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Abstract: The uncertainties in quality evaluations of rock mass are embedded in the underlying
multi-source data composed by a variety of testing methods and some specialized sensors. To
mitigate this issue, a proper method of data-driven computing for quality evaluation of rock mass
based on the theory of multi-source data fusion is required. As the theory of multi-source data fusion,
Dempster–Shafer (D-S) evidence theory is applied to the quality evaluation of rock mass. As the
correlation between different rock mass indices is too large to be ignored, belief reinforcement and
Murphy’s average belief theory are introduced to process the multi-source data of rock mass. The
proposed method is designed based on RMR14, one of the most widely used quality-evaluating
methods for rock mass in the world. To validate the proposed method, the data of rock mass is
generated randomly to realize the data fusion based on the proposed method and the conventional D-
S theory. The fusion results based on these two methods are compared. The result of the comparison
shows the proposed method amplifies the distance between the possibilities at different ratings from
0.0666 to 0.5882, which makes the exact decision more accurate than the other. A case study is carried
out in Daxiagu tunnel in China to prove the practical value of the proposed method. The result
shows the rock mass rating of the studied section of the tunnel is in level III with the maximum
possibility of 0.9838, which agrees with the geological survey report.

Keywords: rock mass; quality evaluation; data-driven computing; multi-source data fusion; D-S
evidence theory; belief reinforcement

Highlights

1. A complete method using RMR14 for quality evaluation of rock mass is proposed
based on the Dempster–Shafer (D-S) evidence theory, which is used for multi-source
data fusion.

2. Belief reinforcement is applied to process the rock mass data as evidence to reduce
the impact brought by the correlation between rock mass indices.

3. Murphy’s Average Belief Theory is considered in the combination rule of D-S
evidence theory to widen the gap between the possibilities of each rating level to reach
more reasonable decisions.

1. Introduction

The quality evaluation of rock mass is fundamental to the survey, design, and con-
struction of rock engineering projects. This kind of quality evaluation is mostly based on
specific rating methods, including Rock quality designation (RQD) [1,2], the Geological
strength index (GSI) [3,4], Rock mass rating (RMR89 and RMR14) [5–7], modified BQ [8],
and so on. All these methods need rock mass indices before evaluating the quality of rock
mass. Numerous testing methods to obtain these indices lead to the uncertainty of the
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evaluation result. RMR14 evaluates the quality by rating five indices of rock mass, which
are rock strength, the spacing of discontinuities, the condition of discontinuities, ground
water, and intact rock alterability [5]. There are multiple choices to obtain these indices.
Rock strength can be obtained by the point load test and the Schmidt hammer test [9–12].
Both the spacing and the condition of discontinuities can be obtained by field observation,
digital photography, and laser scanning [13–15]. The index of ground water can be ob-
tained by field observation and ground-penetrating radar (GPR) scanning [16]. Intact rock
alterability can be obtained by laboratory test [17] or be converted from the experimental
result of the point load test through an empirical formula [18]. Since the RMR14 system is
the most systematic evaluation method for the rock mass in tunnel engineering projects,
the study evaluates the quality of rock mass based on this system by using multi-source
data fusion.

The data of rock mass obtained by various methods can be defined as the multi-source
data of rock mass. In order to evaluate the quality of rock mass better based on these
multi-source data, a proper method based on the theory of multi-source data fusion, as a
way of data-driven computing, is needed. Data-driven computing has been widely used in
many fields, such as traction systems in high-speed trains [19]. Multi-source data fusion,
as one of the data-driving computing methods, is a technology that automatically analyzes
and processes target data and information from multiple sources, including sensors and
experiments. It can draw conclusions or make decisions according to time series and
criteria [20–23]. Multi-source data fusion is generally classified into three levels: data level,
feature level, and decision level. The current studies about multi-source data fusion in
engineering fields are mostly focused on the application of theoretical methods in actual
engineering projects. Razavi and Haas used multi-sensor data fusion to track the materials
automatically during the construction [24]. Wang et al. applied machine learning and data
fusion technology to environmental sensing in buildings [25]. Tran et al. introduced a
method based on multi-sensor data fusion for milling chatter detection, which is cheaper
and easier compared with traditional chatter detection schemes [26]. Liu et al. proposed a
decision-level sensor fusion based on the Sugeno fuzzy integral to integrate the vibration
and current information for more accurate diagnosis [27]. Bakr and Lee review the theories
of multi-sensor data fusion and highlight the directions of future research in multi-sensor
data fusion under unknown correlation and data inconsistency [28].

The theories of multi-source data fusion include Bayesian theory [29], Dempster–
Shafer (D-S) evidence theory [30,31], neural networks [32], and so on. Bayes theory was
first proposed by British mathematician Thomas Bayes, which calculates the posterior
probabilities based on the known prior knowledge and sample information. Bayes theory
connects the prior knowledge to the posterior probabilities [29,33]. The D-S evidence
theory is an uncertain reasoning theory proposed by Dempster and perfected by Shafer,
which regards diverse data as evidence and fuses it based on its belief function [30,31,34].
Compared to Bayes theory, its demand for prior information is weaker. This theory can
directly express the unknown and uncertainty, which can be retained in the process of
fusion [35]. A neural network is a nonlinear self-adaptive and self-organizing system
composed of many simple processing units which simulate the human nervous system to
process information based on the research of biological neuroscience [32,36,37]. The neural
network can fully approximate any complex nonlinear relationship and store information in
neurons in the system with strong robustness and fault tolerance. With the self-learning and
self-adapting ability, the neural network system can also deal with data fusion problem.
Zhang et al. apply the neural network as a fusion method to predict the mechanical
condition dynamically [38]. Compared to other two theories, neural network is more
applicable for deep learning than data fusion [37].

The required prior data in D-S evidence theory is more intuitive and easier to obtain
than a probabilistic reasoning theory such as Bayesian theory. It can integrate a variety of
data and knowledge, which makes it easier for the further data fusion. The study applies D-
S evidence theory as the theory of multi-source data fusion to fuse the multi-source data of
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rock mass. The level of data fusion is at the decision level. In D-S evidence theory, the most
critical step is to determine the basic probability assignments (BPAs) of each evidence in the
discernment framework for decision making. If the correlations between each evidence are
not entirely considered, it would lead to inaccurate and unreliable fusion results [39–43].
To make the results of data fusion more convincing and accurate for decision making,
the study needs to process the data of rock mass as evidence first before further fusion.
Researchers have conducted some research for this purpose. Murphy’s average belief
theory is proposed [40], which calculates the average belief of evidence for further fusion.
Many other methods are introduced to calculate the BPAs and the belief of evidence in D-S
theory for the same purpose, including the Jensen–Shannon belief divergence measurement
to reinforce the belief of evidence [41–43] and the distance measurement between each
evidence [43,44].

This study proposes a method for multi-source quality evaluation of rock mass based
on D-S evidence theory. As the correlations between different properties of rock mass
cannot be ignored, the belief reinforcement is applied to process the prior data of rock mass
for the further fusion process. Murphy’s average belief theory is used in the further data
fusion process for more reliable decision making, which is different from the applications
of the traditional D-S evidence theory. To validate the proposed method, random data
is generated, and the fusion results by both conventional D-S theory and the proposed
method are compared. A practical case study is processed by the proposed method to
prove its practical value.

2. D-S Evidence Theory
2.1. Description of D-S Evidence Theory

The basic concept of D-S evidence theory includes the discernment framework, a basic
probability assignment, a belief function, and a likelihood function [28,29].

The discernment framework is a finite nonempty set Θ including all the possible
events for the problem need to be decided. It can be expressed as Θ = {θ1, θ2, . . . , θn}.

The basic probability assignment (BPA) represents the trust degree of evidence for the
possible events in Θ, according to the data obtained. The definition of BPA is as follows:

Let 2Θ denote the power set composed of all the possible subsets of Θ. BPA is a
function m mapping from 2Θ to [0, 1], and satisfies the Equation (1):{

m(∅) = 0
∑A⊆Θ m(A) = 1

(1)

where A is a subset of Θ (A can also be called an event), and m(A) is called subset A’s BPA,
representing the trust degree of A in the framework Θ according to the data as evidence.
m(∅) = 0 invalidates that there is no trust for the empty set. The total trust degree for all
events in the framework should be 1.

For each event in Θ, the sum of its subset’s BPAs is called the belief function, written
as Bel. The definition is as follows: Bel is a function mapping from 2Θ to [0, 1] and satisfies
Equation (2):

Bel(A) = ∑
B⊆A

m(B) (2)

where Bel(A) is event A’s belief function, indicating the degree to trust the true proposition
of event A.

The likelihood function indicates the suspicious degree to the false proposition of
each event, which is for the more comprehensive analysis of the event. The definition is as
follows: Pl is a function mapping from 2Θ to [0, 1] and satisfies Equation (3):

Pl(A) = 1− Bel(A) (3)
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where Pl(A) is used as the likelihood function of event A, indicating the trust degree for
event A not to be a false proposition. Bel(A) indicates the suspicious degree of the false
proposition of event A.

The relationship between the belief function and the likelihood function can be visually
represented as Figure 1, as well as the uncertain relationship between the data as evidence.
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Figure 1. Uncertain relationship in D-S evidence theory.

2.2. Combination Rule of D-S Theory

When there is more evidence to analyze and process in the same discernment frame-
work, the combination rule of D-S evidence [30,34] is required. The BPAs of each evidence
are combined to a total BPA through this combination rule, which has proven to satisfy the
commutative and associative laws. There is no requirement to consider the sequence of
evidence combinations [30]. This rule reduces the reliability of evidence with a large base
and amplifies the reliability of evidence with a small base, which is conducive to making a
more reliable decision.

The combination rule of D-S evidence theory is realized through the orthogonal sum
operation of several BPAs. m1, m2, . . . , mn are BPAs in the same discernment framework
are set. m1 ⊕m2 represents the combination between two evidences’ BPAs. The calculating
process is indicated by Equation (4):

m1 ⊕m1 ⊕ . . .⊕mn(A) =
1
K ∑

A1∩...∩An=A
m1(A1)m2(A2) . . . mn(An) (4)

where K is the conflict coefficient and calculated by the Equation (5):

K = ∑
A1∩...∩An 6=φ

m1(A1)m2(A2) . . . mn(An) = 1− ∑
A1∩...∩An=φ

m1(A1)m2(A2) . . . mn(An) (5)

2.3. Measurement for Basic Probability Assignment

D-S evidence theory has constructed a strict theoretical system and proved a feasible
method to combine the BPAs of evidence. A reasonable method to obtain the BPAs plays a
critical role in the application of D-S evidence theory [30,31]. Considering that the RMR14
has divided the quality of rock mass into five rating levels which have their own rating
ranges, the Euclidian distance formula [45] can be used to transform the rock mass data
into BPAs.

If the number of indices in a sample is p, which represents the different properties of
this sample, this sample can be regarded as a p-dimensional vector. There are n similar
samples, which form p dimensions. The difference between any two samples can be
referred to as the distance between them in the broad sense, and the Euclidian distance
formula is used for the calculation of such distance as in Equation (6):

dij =

√√√√ p

∑
k=1

(xik − xjk)
2(i, j = 1, 2, . . . , n) (6)

where dij means the distance between sample i and j; the expressions of these two samples
are Xi =

{
xi1, xi2, . . . , xip

}
and Xj =

{
xj1, xj2, . . . , xjp

}
, respectively.
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In D-S evidence theory, it can be assumed that there is a discernment framework
Θ = {X1, X2, . . . , Xn}. Xi (i = 1, 2, . . . , n) in the framework is a target pattern and can be
written as Xi =

{
xi1, xi2, . . . , xip

}
. Each evidence can be written as Si =

{
si1, si2, . . . , sip

}
,

then the distance Dij between each evidence to the target pattern in the framework can be
calculated as the Equation (7):

Dij =

√√√√ p

∑
k=1

(sik − xjk)
2(i, j = 1, 2, . . . , n) (7)

Then, the BPA of the evidence can be generated by Equation (8):

msi (Xj) =
1/Dij

∑n
k=1 (1/Dik)

(8)

where msi (Xj) represents the BPA of evidence Si to the target pattern Xj.

2.4. Measurement for Belief Reinforcement

Conventional D-S evidence theory supposes the evidence be independent to each other.
Evidence could hardly meet this assumption in real work, which would influence badly on
the reliability of the result. Research has been done to consider the correlations between
evidence to reduce such impact. Murphy [40] suggested incorporating average belief
into the combining rule, which is called Murphy’s average belief theory. Deng et al. [46]
used the distance measurement to take the weight of each evidence into account based
on Murphy’s average belief theory. Divergence and information entropy are introduced
into the fusion process of D-S evidence theory by Xiao [42] to reinforce the belief of BPAs
for the weight calculation. The study applied Xiao’s method [42,43] to complete the belief
reinforcement of BPAs to reduce the influence brought by the correlation between data of
rock mass as evidence.

To apply the measurement for belief reinforcement, the divergence measurement for
belief functions is needed first as follows:

It is supposed that the discernment framework be Θ = {X1, X2, . . . , Xn} with belief
functions m1, m2, . . . , mn. The belief divergence measurement, denoted by B, between any
two belief functions mi and mj can be defined as:

B(mi, mj) =
2Θ

∑
p=1

2Θ

∑
q=1

mi(Xp) ln
mi(Xp)

1
2 mi(Xp) +

1
2 mj(Xq)

∣∣Xp ∩ Xq
∣∣∣∣Xq

∣∣ +
2Θ

∑
p=1

2Θ

∑
q=1

mj(Xp) ln
mj(Xq)

1
2 mi(Xp) +

1
2 mj(Xq)

∣∣Xp ∩ Xq
∣∣∣∣Xp

∣∣ (9)

where Xp ∩ Xq means the intersection between Xp and Xq, and
∣∣Xp

∣∣ means the cardinality
of Xp.

When the events of the belief functions are one-element sets, Equation (9) degenerates
into the belief Jensen–Shannon divergence as in Equation (10):

B(mi, mj) =
2Θ

∑
p=1

mi(Xp) ln
mi(Xp)

1
2 mi(Xp) +

1
2 mj(Xp)

+
2Θ

∑
p=1

mj(Xp) ln
mj(Xp)

1
2 mi(Xp) +

1
2 mj(Xp)

(10)

Based on the divergence measurement for belief functions, the measurement for belief
reinforcement, denoted by RB, between any two belief functions mi and mj can be defined
as Equation (11). RB(mi, mj) is the result of belief reinforcement for the further data fusion:

RB(mi, mj) =

√∣∣B(mi, mi) + B(mj, mj)− B(mi, mj)− B(mj, mi)
∣∣

2
(11)
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It has been proved that both divergence measurement and measurement for belief re-
inforcement are central symmetry, which means B(mi, mj) = B(mj, mi) and RB(mi, mj) =
RB(mj, mi).

3. A Method for Quality Evaluation of Rock Mass with Multi-Source Data
3.1. Description

The proposed method applies D-S evidence theory with the measurement for belief
reinforcement to fuse the multi-source data of rock mass for the quality evaluation of rock
mass in RMR14. The data of rock mass, including rock strength, spacing of discontinuities,
condition of discontinuities, ground water, and intact rock alterability (Id2), are obtained
by several test approaches. Some of them are collected by the installed sensors in tunnel
excavation face, and others are measured by rock experiments. These data are converted
into BPAs by the Euclidian distance formula. The data of rock mass are regarded as
evidence in this method. Considering the correlations between the properties of rock
mass, the measurement for belief reinforcement is applied to adjust the BPAs and calculate
the weighted average belief of each evidence. The weighted average belief is iteratively
fused by the combination rule of D-S evidence theory to obtain the final result. The result
indicates the probability of the rock mass in each level of rock mass rating.

3.2. Process Steps

Step 1: According to the rock mass rating from level I to level V, the discernment
framework as Θ = {FI, FII, FIII, FIV, FV} is constructed, where Fi (i = I, II, III, IV, V) means
the quality of rock mass is in level i (i = I, II, III, IV, V).

Step 2: Rating ranges for each rock mass rating index are standardized, which is listed
in Table 1.

Table 1. Standardized ranges for rock mass rating indices.

Rating Index I II III IV V

Rock strength (R1) 12–15 8–12 5–8 3–5 0–3
Spacing of discontinuities (R2) 29–40 22–29 15–22 8–15 0–8

Condition of discontinuities (R3) 17–20 13–17 9–13 4–9 0–4
Ground water (R4) 13–15 10–13 7–10 3–7 0–3

Intact rock alterability (R5) 9–10 7–9 4–7 2–4 0–2

Total rating 80–100 60–80 40–60 20–40 0–20

The rock mass rating index R3 can be divided into four sub-indicators, as continuity
R31, roughness R32, infilling R33, and weathering R34. Secondary data fusion is needed in
R3 before the data fusion in the whole quality evaluation of rock mass. The rating ranges of
the sub-indicators of R3 are listed as Table 2.

Table 2. Rating ranges of sub-indicators of R3.

Rock Mass Rating I II III IV V

Continuity (R31) 4.1–5.0 3.1–4.0 2.1–3.0 1.1–2.0 0–1.0
Roughness (R32) 4.1–5.0 3.1–4.0 2.1–3.0 1.1–2.0 0–1.0

Infilling (R33) 4.1–5.0 3.1–4.0 2.1–3.0 1.1–2.0 0–1.0
Weathering (R34) 4.1–5.0 3.1–4.0 2.1–3.0 1.1–2.0 0–1.0

Step 3: The data of rock mass need to be transformed into BPAs by the Euclidian
distance formula. The rock mass data can be obtained from various approaches, such
as point load rest and Schmidt hammer test to obtain the data of rock strength, digital
photography, and laser scanning to obtain data of rock discontinuities, field observation,
and GPR scanning to obtain data of ground water. For each rock mass data, it has a
corresponding rating q and can be written as [q−, q+], where q− = q+ = q. The standardized
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rating ranges can also be written as [ f−i , f+i ] (i = I, II, III, IV, V), where f−i represents the
minimum rating of the range, and the f+i represents the maximum rating of the range. The
distance from the data to the rating range can be derived as Equation (12):

Di =

√
(q− − f−i )

2
+ (q+ − f+i )

2
(i = I, II, III, IV, V) (12)

Then, the BPA of this data of rock mass for each interval can be calculated as Equation (13):

m(Fi) =
1/Di

∑5
k=1 (1/Dk)

(i = I, II, III, IV, V) (13)

Step 4: BM is constructed as the BPA matrix according to the result from Step 3 as
Equation (14):

BM =


m1(FI) m1(FII) m1(FIII) m1(FIV) m1(FV)
m2(FI) m2(FII) m2(FIII) m2(FIV) m2(FV)

. . . . . . . . . . . . . . .
mn(FI) mn(FII) mn(FIII) mn(FIV) mn(FV)

 (14)

where mi(Fj) (i = 1, 2, . . . , n; j = I, II, III, IV, V) means the BPA for the data of rock mass to
one rock mass rating range. The data of rock mass is obtained from one test method.

The divergence measurement for belief reinforcement can be derived as
Equations (15) and (16), for the events in the framework are all one-element sets:

B(mi, mj) = ∑
p=I, II, III, IV, V

mi(Fp) ln mi(Fp)
1
2 mi(Fp)+

1
2 mj(Fp)

+ ∑
p=I, II, III, IV, V

mj(Fp) ln
mj(Fp)

1
2 mi(Fp)+

1
2 mj(Fp)

(i, j = 1, 2, . . . , n)
(15)

RBij = RB(mi, mj) =

√∣∣B(mi, mi) + B(mj, mj)− B(mi, mj)− B(mj, mi)
∣∣

2
(i, j = 1, 2, . . . , n) (16)

The calculation result by Equation (16) is used to construct RBM as the matrix of belief
reinforcement as Equation (17):

RBM =


RB11 RB12 RB13 . . . RB1n
RB21 RB22 RB23 . . . RB2n
. . . . . . . . . . . . . . .

RBn1 RBn2 RBn3 . . . RBnn

 (17)

Step 5: The elements in RBM are used to calculate the weight average belief of each
evidence as Equations (18)–(21):

R̃Bi =
∑n

j=1 RBij

n
(18)

Sei =
1

R̃Bi
(19)

ci =
Sei

∑n
j=1 Sej

(20)

m̃(Fj) =
5

∑
i=1

[ci ×mi(Fj)] (j = I, II, III, IV, V) (21)
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Step 6: The result from step 5 is used to build a weighted average belief vector as
Equation (22):

m̃ = (m̃(FI), m̃(FII), m̃(FIII), m̃(FIV), m̃(FV)) (22)

The combination rule of D-S evidence theory and Murphy’s average belief theory are
applied to obtain the final fusion result as Equation (23):

F̃[m̃(Fj)] = {{{[m̃(Fj)⊕ m̃(Fj)]1 ⊕ m̃(Fj)}2
⊕ . . .}

n−2
⊕ m̃(Fj)}n−1

(23)

The flowchart of the proposed method is shown in Figure 2.
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3.3. Model Validation

In order to validate the proposed method, 25 sets of data for rock mass rating are
listed in Table 3. Generated data of rock mass indicate that this kind of rock mass is
probably in level II or III. Each index (R1–R5) has 5 datasets used as evidence for data
fusion. The BPAs of each evidence are calculated shown in Figure 3, which are reinforced
by the measurement in Section 2.4 and shown as RBM in Equation (24). Results of the
fusion process are listed in Table 4. Then the weighted average belief is calculated based
on the proposed method and the BPAs, which is shown in Figure 4.

RBM =


0

0.6114 0 Symmetry
0.4829 0.3941 0
0.3227 0.4558 0.1839 0
0.3397 0.4267 0.1588 0.0353 0

 (24)
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Table 3. Data of rock mass for model validation.

No. R1 R2 R3 R4 R5

1 14 11 12 3 2
2 13 30 12 4 10
3 5 20 17 13 7
4 10 19 16 10 5
5 3 36 12 7 5
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Table 4. Fusion process of the model validation.

Rock Mass Rating

I II III IV V

R̃B 0.4397 0.4720 0.3054 0.2494 0.2401
Se 2.2744 2.1187 3.2741 4.0091 4.1646
c 0.1436 0.1338 0.2067 0.2531 0.2629
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A further fusion step is performed as mentioned in Section 3.2. The fusion result is
shown in Figure 5. The fusion result obtained by conventional D-S theory’s combination
rule is also shown in Figure 5. It is found that the result obtained from conventional D-S
theory shows almost the close probabilities in level II and level III, making it difficult
to decide the exact level of rock mass rating. While the result obtained by the proposed
method indicates that the actual rock mass rating level is III with the maximum probability
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of 0.8887. The weighted average belief also shows that is same as the result of the proposed
method, which is magnified from 0.3005 to 0.8887 by the Murphy’s average belief theory.
The simulation result indicates that the proposed method can process the multi-source data
with correlations between each evidence in D-S theory better than the conventional theory
and help to ensure more reliable decisions.
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Meanwhile, the traditional way for the quality evaluations is also applied. The quality
of rock mass in this simulation is evaluated as an exact value, 59.2, which means the quality
of this kind of rock mass is in level III. The result agrees with the proposed method, but
the output expressions of the two methods are different. The proposed method, taking
probability as the output mode, reflects the uncertainty in the quality evaluation of rock
mass, which is more reliable in tunnel designation than the numerical output mode.

4. Case Study
4.1. Background

The proposed method is applied to the quality evaluation of rock mass in the Daxiagu
tunnel under construction in the E’han expressway in the Sichuan province of China as a
case study. The tunnel is the deepest buried highway tunnel with the maximum buried
depth of 1944 m. The surrounding rock data used in this case study are collected from
the K78+350 section of the tunnel in Figure 6. The rock data of rock mass rating indices
are collected by several methods and some specialized sensors, including the point load
test, the Schmidt hammer test, digital photography, laser scanning, field observation, GPR
scanning, and so on. Some of them use sensors to obtain the data of rock mass, such as field
observation. The quality evaluation of rock mass is generated by the proposed multi-source
data fusion method.

4.2. Quality Evaluation with the Proposed Method

According to the proposed method in Section 3, the quality evaluation begins with
initial data fusion in each rock mass index (R1–R5).

The rock mass index R1 is rated by rock strength, which is obtained by the point load
test or the Schmidt hammer test. R1 is converted into BPAs, and BMR1 is constructed
with BPAs of R1 as shown in Figure 7. RBMR1 can be calculated and constructed by
Equation (25). The initial fusion of R1 for the proposed method is conducted and the result
is shown in Figure 8a. It indicates that the quality of rock strength in this section has almost
the same probability in level III (0.4981) and IV (0.5019). The probabilities of the quality of
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rock strength in level I, II, and V are almost 0. It is difficult to determine the exact quality
of the strength of the rock mass in this section.
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Rock mass index R2 is rated by the spacing of discontinuities, which is obtained
by digital photography, and laser scanning. The excavation face is divided into several
sampling windows, and the discontinuity information is extracted from the sampling
windows to obtain the required data. The spacing of discontinuities is based on the number
of discontinuities per unit length. BMR2 is constructed based on the BPAs of R2 in Figure 9.
RBMR2 is calculated by Equation (26). The initial fusion of R2 for the proposed method



Sensors 2021, 21, 7108 12 of 20

is done and the result is shown in Figure 8b. From the result of initial fusion of R2, it
indicates that the quality of the spacing of discontinuities in this section is in level II with
the maximum probability of 0.8543. The result is different from the result of initial data
fusion of R1, which means that further data fusion is needed.
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Figure 8. Initial fusion results of each rock mass index (R1–R5). (a) Initial fusion result of R1. (b) Initial
fusion result of R2. (c) Initial fusion result of R3. (d) Initial fusion result of R4. (e) Initial fusion result
of R5.

Rock mass index R3 is rated by the condition of discontinuities. The sub-indicators of
R3 are considered, including the rating of continuity, the rating of roughness, the rating
of infilling, and the rating of weathering. The data of discontinuities of the rock mass are
collected and rated, which is used to construct BMR3 in Figure 10. The continuity and the
infilling of the rock mass is measured by digital photography and laser scanning based on
the point load model [47]. The roughness of the rock mass is obtained by field observation
and rock roughness coefficient based on rock mechanics [48]. The weathering condition
of the rock mass is obtained by the field observation and rock tablet method [49]. The
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secondary fusion of each sub-indicator is carried out firstly before the initial fusion, as
shown in Figure 11. The initial fusion of R3 based on the secondary fusion is conducted,
and the result is shown in Figure 8c. It indicates that the quality of the condition of
discontinuities in this section is in level III with the maximum probability of 0.9243. The
fusion result still cannot reach a unified result with the fusion result of the previous
two indicators.

RBMR2 =



0
0.0500 0
0.3188 0.3646 0
0.1766 0.2257 0.1644 0 Symmetry
0.1237 0.1730 0.2080 0.0533 0
0.0628 0.1125 0.2615 0.1142 0.0610 0

0 0.0500 0.3188 0.1766 0.1237 0.0628 0
0.0847 0.0373 0.3928 0.2570 0.2048 0.1452 0.0847 0
0.0628 0.1125 0.2615 0.1142 0.0610 0 0.0628 0.1452 0
0.3047 0.3518 0.0355 0.1404 0.1883 0.2452 0.3047 0.3811 0.2452 0
0.0500 0 0.3646 0.2257 0.1730 0.1125 0.0500 0.0373 0.1125 0.3518 0
0.2284 0.2772 0.1252 0.0525 0.1056 0.1663 0.2284 0.3080 0.1663 0.0956 0.2772 0



(26)
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Figure 9. BMR2 constructed with BPAs of R2.

Rock mass rating index R4 is rated by the ground water, which is obtained by field
observation or GPR scanning. The index R4 is determined according to the wetting condi-
tion of ground water in the excavation face. The ground water at K78+350 was detected
by both sources and the rock mass rating index R4 is rated. BMR4 is constructed with the
rating as shown in Figure 12. RBMR4 is calculated by Equation (27). The initial fusion of
R4 for the proposed method is performed, and the result is shown in Figure 8d. It indicates
that the quality of ground water in this section has almost the same probability in level III
(0.4761) and IV (0.4967), which makes it hard to decide the exact rating level of the quality
of the ground water.

RBMR4 =



0
0.2102 0 Symmetry
0.2670 0.0581 0
0.2336 0.0239 0.0342 0
0.1499 0.0617 0.1196 0.0855 0
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 (27)
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the infilling of the rock mass is measured by digital photography and laser scanning 
based on the point load model [47]. The roughness of the rock mass is obtained by field 
observation and rock roughness coefficient based on rock mechanics [48]. The weather-
ing condition of the rock mass is obtained by the field observation and rock tablet method 
[49]. The secondary fusion of each sub-indicator is carried out firstly before the initial 
fusion, as shown in Figure 11. The initial fusion of R3 based on the secondary fusion is 
conducted, and the result is shown in Figure 8c. It indicates that the quality of the condi-
tion of discontinuities in this section is in level III with the maximum probability of 
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Figure 11. Result of the secondary fusion of the sub-indicators of R3.
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Figure 12. BMR4 constructed with BPAs of R4.

The rock mass rating index R5 is rated by the intact rock alterability (Id2). The standard
test of this index is obtained by measuring the ratio of the residual mass of the rock
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specimen to its original mass after two standard cycles of drying and soaking. It is a
long test period and is difficult to obtain [50]. According to the existing research, the
rock intact rock alterability can be converted from the UCS obtained from point load test
or laboratory test. The intact rock alterability index R5 of rock at the K78+350 section is
rated and converted into BPAs in Figure 13. RBMR5 is constructed based on the BPAs in
Equation (28). The initial fusion of R5 for the proposed method is done and the result is
shown in Figure 8e, which indicates the quality of the rock intact rock alterability in this
section is in level III with the maximum probability of 0.9558.

RBMR5 =



0

0.4572 0

0.6532 0.3615 0

0.5167 0.1081 0.2591 0

0.1004 0.5127 0.6887 0.5656 0 Symmetry

0.3816 0.0940 0.4223 0.1890 0.4470 0

0.2292 0.5957 0.7436 0.6396 0.1295 0.5421 0

0.2232 0.3169 0.5586 0.3888 0.3178 0.2275 0.4401 0

0.3159 0.1768 0.4687 0.2603 0.3922 0.0848 0.4989 0.1435 0

0.4385 0.0248 0.3802 0.1305 0.4963 0.0701 0.5821 0.2951 0.1539 0

0.6230 0.3120 0.0532 0.2085 0.6611 0.3752 0.7201 0.5218 0.4251 0.3311 0

0.5317 0.1403 0.2266 0.0331 0.5789 0.2171 0.6507 0.4077 0.2843 0.1619 0.1758 0

0.4481 0.0123 0.3711 0.1194 0.5047 0.0823 0.5891 0.3064 0.1657 0.0125 0.3218 0.1512 0

0.5096 0.0928 0.2744 0.0157 0.5592 0.1758 0.6343 0.3799 0.2491 0.1156 0.2240 0.0487 0.1043 0

0.5567 0.1918 0.1746 0.0858 0.6012 0.2632 0.6694 0.4393 0.3242 0.2124 0.1233 0.0528 0.2022 0.1015 0

0.4736 0.0247 0.3404 0.0846 0.5273 0.1167 0.6078 0.3362 0.1977 0.0492 0.2905 0.1172 0.0369 0.0691 0.1693 0



(28)
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Figure 14. Some rock mass rating indices have different rating levels with the maximum 
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levels (R2 and R4). It is difficult to decide the exact rating level of the quality of the rock 
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Figure 13. BMR5 constructed with BPAs of R5.

The initial data fusion in each rock mass index is generated by the proposed method
before the further fusion. The result of initial fusion of each index is shown in total in
Figure 14. Some rock mass rating indices have different rating levels with the maximum
probability (R1, R3, and R5), and others have almost the same probability in two rating
levels (R2 and R4). It is difficult to decide the exact rating level of the quality of the rock
mass in this section, which means that further fusion is needed for the quality evaluation
of rock mass.
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Figure 14. Fusion result of the initial data fusion in each index and final data fusion in RMR14.

The result of the initial fusion of each index for the rock mass rating is used to conduct
further data fusion. The total RBM of all the rock mass indices is calculated based on
the results of initial data fusion by Equation (29). The further fusion process in Table 5
indicates that the rock mass rating of the K78+350 section is in level III with the maximum
probability of 0.9838, which agrees with geological survey report of the Daxiagu tunnel.
Equation (29) is calculated as follows:

RBM =


0

1.0206 0 Symmetry
0.6754 0.8374 0
0.1382 0.9909 0.6661 0
0.5755 0.9460 0.2103 0.5805 0

 (29)

Table 5. Fusion process of the quality evaluation of rock mass in studied section.

Rock Mass Rating

I II III IV V

R̃B 0.4819 0.7590 0.4779 0.4751 0.4625
Se 2.0749 1.3176 2.0927 2.1046 2.1622
c 0.2128 0.1351 0.2146 0.2158 0.2217

Weighted average belief 6.2 × 10−4 0.1366 0.6387 0.2213 0.0028
Final probability 8.7 × 10−13 0.0021 0.9838 0.0142 3.5 × 10−10

5. Conclusions

A multi-source quality evaluation of rock mass based on D-S evidence theory is
proposed. Multi-source data of rock mass from different rock experiments or installed
sensors can be entirely used in this method. The proposed method considers the correlation
between different rock mass indices with measurement for belief reinforcement and applies
the Murphy’s average belief theory to the combination rule of D-S evidence theory. The
result obtained by the proposed method further enlarges the probability of more likely
events and reduces the probability of less likely events.

Comparing this with the result based on the conventional combination rule of D-S
theory, the proposed method processes the data of rock mass before further data fusion
instantly. The results of the proposed method are also more accurate and reliable than the
conventional D-S evidence theory. Compared to the traditional method based on RMR14
system, the output mode as probabilities shows the uncertainty in the quality evaluation of
rock mass and makes the proposed method more reliable to the tunnel designation.
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The K78+350 section of the Daxiagu tunnel is chosen as a case study to apply the
proposed method. The result indicates that the quality of the rock mass is in level III.
It agrees well with the reality and the geological survey report. The proposed method
considers the correlation between rock properties together with the error influence caused
by the accuracy of sensors and the operational problems. Its output is the probabilities in
each rating level instead of the actual rating score, which reminds us to consider the risks
caused by the uncertainty of tunnel surrounding rock in actual engineering projects. The
proposed method can be taken forward for the application in the quality evaluation of rock
mass with multi-source data in geotechnical engineering.

It has not been fully understood the mutual influence of the rating indices of the rock
mass. For further research work, the interactions between the rating indices should be
considered to address this limitation. A comprehensive approach is needed to process the
correlations of the rating indices as evidence of the data fusion. Moreover, the RMR14
system was improved to evaluate the quality of the rock mass surrounding the tunnel in
tunnel engineering. So, the proposed method is implemented in a case study of rock mass
tunnel. The applicability of the proposed method in other rock mass engineering projects
such as the side slope or underground cavern needs more studies in the future.

Author Contributions: Conceptualization, Q.Z.; data curation, N.W.; funding acquisition, Y.L.;
investigation, Q.J.; resources, Y.L.; software, N.W. and L.H.; supervision, Q.Z.; validation, L.H.;
writing—original draft, Q.Z. and Q.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was funded partially by the National Natural Science Foundation of China, grant
number 41972277 and 41602300; the State Key Laboratory for GeoMechanics and Deep Underground
Engineering, China University of Mining and Technology, grant number SKLGDUEK2006; and the
Fundamental Research Funds for the Central Universities, grant number 3205002108C3.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

2Θ Power set composed of all the possible subsets of Θ
B(mi, mj) Belief divergence between two belief functions mi and mj
Bel(A) Belief function of A
BM Matrix constructed by BPAs of evidence
BM0 Matrix constructed by the BPAs of evidence for validation
BM0

R1
Matrix constructed by the BPAs of R1 as evidence for validation

BM0
R2

Matrix constructed by the BPAs of R2 as evidence for validation
BM0

R3
Matrix constructed by the BPAs of R3 as evidence for validation

BM0
R4

Matrix constructed by the BPAs of R4 as evidence for validation
BM0

R5
Matrix constructed by the BPAs of R5 as evidence for validation

BMR1 Matrix constructed by the BPAs of R1 as evidence
BMp

R1
Matrix constructed by the BPAs of R1 from the point load test as evidence

BMs
R1

Matrix constructed by the BPAs of R1 from the Schmidt hammer test as
evidence

BMR2 Matrix constructed by the BPAs of R2 as evidence
BMd

R2
Matrix constructed by the BPAs of R2 from digital photography as evidence

BMl
R2

Matrix constructed by the BPAs of R2 from laser scanning as evidence
BMR3 Matrix constructed by the BPAs of R3 as evidence
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BMR31 Matrix constructed by the BPAs of R31 as evidence
BMd

R31
Matrix constructed by the BPAs of R31 from digital photography
as evidence

BMl
R31

Matrix constructed by the BPAs of R31 from laser scanning as evidence
BMR32 Matrix constructed by the BPAs of R32 as evidence
BM f

R32
Matrix constructed by the BPAs of R32 from field observation as evidence

BMr
R32

Matrix constructed by the BPAs of R32 from rock mechanics as evidence
BMR33 Matrix constructed by the BPAs of R33 as evidence
BMd

R33
Matrix constructed by the BPAs of R33 from digital photography
as evidence

BMl
R33

Matrix constructed by the BPAs of R33 from laser scanning as evidence
BMR34 Matrix constructed by the BPAs of R34 as evidence
BMr

R34
Matrix constructed by the BPAs of R34 from rock tablet method as evidence

BM f
R34

Matrix constructed by the BPAs of R34 from field observation as evidence
BMR4 Matrix constructed by the BPAs of R4 as evidence
BM f

R4
Matrix constructed by the BPAs of R4 from field observation as evidence

BMg
R4

Matrix constructed by the BPAs of R4 from GPR scanning as evidence
BMR5 Matrix constructed by the BPAs of R5 as evidence
BMp

R5
Matrix constructed by the BPAs of R5 from point load test as evidence

BMl
R5

Matrix constructed by the BPAs of R5 from laboratory test as evidence
ci Weight of the average belief
Dij Distance between evidence Si and target pattern Xi
dij Distance between sample i and j
FI Event in discernment framework representing the quality of rock mass is in

level I
FII Event in discernment framework representing the quality of rock mass is in

level II
FIII Event in discernment framework representing the quality of rock mass is in

level III
FIV Event in discernment framework representing the quality of rock mass is in

level IV
FV Event in discernment framework representing the quality of rock mass is in

level V
F̃[m̃(Fj)] Fusion result in the discernment framework
Id2 Intact rock alterability of rock
K Conflict coefficient between different BPAs
m̃ Weighted average belief vector in discernment framework
m1, m2, . . . , mn Different BPAs in the same discernment framework Θ
m(A) A’s basic probability assignment (BPA) in discernment framework Θ
msi(Xj) BPA of evidence Si to the target pattern Xj.
m̃(Fj) Weighted average belief of the event Fj
n Number of samples
p Number of dimensions in a vector
Pl(A) Likelihood function of A
R Schmidt blow count
R1 Rating of rock strength in RMR14
R2 Rating of spacing of discontinuities in RMR14
R3 Rating of condition of discontinuities in RMR14
R31 Rating of continuity as a sub-indicator in condition of discontinuities

in RMR14
R32 Rating of roughness as a sub-indicator in condition of discontinuities

in RMR14
R33 Rating of infilling as a sub-indicator in condition of discontinuities

in RMR14
R34 Rating of weathering as a sub-indicator in condition of discontinuities

in RMR14
R4 Rating of ground water in RMR14
R5 Rating of intact rock alterability in RMR14
RB(mi, mj) Belief reinforcement between two belief functions mi and mj
R̃Bi Average value of elements in the i-th row of matrix
RBM Matrix of belief reinforcement based on BM
RBMR1 Matrix of belief reinforcement based on BMR1
RBMR2 Matrix of belief reinforcement based on BMR2
RBMR4 Matrix of belief reinforcement based on BMR4
RBMR5 Matrix of belief reinforcement based on BMR5
Si = {si1, si2, . . . , sip} Coordinates of evidence Si
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Sei Reciprocal of the average value of the elements in the i-th row of a matrix
UCS Uniaxial compressive strength
Xi = {xi1, xi2, . . . , xip} Coordinates of target pattern Xi
Θ Discernment framework in D-S evidence theory
θ1, θ2, . . . , θn Elements (events) in discernment framework Θ
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