intake via signal transducer and
Frontiers in Immunology 07
activator of transcription 6 (STAT6)-independent mechanism in

obese mice (118). Surendar and colleagues demonstrated that HFD

increased the numbers of CD4+ and CD8+ T cells and production of

IFN-g and IL-17 in the adipose tissue. Adiponectin can inhibit the

differentiation of Th1 and Th17 cells and decrease the level of IFN-g
and IL-17 in HFD mice. LsAg from L. sigmodontis treatment

increased adiponectin level and decreased Th1 and Th17 cell

frequencies in the adipose tissue of mice, thereby improving

obesity and insulin resistance in obese mice (119). Similarly,

LNFPIII from S. mansoni improved glucose homeostasis, and this

process is partially mediated by IL-10 secreted from DCs and

macrophages (15). Notably, SJMHE1, an HSP60-derived peptide

from S. japonicum, could induce the CD4+CD25+ Treg

amplification in vivo and in vitro (120). Furthermore, SJMHE1

suppresses delayed-type hypersensitivity and collagen-induced

arthritis, asthma, and colitis by regulating the balance of Th cells
FIGURE 2

Protective effects of helminths and their products in NAFLD. ① Helminth infection and its derived products regulate glucose metabolism, alleviate insulin
resistance, and improve insulin sensitivity; they also affect lipid metabolism and reduce lipogenesis through the Erk-Ap1-Fxra axis; ②secrete anti-
inflammatory cytokines by inducing type 2 immunity and M2 macrophage polarization; ③ influence the composition of gut microbiota through the
liver-gut axis, increase the level of fecal SCFAs and upregulate the expression of its main receptors, GPRs, thereby coordinating multiple signaling
pathways to prevent obesity. Meanwhile, the increase of tight junction proteins leads to the decrease of intestinal permeability and the expansion of the
dominant bacteria, causing the increase of intestinal microbial abundance and diversity. NAFLD, nonalcoholic fatty liver disease; T2DM, type 2 diabetes
mellitus; TG, triglyceride; IR, insulin resistance; IL, interleukin; LPS, lipopolysaccharide; Erk, extracellular signal-regulated kinase; AP-1, activator protein-1;
Fxra, farnesoid X receptor alpha; Th2, T helper type 2; M2, alternatively activated macrophage; ILC2, type 2 innate lymphoid cell; Ig, immunoglobulin;
SCFAs, short chain fatty acids; GRPs, g-protein coupled receptors.
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(16–18, 121, 122); it also promotes peripheral nerve repair through

inducing M2 macrophages (123). Considering that that NAFLD

progression is caused by lipid accumulation in liver to

steatohepatitis characterized by inflammation, whether SJMHE1

could be potential to intervene in NAFLD needs to be evaluated.

Helminths and their products would be promising to contribute to

innovative therapy for obesity-related fatty liver by regulating

inflammation (Figure 2).
Parasite regulates dysbiosis of gut
microbiota in NAFLD

Obesity, diabetes, and NAFLD have dysregulation of the gut

microbiota (124, 125). Reducing the diversity and abundance of gut

microbiota is often associated with obesity, IR, MetS, and NAFLD

(79, 126, 127). Moreover, helminth infection can change the

composition and function of gut microbiota, improve host

metabolism, reduce systemic inflammation, and promote insulin

sensitivity (128, 129). Khudhair and colleagues found that N.

brasiliensis infection remarkably alters the composition in gut

microbiota at both the phylum and order level, induces type 2

immune responses in adipose tissue, liver, and gut, and promotes

glucose homeostasis, thereby preventing T2D (129). N. brasiliensis

infection decreases the abundance of Verrucomicrobia and TM7

phyla and increases the richness of Proteobacteria at the phylum

level in mice fed with high glycemic index (HGI) diet.N. brasiliensis

infection increases the abundance of Clostridiales and

Desufovibrionales at the order level in high-fat (HF) mice.

Furthermore, N. brasiliensis infection elevates short chain fatty

acid (SCFA) levels, which can be beneficial for regulating

inflammation and promoting insulin sensitivity (129). SCFAs can

maintain gut integrity, immune, and metabolism homeostasis, and

it can regulate appetite, weight gain, and glycolipid metabolism

(130, 131). Pace et al. found that Strongyloides venezuelensis

infection modified gut microbiota, most notably by increasing

Lactobacillus spp in HDF mice. This alteration of microbiota

increased anti-inflammatory cytokine production, induced M2

macrophage polarization in adipose tissue, increased tight

junction protein expression in intestinal cells, and reduced LPS

level in serum, thereby promoting glucose metabolism homeostasis

(128). ESPs from N. brasiliensis treatment improve glucose

tolerance, and decrease weight gain, and induce type 2 immune

response in HGI mice. N. brasiliensis ESPs also alter the

composition of gut microbiota in mice fed with HGI diet at the

phylum and order levels. N. brasiliensis ESP treatment increases

the abundance of Bacteroidetes and Patescibacteria phylum, reduces

the abundance of Actinobacteria phylum, which is related to the

HGI group. ESPs from N. brasiliensis adult worm treatment also

increase the abundance of Lactobacillales and Saccharimonadales

but decrease Coriobacteriales abundance. N. brasiliensis ESPs

induces immune response and gut microbiota changes, which

confer protection against abnormal glucose metabolism in mice
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(132). Similarly, ESPs from the larval Echinococcus granulosus (E.

granulosus) treatment can mitigate damage to the intestinal barrier

caused by high-fat (HF) diet, increase the expression of zonula

occludens-1 (ZO-1), relieve the translocation of bacterial

endotoxins and gut inflammation, and attenuate HF diet-induced

microbiota dysbiosis, thereby antagonizing obesity-related

neurodegenerative diseases (133). ES-62 from A. viteae treatment

improved a range of inflammatory, metabolic, and microbiome

parameters of aging in HCD-accelerated aging mice (134). A phase

1b clinical trial with Necator americanus (N.americanus) inoculated

obesity and MetS individuals is ongoing. The evaluation of the

safety and tolerability of infection with N. americanus, metabolic

and immunological parameters, and the composition of fecal

microbiome in this phase 1b clinical trial will provide valuable

information about the use of N. americanus for the treatment of

metabolic diseases (135). Helminths can affect host immune

function by secreting various molecules or indirectly by altering

the gut microbiota (136). The interactions between helminth and

microbota can shape the homeostasis of the immune system,

thereby improving metabolic homeostasis and immune balance in

obesity, MetS, and NAFLD (Figure 2).
Challenges and prospect

Although helminths and their molecules have beneficial

outcomes in obesity, MetS, T2DM, and NAFLD, many challenges

remain tobeconsidered.First, helminth infectioncancausea seriesof

pathological effects. For example, S. mansoni infection can cause

anemia,malnutrition, growth stunting, progressive liverfibrosis, and

portal hypertension (137). Furthermore, liver flukes Opisthorchis

viverrini (O. viverrini) and Clonorchis sinensis infection can induce

cholangiocarcinoma (138, 139), and S. haematobium infection can

cause squamous cell carcinoma of the bladder (140). In addition to

the above harmful effects, parasitic infections can also weaken

vaccination effects and increase susceptibility to other pathogens

(141, 142). Although O. viverrini infection improved insulin

resistance and liver lipid accumulation in high-fructose diet

hamsters, the animals showed severe NAFLD as indicated by

histopathological analysis (143). Helminths or their products that

induce type 2 immunity may increase the incidence of asthma.

Caraballo et al. reported that Ascaris lumbricoides tropomyosin has

strongallergenic activity (144). Furthermore, the incidenceof asthma

increases in obese patients (145). Therefore, this issue should be

considered inhelminthmolecules for the treatmentofobesity-related

diseases, including NAFLD. In addition, the pharmacokinetics of

helminth molecules and the mechanism in which they reach target

tissues are also challenges. Helminth proteins are only present for a

fewhours (10). Similar tomost activemolecules, nanocarriers for the

delivery of helminth molecules may increase their half-life and

improve their activity in vivo compared with free molecules (146).

Recently, extracellular vesicles (EVs) released by helminths

at various life stages can package and deliver immune
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modulators to host target cells, thereby manipulating the host

immune response and exerting immunomodulatory effects

(147). Thus, helminth EVs have anti-inflammatory therapeutic

potential. Fasciola hepatica EVs prevent DSS-induced ulcerative

colitis (148), and Trichinella spiralis EVs decrease the severity of

DSS- and TNBS-induced colitis (149, 150). Whether the

immunomodulatory propensity of helminth-derived EVs can

be used for the treatment of obesity, T2DM, MetS, and NAFLD

must be explored in the future. Current research mainly focuses

on animal experiments, but the immunology and gene

expression patterns in inflammatory diseases greatly differ

between human patients and animal models (151, 152). Thus,

future research must focus on helminth molecules to intervene

in NAFLD-related diseases in human clinical trials.

Despite these challenges, helminth molecules for evolutionary

stress selection are effective and safe, especially for NAFLD

treatments without effective drugs. Many nature-inspired drugs,

such as venom from insects and reptiles, have been used for the

treatment of various diseases for millennia (153). Helminths have

been included in this list as other nature-inspired drugs and

warrant further studies. Most reports on helminth regulation of

NAFLD-related diseases, including obesity, T2DM, and MetS,

focused on nematodes and trematodes, such as N. brasiliensis, H.

polygyrus, L. sigmodontis, S. venezuelensis, S. mansoni,

and S. japonicum (95). In the case of cestodes, only T.
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pisiformis interventions were seen in obese rabbits (99). In

addition, ESPs from larval E. granulosus can reverse HF-

induced gut barrier dysfunction and microbiota dysbiosis,

thereby protecting against obesity-associated neurodegenerative

diseases (133). Helminths and their molecules regulated NAFLD-

related diseases as shown in Table 1. Only one study reported that

ESPs from adult worms and infective third-stage larvae of N.

brasiliensis can improve glucose tolerance and attenuate body

weight gain in HGI mice (132). Nevertheless, helminth

intervention for NAFLD-related diseases is still in its infancy,

and whether helminths can treat metabolic disorders in obesity,

T2DM, MetS, and NAFLD remains unclear. However, studies on

controlled human infection (CHI) withN. americanus and single-

sex S. mansoni are ongoing (154–156). Clinical trials using CHI or

helminth molecules to treat inflammatory metabolic diseases,

such as obesity, T2DM, NASH and NAFLD, will provide new

insights and key messages in the future. Clinical trials of the

porcine whipworm Trichuris suis ova (TSO) in the treatment of

Crohn’s disease demonstrated that patients received a single dose

of 7500 TSO still showed tolerance and did not display any short-

or long-term treatment-related side effects (157). Clinical trials of

experimental helminths in the treatment of inflammatory diseases

have been comprehensively reviewed and have yielded promising

results (10). Recently, a phase 1b clinical trial by using the larvae

III stage of N. americanus in the treatment of obesity and MetS is
TABLE 1 Helminths or helminth-derived products suppress obesity, T2DM, and NAFLD-related diseases.

Class Helminth
species

Helminth or
Helminth-derived

products

Models Regulatory effect Reference

Trematoda Schistosoma
japonicum

infection C57BL/6 mice glycolysis-related gene↑, FA oxidation-related gene↑, gluconeogenesis
gene↓, FA synthesis genes↓, lipid uptake gene↓

(95)

SEA-stimulated
macrophages

RAW264.7 cells glycolysis and FA oxidation genes↑, gluconeogenesis gene↓, FA synthesis
gene↓, and lipid uptake gene↓

(95)

Sjp40 HFD C57BL/6
mice

lipid metabolism↓, lipogenesis in liver↓ (14)

Schistosoma
mansoni

infection HFC C57BL/6
mice

HFD C57BL/6
mice

glucose tolerance↑, body mass↓, liver steatosis↓, body weight gain↓, fat
mass gain↓, adipocyte size↓, insulin sensitivity↑

(96, 110)

LNFPIII HFD C57BL/6
mice

glucose tolerance↑, insulin sensitivity↑, lipogenesis in the liver↓, liver
steatosis↓

(15)

SEA HFD C57BL/6
mice

glucose tolerance↑, insulin sensitivity↑, lipogenesis in the liver↓, liver
steatosis↓

(110)

LPC macrophages
from C57BL/6
mice

PPARg expression↑, lipogenic enzyme expression↑, lipid storage in
adipose tissue↑, M2 macrophage polarization↑

(115)

w1 C57BL/6J mice Th2 cells, eosinophils, and M2 macrophages in WAT↑, type 2
immunity↑, food intake↓, whole-body metabolic homeostasis↑,
inflammation↓

(116)

Schistosoma
haematobium

infection overweight/obese
individuals

serum TC, HDL-C, LDL-C, and TG levels↓, risk of cardiometabolic
diseases caused by hyperlipidemia↓

(100)

(Continued)
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underway to evaluate the safety and tolerability of hookworm

(135). These clinical trials lay the foundation for the development

of next generation of therapies against obesity-related diseases,

including NAFLD.
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TABLE 1 Continued

Class Helminth
species

Helminth or
Helminth-derived

products

Models Regulatory effect Reference

Cestoda Taenia pisiformis infection HFD New
Zealand rabbits

body weight↓, cholesterol level↓, liver and testicular weight↑,
submandibular gland weight↓, body fat↑

(97)

Echinococcus
granulosus

ESPs HFD C57BL/6J
mice

intestinal barrier damage↓, ZO-1 expression↑, bacterial endotoxins
translocation↓, gut inflammation↓, HFD-induced microbiota dysbiosis↓

(131)

Nematoda Nippostrongylus
brasiliensis

infection HFD C57BL/6 or
RIP2-Opa1KO
mice
HGI or HFD
C57BL/6 mice

weight gain↓, adipose tissue mass↓, hepatic steatosis↓, glucose
metabolism↑, fasting blood glucose↓, oral glucose tolerance↓, eosinophil
and Th2 immune response↑, altered alpha diversity and microbial
richness

(94, 109,
127)

ESPs HGI C57BL/6
mice

glucose tolerance↑, body weight gain↓, type 2 immune response↑,
affected microbial composition

(130)

Acanthocheilonema
viteae

SMAs of ES-62 or ES-62 HCD C57BL/6J
mice

fasting glucose levels↓, ileum villus length↑, liver fibrosis↓, type 2
immune response↑, visceral adipose tissue dysfunction and gonadal
adipocyte hypertrophy in male mice↓, gut health↑, normalized the gut
microbiota

(98, 132)

Litomosoides
sigmodontis

infection HFD BALB/c
mice

eosinophil and M2 macrophages in EAT↑, glucose homeostasis↑ (107)

LsAg HFD BALB/c
mice
HFD C57BL/6J
mice

glucose tolerance↑, inflammatory responses↓, insulin signaling in EAT↑,
adiponectin level↑, Th1 and Th17 cells in the adipose tissue↓, insulin
resistance↓, improves obesity

(107, 117)

Heligmosomoides
polygyrus

infection HFD C57BL/6
mice

weight gain↓, insulin sensitivity↑, fat accumulation in the liver↓, obesity-
related inflammation↓, Treg frequency and suppressor function in
adipose tissue↑

(108)

Strongyloides
stercoralis

infection individuals pro-inflammatory cytokines↓, chemokine levels↓ (111)

Strongyloides
venezuelensis

infection C57BL/6 mice Lactobacillus spp↑, anti-inflammatory cytokine production↑, M2
macrophage polarization in adipose tissue↑, tight junction protein
expression in intestinal cells↑, LPS level in serum↓, glucose metabolism
homeostasis↑

(126)
fro
HFD, high-fat diet; HFC, high-fat chow; FA, fatty acid; RIP2-Opa1KO, pancreatic b cell Opa1 deficiency; HGI, High Glycemic Index diet; ESPs, excretory/secretory products; HCD, high
calorie diet; SMAs, small molecule analogues; WAT, white adipose tissue; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol;
TG, triglycerides; ZO-1, zonula occludens-1; ETA, epididymal adipose tissue ↑(increase); ↓(decrease).
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kupffer cell self-renewal alters the liver response to lipid overload during non-
alcoholic steatohepatitis. Immunity (2020) 53(3):627–40.e5. doi: 10.1016/
j.immuni.2020.06.003

68. Seidman JS, Troutman TD, Sakai M, Gola A, Spann NJ, Bennett H, et al.
Niche-specific reprogramming of epigenetic landscapes drives myeloid cell
diversity in nonalcoholic steatohepatitis. Immunity (2020) 52(6):1057–74.e7.
doi: 10.1016/j.immuni.2020.04.001
Frontiers in Immunology 12
69. Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP,
Luu NT, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell
level. Nature (2019) 575(7783):512–8. doi: 10.1038/s41586-019-1631-3

70. Friedman SL, Ratziu V, Harrison SA, Abdelmalek MF, Aithal GP, Caballeria
J, et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of
nonalcoholic steatohepatitis with fibrosis. Hepatology (2018) 67(5):1754–67.
doi: 10.1002/hep.29477

71. Han H, Jiang Y, Wang M, Melaku M, Liu L, Zhao Y, et al. Intestinal
dysbiosis in nonalcoholic fatty liver disease (Nafld): Focusing on the gut-liver axis.
Crit Rev Food Sci Nutr (2021), 1–18. doi: 10.1080/10408398.2021.1966738

72. Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease:
Pathophysiological basis for therapy. J Hepatol (2020) 72(3):558–77. doi: 10.1016/
j.jhep.2019.10.003

73. Albhaisi SAM, Bajaj JS, Sanyal AJ. Role of gut microbiota in liver disease.
Am J Physiol Gastrointest Liver Physiol (2020) 318(1):G84–98. doi: 10.1152/
ajpgi.00118.2019

74. Loomba R, Seguritan V, Li W, Long T, Klitgord N, Bhatt A, et al. Gut
microbiome-based metagenomic signature for non-invasive detection of advanced
fibrosis in human nonalcoholic fatty liver disease. Cell Metab (2017) 25(5):1054–
62.e5. doi: 10.1016/j.cmet.2017.04.001

75. Carpino G, Del Ben M, Pastori D, Carnevale R, Baratta F, Overi D, et al.
Increased liver localization of lipopolysaccharides in human and experimental
nafld. Hepatology (2020) 72(2):470–85. doi: 10.1002/hep.31056

76. Schnabl B, Brenner DA. Interactions between the intestinal microbiome and
liver diseases. Gastroenterology (2014) 146(6):1513–24. doi: 10.1053/
j.gastro.2014.01.020

77. de Faria Ghetti F, Oliveira DG, de Oliveira JM, de Castro Ferreira L, Cesar
DE, Moreira APB. Influence of gut microbiota on the development and progression
of nonalcoholic steatohepatitis. Eur J Nutr (2018) 57(3):861–76. doi: 10.1007/
s00394-017-1524-x

78. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut
microbiota from twins discordant for obesity modulate metabolism in mice. Science
(2013) 341(6150):1241214. doi: 10.1126/science.1241214

79. Aron-Wisnewsky J, Vigliotti C, Witjes J, Le P, Holleboom AG, Verheij J,
et al. Gut microbiota and human nafld: Disentangling microbial signatures from
metabolic disorders. Nat Rev Gastroenterol Hepatol (2020) 17(5):279–97.
doi: 10.1038/s41575-020-0269-9

80. Xue L, Deng Z, Luo W, He X, Chen Y. Effect of fecal microbiota
transplantation on non-alcoholic fatty liver disease: A randomized clinical trial.
Front Cell Infect Microbiol (2022) 12:759306. doi: 10.3389/fcimb.2022.759306

81. Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in
nafld. Nat Rev Gastroenterol Hepatol (2016) 13(7):412–25. doi: 10.1038/
nrgastro.2016.85

82. Slifer ZM, Blikslager AT. The integral role of tight junction proteins in the
repair of injured intestinal epithelium. Int J Mol Sci (2020) 21(3):972. doi: 10.3390/
ijms21030972

83. Allam-Ndoul B, Castonguay-Paradis S, Veilleux A. Gut microbiota and
intestinal trans-epithelial permeability. Int J Mol Sci (2020) 21(17):6402.
doi: 10.3390/ijms21176402

84. Vancamelbeke M, Vermeire S. The intestinal barrier: A fundamental role in
health and disease. Expert Rev Gastroenterol Hepatol (2017) 11(9):821–34.
doi: 10.1080/17474124.2017.1343143

85. Mao JW, Tang HY, Zhao T, Tan XY, Bi J, Wang BY, et al. Intestinal mucosal
barrier dysfunction participates in the progress of nonalcoholic fatty liver disease.
Int J Clin Exp Pathol (2015) 8(4):3648–58.

86. Rohr MW, Narasimhulu CA, Rudeski-Rohr TA, Parthasarathy S. Negative
effects of a high-fat diet on intestinal permeability: A review. Adv Nutr (2020) 11
(1):77–91. doi: 10.1093/advances/nmz061

87. Luther J, Garber JJ, Khalili H, Dave M, Bale SS, Jindal R, et al. Hepatic
injury in nonalcoholic steatohepatitis contributes to altered intestinal
permeability. Cell Mol Gastroenterol Hepatol (2015) 1(2):222–32. doi: 10.1016/
j.jcmgh.2015.01.001

88. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al.
Inflammasome-mediated dysbiosis regulates progression of nafld and obesity.
Nature (2012) 482(7384):179–85. doi: 10.1038/nature10809

89. Exley MA, Hand L, O'Shea D, Lynch L. Interplay between the immune
system and adipose tissue in obesity. J Endocrinol (2014) 223(2):R41–8.
doi: 10.1530/joe-13-0516

90. Huh JY, Park YJ, Ham M, Kim JB. Crosstalk between adipocytes and
immune cells in adipose tissue inflammation and metabolic dysregulation in
obesity. Mol Cells (2014) 37(5):365–71. doi: 10.14348/molcells.2014.0074

91. Francisco V, Pino J, Gonzalez-Gay MA, Mera A, Lago F, Gómez R, et al.
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