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ABSTRACT

Objective: We aimed to determine if machine learning can predict acute brain
injury and to identify modifiable risk factors for acute brain injury in patients
receiving venoarterial extracorporeal membrane oxygenation.

Methods:We included adults (age�18 years) receiving venoarterial extracorporeal
membrane oxygenation or extracorporeal cardiopulmonary resuscitation in the
Extracorporeal Life Support Organization Registry (2009-2021). Our primary
outcome was acute brain injury: central nervous system ischemia, intracranial hem-
orrhage, brain death, and seizures. We used Random Forest, CatBoost, LightGBM,
and XGBoost machine learning algorithms (10-fold leave-1-out cross-validation)
to predict and identify features most important for acute brain injury. We extracted
65 total features: demographics, pre-extracorporeal membrane oxygenation/on-
extracorporeal membrane oxygenation laboratory values, and pre-extracorporeal
membrane oxygenation/on-extracorporeal membrane oxygenation settings.

Results: Of 35,855 patients receiving venoarterial extracorporeal membrane
oxygenation (nonextracorporeal cardiopulmonary resuscitation) (median age of
57.8 years, 66% were male), 7.7% (n¼ 2769) experienced acute brain injury. In ve-
noarterial extracorporeal membrane oxygenation (nonextracorporeal cardiopul-
monary resuscitation), the area under the receiver operator characteristic curves
to predict acute brain injury, central nervous system ischemia, and intracranial hem-
orrhage were 0.67, 0.67, and 0.62, respectively. The true-positive, true-negative,
false-positive, false-negative, positive, and negative predictive values were 33%,
88%, 12%, 67%, 18%, and 94%, respectively, for acute brain injury. Longer extra-
corporeal membrane oxygenation duration, higher 24-hour extracorporeal mem-
brane oxygenation pump flow, and higher on-extracorporeal membrane
oxygenation partial pressure of oxygen were associated with acute brain injury.
Of 10,775 patients receiving extracorporeal cardiopulmonary resuscitation (median
age of 57.1 years, 68% were male), 16.5% (n¼ 1787) experienced acute brain injury.
The area under the receiver operator characteristic curves for acute brain injury,
central nervous system ischemia, and intracranial hemorrhage were 0.72, 0.73,
and 0.69, respectively. Longer extracorporeal membrane oxygenation duration,
older age, and higher 24-hour extracorporeal membrane oxygenation pump flow
were associated with acute brain injury.

Conclusions: In the largest study predicting neurological complications with ma-
chine learning in extracorporeal membrane oxygenation, longer extracorporeal
membrane oxygenation duration and higher 24-hour pump flow were associated
with acute brain injury in nonextracorporeal cardiopulmonary resuscitation and
extracorporeal cardiopulmonary resuscitation venoarterial extracorporeal mem-
brane oxygenation. (JTCVS Open 2024;20:64-88)
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Most important factors for predicting ABI in 35,855
patients on VA-ECMO.
CENTRAL MESSAGE

ML predicted ABI in patients on
VA-ECMO with mediocre per-
formance. Nevertheless, it iden-
tified longer ECMO duration and
higher ECMO pump flow as the
most important factors for ABI.
PERSPECTIVE
Predicting ABI with ML in the ELSO Registry was
substandard because of the lack of data granu-
larity. Standardized neurological monitoring and
more granular data collection across ELSO cen-
ters are important to detect the true prevalence
of ABI. Nevertheless, ML identified longer ECMO
duration and higher ECMO pump flow as the
most important factors for ABI in patients on
VA-ECMO.
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Abbreviations and Acronyms
ABG ¼ arterial blood gas
ABI ¼ acute brain injury
AUC-ROC ¼ area under the receiver operating

characteristic curve
CNS ¼ central nervous system
CT ¼ computed tomography
ECMO ¼ extracorporeal membrane

oxygenation
ECPR ¼ extracorporeal cardiopulmonary

resuscitation
ELSO ¼ Extracorporeal Life Support

Organization
ICH ¼ intracranial hemorrhage
IQR ¼ interquartile range
LOOCV ¼ leave-1-out-cross-validation
ML ¼ machine learning
MRI ¼ magnetic resonance imaging
NPV ¼ negative predictive value
OR ¼ odds ratio
PaO2 ¼ partial pressure of oxygen
PPV ¼ positive predictive value
SHAP ¼ Shapley Additive Explanations
VA ¼ venoarterial
VV ¼ venovenous

Kalra et al Adult: Mechanical Circulatory Support
Extracorporeal membrane oxygenation (ECMO) is increas-
ingly used for cardiopulmonary support.1 Acute brain injury
(ABI), which includes central nervous system (CNS)
ischemia, intracranial hemorrhage (ICH), and hypoxic-
ischemic brain injury, is reported to occur in up to 20%
of adult patients receiving venoarterial (VA)-ECMO2 in
the Extracorporeal Life Support Organization (ELSO) Reg-
istry. Furthermore, this rate is as high as 33% in patients on
VA-ECMO using noninvasive multimodal neuromonitoring
at a single institution.3 With greater ECMO use and more
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cases of ABI, accurately predicting ABI with modifiable
risk factors such as hyperoxia,4 low pulse pressure,5,6 and
hypercarbia7 is important to lessen its occurrence.
In VA-ECMO, there have been several scoring systems

developed to predict survival outcomes,8-11 but their
generalizability is limited because they stem from single-
center studies, are focused in a specific subset of patients
(eg, only cardiogenic shock), and were created from logistic
regression. Machine learning (ML) leverages big data to
explore patterns and interactions without explicit program-
ming from humans, thus offering distinct advantages to
traditional regression.12 Furthermore, coupled with the
large sample size of the ELSO Registry, ML may be the
most promising technique to adequately synthesize demo-
graphic and laboratory information to effectively predict
ABI.13 Additionally, identifying variables in the ML model
that impact clinical outcomes will inform ECMO clinicians
for mitigation of key risk factors for ABI.
Current literature applying ML to predict outcomes in pa-

tients receiving ECMO is sparse and primarily focused on
non-neurological outcomes such as thrombosis/hemorrhage
and mortality.14-16 An ELSO Registry analysis of patients
on VA-ECMO (n¼ 23,812) demonstrated MLyielded better
prediction for in-hospital mortality (area under the receiver
operating characteristic curve [AUC-ROC] ¼ 0.80) versus
the SAVE score (AUC-ROC ¼ 0.61).15 This study demon-
strated the power of ML when applied to the ELSO Registry
and provided the impetus for this study designed to test the
capability of ML to predict ABI.
We aimed to leverage ML to predict ABI in a large inter-

national cohort (the ELSO Registry) of patients receiving
ECMO.
MATERIAL AND METHODS
Study Design and Population

The Johns Hopkins Hospital Institutional Review Board approved this

retrospective observational study (IRB00216321) with a waiver of informed

consent on October 22, 2019. “Retrospective Analysis of Outcomes of
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Patients on Extracorporeal Membrane Oxygenation” is the study title. All

procedures were followed in accordance with the Helsinki Declaration of

1975 and the ethical standards of the responsible committee on human exper-

imentation (institutional or regional). The ELSO Registry is an international

multicenter database from more than several hundred ECMO centers world-

wide.17 It collects clinical characteristics and demographics, pre-ECMO, and

on-ECMO laboratory values such as arterial blood gas (ABG), on-ECMO

complications, and outcomes such as in-hospital mortality through voluntary

participation. Comorbidity information was captured using the International

Classification of Diseases, 10th Revision codes.

We included patients who were aged 18 years of age or more and sup-

ported with VA-ECMO for extracorporeal cardiopulmonary resuscitation

(ECPR) and non-ECPR indications from 2009 to 2021.We excluded repeat
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FIGURE 1. All 65 variables incorporated into our ML models including labo

outcome (ABI). BP, Blood pressure; PaCO2, partial pressure of carbon dioxide;

sure; DPAP, diastolic pulmonary arterial pressure; SpO2, peripheral oxygen sa

arterial pressure; SaO2, arterial blood gas oxygen saturation; SPAP, systolic pulm

brane oxygenation; FiO2, fraction of inspired oxygen; PEEP, positive-end expira

66 JTCVS Open c August 2024
ECMO runs within the same patient to avoid bias and complexity. VA-

ECMO and ECPR cohorts were analyzed separately.
Data Collection
In total, 65 variables were collected (Figure 1) forML. The ELSORegistry

collects ABG and hemodynamics pre-ECMO support and on-ECMO. Both

pre-ECMOventilator settings andABGswere drawnwithin 6 hours of starting

ECMOcannulation. If multiple ABGs existedwithin a specific period, the pre-

ECMOABG that was nearest to the start of ECMO cannulation was chosen.

On-ECMO hemodynamic and ABG information were drawn closest to

24 hours of ECMO support. Values that were meant to be obtained simulta-

neously such as systolic and diastolic blood pressure and oxygen saturation
A
cu

te
 B

ra
in

 In
ju

ry

O
th

er
s

Bridge to Transplantation as an indication for ECMO
Pre-ECMO Cardiac Arrest
Patient Transported on ECMO
Trauma as an indication for ECMO
ECMO Duration

Brain Death
Central Nervous System Hemorrhage
Infarction
Intra/Extra Parenchymal Hemorrhage
Intraventricular Hemorrhage
Hypoxic-Ischemic Brain Injury
Neurosurgical Intervention
Seizures confirmed by EEG
Seizures clinically determined

dex
trategy

e of ECMO Center

O Support

ratory values, ECMO settings, demographics, other variables, and primary

PaO2, partial pressure of oxygen; PCWP, pulmonary capillary wedge pres-

turation; SvO2, mixed venous oxygen saturation; MPAP, mean pulmonary

onary arterial pressure; HCO3, bicarbonate; ECMO, extracorporeal mem-

tory pressure; PIP, peak inspiratory pressure; EEG, electroencephalogram.



Kalra et al Adult: Mechanical Circulatory Support
by pulse oximetry and by ABG were abstracted by a trained ELSO data man-

ager/abstracter from each center and were collected concurrently.

Definitions
ABI was defined as the presence of infarction (ischemic stroke), diffuse

ischemia (hypoxic-ischemic brain injury), intra/extraparenchymal hemor-

rhage, intraventricular hemorrhage, seizures determined by electroenceph-

alograph or clinically, and neurosurgical intervention (examples include

intracranial pressure monitor, external ventricular drain, and craniotomy)

during ECMO support. CNS ischemia was defined as ischemic stroke

(determined by ultrasound, computed tomography [CT], or magnetic reso-

nance imaging [MRI]) and hypoxic-ischemic brain injury (determined by

CT or MRI). ICH was defined as intra/extraparenchymal hemorrhage and

intraventricular hemorrhage (both determined by CT or MRI). Definitions

for other variables included in our analysis are in the Appendix E1.

Outcomes
The primary outcome was the occurrence of ABI during ECMO support.

Secondary outcomes included subtypes ofABI such asCNS ischemia and ICH.

Statistical Analysis
Continuous variables were represented as median with interquartile

range (IQR). Categorical variables were presented as frequency with per-

centages. The Wilcoxon rank-sum and Pearson’s chi-square tests were

used to compare continuous and categorical variables, respectively.

Data Preprocessing
All categorical variables were 1 hot-encoded before running ML algo-

rithms. Multiple imputation was used for missing data. All missing vari-

ables are shown in Table E1.

Machine Learning Algorithm and Pipeline
We examined the suitability of 4 ML algorithms in predicting ABI from

the ELSO Registry containing variables from pre-ECMO support and dur-

ing ECMO support: Random Forest, CatBoost, LightGBM, and XGBoost.

For each algorithm, we fine-tuned the hyperparameters and used a

Bayesian optimization onto our dataset split randomly into training

(70%) and test (30%) sets. Further details are noted in the Appendix E1.

Feature Importance Scores in Machine Learning
To better understand how theseMLmodels were constructed and to deter-

mine which variables were most important in predicting ABI, we analyzed

which variables were of highest importance in correctly predicting ABI. Spe-

cifically, we examined the ranked feature importance in the best performing

models, which discloses the contribution of each variable in the composition

of the boosted decision trees within the model. We primarily focused on the

top 3 most important features for ease of comparison and interpretability for

the reader. Furthermore, Feature Importance Scores and Shapley Additive

Explanations (SHAP) values depict the contribution of a variable on the pre-

dictions of the model (Appendix E1). Both Feature Importance Scores and

SHAP values add interpretability to the model framework and reveal perti-

nent clinical variables associated with ABI. All statistical analyses were per-

formed using R Studio (R 4.1.2, www.r-project.org) and Python.
RESULTS
Venoarterial Extracorporeal Membrane
Oxygenation (Nonextracorporeal Cardiopulmonary
Resuscitation)

Of 35,855 patients receiving VA-ECMO (non-ECPR),
2769 (8%) had ABI (Table E2, Figure 2). The median
age was 57.8 years (IQR, 45.9-66.4), and 66%
(n ¼ 23,542) were male. The median duration of ECMO
support was 4.3 days (IQR, 2-7.7).
Model performance. Using the leave-1-out-cross-valida-
tion (LOOCV) 10-fold approach for predicting ABI in
VA-ECMO patients, the model achieved an AUC-ROC of
0.67 (Figure 3, A). The accuracy of the model was 83%.
The true-positive, true-negative, false-positive, and false-
negative rates were 33%, 88%, 12%, and 67%, respec-
tively (Table 1). The positive predictive value (PPV) and
negative predictive value (NPV) were 18% and 94%,
respectively. The area under the precision recall curve
was 0.15. The precision, recall, and F1 were 0.15, 0.38,
and 0.22, respectively.
For predicting CNS ischemia, the model achieved an AUC-

ROC of 0.67 (Figure 3, B). The accuracy of the model was
86%. The true-positive, true-negative, false-positive, and
false-negative rates were 33%, 88%, 12%, and 67%, respec-
tively. The PPV and NPV were 11% and 97%, respectively.
The area under the precision recall curve was 0.09. The preci-
sion, recall, and F1 were 0.11, 0.25, and 0.15, respectively.
For ICH, the model achieved an AUC-ROC of 0.62

(Figure 3, C). The accuracy of the model was 97%. The
true-positive, true-negative, false-positive, and false-
negative rates were 5%, 99%, 1%, and 95%, respectively.
The PPV and NPV were 8% and 98%, respectively. The
area under the precision recall curve was 0.03. The preci-
sion, recall, and F1 were 0.05, 0.11, and 0.07, respectively.
Feature importance. We identified the top 3 most impor-
tant variables per Feature Importance Scores and depict the
remaining variables (Figure 4, A, Figure E1, A, Table E3).
The top 3 variables in predicting ABI were longer duration
of ECMO support, higher ECMO pump flow rate at
24 hours, and higher on-ECMO partial pressure of oxygen
(PaO2), in predicting CNS ischemia were higher ECMO
pump flow rate at 24 hours, pre-ECMO cardiac arrest, and
conventional ventilation at 24 hours of ECMO support,
and in predicting ICH were longer duration of ECMO sup-
port, higher ECMO pump flow rate at 4 hours, and higher
on-ECMO PaO2 (Appendix E1, Figure 4, B and C, and
Figure E1, Tables E3-E5).

Extracorporeal Cardiopulmonary Resuscitation
Of 10,775 patients receiving ECPR, 1787 (16.5%) had

ABI (Figure 1, Table E6). The median age of the ECPR
cohort was 57.1 years (IQR, 45.5-65.9), and 68%
(n¼ 7388) were male. The median duration of ECMO sup-
port was 2.63 days (IQR, 0.88-5.33).
Model performance. For predicting ABI in patients
receiving ECPR, the model achieved an AUC-ROC of 0.72
(Figure E2, A). The accuracy of the model was 69%. The
true-positive, true-negative, false-positive, and false-negative
rates were 61%, 70%, 30%, and 39%, respectively (Table
E7). The PPVand NPV were 29% and 90%, respectively.
JTCVS Open c Volume 20, Number C 67

http://www.r-project.org


n = 90,424

n = 90,023
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FIGURE 2. Flowchart of study cohort (VA-ECMO and ECPR patients) from the ELSO Registry in 2009-2020. ELSO, Extracorporeal Life Support Or-

ganization; ECMO, extracorporeal membrane oxygenation; VV, venovenous; Conversion, VA/VV or VV/VA; VVA, venovenoarterial; Other, mode

not defined; VP, venopulmonary; VA, venoarterial; ECPR, extracorporeal cardiopulmonary resuscitation.
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For predicting CNS ischemia, the model achieved an
AUC-ROC of 0.73 (Figure E2, B). The accuracy of the
model was 81%. The true-positive, true-negative, false-
positive, and false-negative rates were 41%, 85%, 15%,
and 59%, respectively. The PPV and NPV were 18% and
95%, respectively.

For ICH, the model achieved an AUC-ROC of 0.69
(Figure E2, C). The accuracy of the model was 88%. The
true-positive, true-negative, false-positive, and false-
negative rates were 28%, 89%, 11%, and 72%, respec-
tively. The PPVand NPV were 7% and 98%, respectively.
Feature importance. The top 3 variables for predicting
ABI were longer duration of ECMO support, older age,
and higher ECMO pump flow rates at 24 hours, and further
details are depicted in the Supplement (Figures E3 and E4,
Tables E8-E10, Appendix E1).
Exploratory analysis: Features and mortality. A multi-
variable logistic regression model assessing mortality with
the top 3 most important features for ABI in patients on VA-
ECMO was constructed for comparison. A longer ECMO
duration (adjusted odds ratio [OR], 1.019, 95% CI, 1.014-
1.024) and higher on-ECMO PaO2 (adjusted OR, 1.214,
95% CI, 1.185-1.244, both P<.001) level were both associ-
ated with increased mortality; higher ECMO pump flow rate
at 24 hours (adjusted OR, 1.027, 95% CI, 0.984-1.089,
P ¼ .275) was not associated with mortality.

DISCUSSION
This is the first ML study leveraging a large international

database to predict ABI in patients receiving ECMO,
conveying the novelty and generalizability of our study’s re-
sults (Figure 5).
68 JTCVS Open c August 2024
Venoarterial Extracorporeal Membrane
Oxygenation Versus Venovenous Extracorporeal
Membrane Oxygenation Risk Factors

ML uniquely identified longer duration of ECMO sup-
port (in hours), higher ECMO pump flow rate at 24 hours
of ECMO support, and higher on-ECMO 24-hour PaO2 as
the top 3 most important variables associated with ABI.
Although ECMO duration is not necessarily a modifiable
risk factor, it is still an important feature to monitor because
a difference in 12 hours is a clinically significant difference,
as previously shown in another ELSO Registry analysis.18

Because patients receiving venovenous (VV)-ECMO have
been shown to be cannulated longer than patients on VA-
ECMO,19-21 the longer ECMO duration and lower risk of
ABI associated may be due to the withdrawal of life-
sustaining therapy for severely sick patients.22,23 Accord-
ingly, this may have created a selection bias for patients
who did undergo ABI and survived on ECMO support for
longer. Furthermore, a higher ECMO pump flow rate and
likely corresponding hemolysis24,25 were uniquely impor-
tant for ABI in VA-ECMO and ECPR, but not in
VV-ECMO. This finding may reflect the different hemody-
namic/physiological states24-26 and use/disuse of an aortic
cannula27 in VA-ECMO versus VV-ECMO populations
and warrants further study. Although pre-ECMO cardiac ar-
rest is a known risk factor for CNS ischemia in patients
receiving ECPR,2,28 likely related to reperfusion injury
and associated reactive oxygen species formation,28,29 we
also note that this factor was highly important in patients
receiving VV-ECMO,30 which has not been previously re-
ported. These comparisons suggest there are similar
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FIGURE 3. Receiver-operating characteristic curves for predicting (A) ABI, (B) CNS ischemia, and (C) ICH in patients receiving VA-ECMO. ECPR,

Extracorporeal cardiopulmonary resuscitation.
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underlying but overall divergent risk factors between these
populations, which necessitates further investigation with
prospective observational studies. Hyperoxia (PaO2 was
TABLE 1. Model performance in the 30% test set of venoarterial extracorp

central nervous system ischemia, and intracranial hemorrhage

Variable Accuracy TPR TNR

ABI 83% (8928/

10,757)

33% (3550/

10,757)

88% (9466/

10,757)

CNS ischemia 86% (9251/

10,757)

33% (3550/

10,757)

88% (9466/

10,757)

ICH 97% (10,434/

10,757)

5% (538/

10,757)

99% (10,649/

10,757)

ML produced a strong NPV but a poor PPV. Accuracy, True-positiveþ true-negative/true-po

true negative rate; FPR, false-positive rate; FNR, false-negative rate; PPV, positive predictiv

system; ICH, intracranial hemorrhage.
treated as a continuous variable to avoid bias due to “data
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of hippocampal oxidative energy metabolism,32 which
accentuate reperfusion injury, as suggested in a previous
ELSO Registry analysis4 and at a tertiary academic
ECMO center.33 Notably, central cannulation was the tenth
most important feature for CNS ischemia, which is in line
with previous literature demonstrating differences in rates
of ABI based on cannulation strategy,34 although other
studies demonstrate no significant differences in neurolog-
ical injury between both strategies.35,36 Finally, older age
was associated with an increased risk of ABI, which agrees
with a 2017-2019 ELSO Registry analysis (n ¼ 15,172) of
patients on VA-ECMO that demonstrated older age was
associated with higher complication rates.37

Machine Learning Methodologies
We chose tree-based ML algorithms to predict ABI,

which are becoming more commonly used in healthcare
studies38 because they provide an effective way to consider
all different possible outcomes in a model. There are several
specific advantages of tree-based ML algorithms over
nontree-based models, including (1) the ability to input a
70 JTCVS Open c August 2024
wide variety of data (ie, both continuous and categorical);
(2) the capability to handle data that is complex, nonlinear,
and not normally distributed; (3) the ability to easily visu-
alize complex data through Feature Importance and
SHAP value plots; (4) they do not require extensive data
cleaning and preparation because data variable transforma-
tions are not required; and (5) their ability to capture subtle
data patterns by separating features into mutually exclusive
and distinctive regions.39-42 Additionally, recent data have
suggested that tree-based ML models may be statistically
significantly superior than nontree-based ML models with
tabular data.43 Furthermore, these tree-based ML models
demonstrate high power and good accuracy, and provide
interpretability to the models.44 The primary difference be-
tween using Random Forest versus gradient boosting tree
methods is that Random Forest trees are constructed in an
independent fashion while gradient boosting methods are
created sequentially. Accordingly, Random Forest can
determine their outputs without restriction of order, whereas
gradient boosting methods like XGBoost are restricted in a
more fixed manner. There are also key differences within
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boosting methods: CatBoost may be most optimal for cate-
gorical data and can generate output more quickly than
XGBoost or LightGBM. LightGBM demonstrates better ac-
curacy and speed than XGBoost, but XGBoost is the more
established ML algorithm, perhaps making it a reliable ML
tree-based method. Nevertheless, despite implementing
these 4 powerful and innovativemethods with oversampling
to enhance statistical power, ML could still not accurately
predict ABI in the ELSO Registry. This finding may suggest
that the ELSO Registry does not capture causative variables
for ABI over the entire duration of ECMO support that are
needed to fully glean the insights and advantages of ML and
ultimately identify modifiable risk factors for ABI. Finally,
we note that although ML did not predict ABI with high ac-
curacy, it did produce a strong NPV (94% and 90% for ABI
in VA-ECMO and ECPR, respectively), suggesting our
models’ true utility may lie in its high sensitivity and capa-
bility to rule out patients who truly did not have ABI.
Furthermore, our models also demonstrated high true-
negative rates (88% and 70% for ABI, and 99% and
89% for ICH, in VA-ECMO and ECPR, respectively),
which also suggests a high specificity and capability to
rule patients in with ABI accurately. Therefore,
implementing this model as a screening test may be war-
ranted and useful for ECMO clinicians.

Lack of Standardized Neurological Monitoring
Given the relatively mediocre performance in predicting

ABI and its subtypes in both cohorts, we reveal certain lim-
itations using a heterogenous, large dataset such as the
ELSORegistry to predict ABI withML. Specifically, unlike
the institutional protocol at Johns Hopkins Hospital that
uses standardized neurological monitoring with proven ef-
ficacy,3 the protocols used to determine ABI across
ECMO centers are neither standardized nor adjudicated/
validated, and thus vary considerably. Accordingly, we
observed only a 7.7% prevalence of ABI in patients on
VA-ECMO and 16.5% prevalence of ABI in patients on
ECPR within the ELSO Registry, which is considerably
less than the prevalence of 33% at an experienced tertiary
care ECMO center.3 Therefore, this study calls for more
sensitive and accurate detection of ABI and more granular
collection of variables across ECMO centers. ABI can pre-
cede mortality and therefore identifying risk factors for ABI
can help clinicians mitigate their occurrence and their asso-
ciated mortality risk. In fact, a single-center study of 106
JTCVS Open c Volume 20, Number C 71
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pediatric patients on VA-ECMO and 68 pediatric patients
on VV-ECMO using ML to predict CNS ischemia and
ICH showed a superior AUC-ROC (0.76) than ours with
the ELSO Registry (0.67).45 This result may not be surpris-
ing given the institution’s rigorous advanced neuroimaging
technique to determine ABI and adjudication system by
multiple clinicians. Accordingly, their prevalence of ABI
(51% in VA/VV-ECMO mixed population) was higher
than ours with the ELSO Registry (7.7% in VA-ECMO
and 16.5% in ECPR). Overall, an ELSO Registry
addendum for neurological monitoring and imaging proto-
cols may improve performance for ML to predict ABI.
Furthermore, we suggest that all ELSO centers use stan-
dardized neurological monitoring protocols to better detect
the true prevalence of ABI (and capture it more accurately
in the ELSO Registry) and ultimately mitigate this devas-
tating outcome for patients.

Study Limitations
The primary limitation of our analysis was the lack of

standardized neurological monitoring protocols across
ECMO centers and lack of ABI adjudication in the ELSO
Registry. Because ABI is defined by imaging findings in
the Registry, the quality control of ABI is likely good. How-
ever, there is still underestimation of ABI in the Registry
because many patients do not obtain proper neuroimaging
studies in the first place. A fundamental limitation of this
study was that model performance in VA-ECMO for pre-
dicting ABI, CNS ischemia, and ICH was poor due to low
PPV. Given the relatively low outcome rates of ABI and
its subtypes, these outcome variables likely have substantial
class imbalance and thus make ML models predicting ABI
challenging. Accordingly, we saw improved performance
with ML predicting ABI and CNS ischemia versus ICH in
patients receiving VA-ECMO, likely due to their higher
prevalence; similarly, patients receiving ECPR observed
improved ML performance, which is logical because of
their higher prevalence of ABI overall and its subtypes rela-
tive to patients without ECPRVA-ECMO. Furthermore, the
ELSO Registry lacks granularity with laboratory measure-
ments because ABGs are only collected at a singular time
point instead of multiple times throughout the ECMO run
and were not collected at the same exact time point at
each center. We also acknowledge that cross-sectionally
the ECMO pump flow rates were small and may not be clin-
ically meaningful, but these differences were still statisti-
cally significant in our model and should be noted.
Finally, because this was a retrospective study, only associ-
ations could be determined.

CONCLUSIONS
Using the largest database of ECMO patients globally,

we present the first study to predict neurological outcomes
on sufficiently powered international ECMO patient
72 JTCVS Open c August 2024
cohorts. ML identified longer ECMO duration and higher
pump flow rates as the most important risk factors for
ABI in both VA-ECMO and ECPR cohorts. Overall, perfor-
mance of ML models to predict ABI in patients receiving
VA-ECMO and ECPR was suboptimal likely because of
the lack of data granularity in the ELSO Registry. This
finding suggests that the detection and sensitivity rates for
capturing ABI in patients receiving ECMO across ECMO
centers worldwide is substandard. Accordingly, standard-
ized neurological monitoring and imaging protocols are ur-
gently needed.
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APPENDIX E1. SUPPLEMENTAL METHODS
Definitions

On-ECMO pulse pressure was computed as “systolic
blood pressure at 24 hours” – “diastolic blood pressure
at 24 hours.” Pre-ECMO and on-ECMO ventilator set-
tings included conventional ventilation, high-frequency
oscillatory ventilation, other high-frequency ventilation
(eg, high-frequency jet ventilation or percussive ventila-
tion), other ventilation (not specified), and absence of
ventilation. Pre-ECMO additional temporary mechanical
circulatory support was defined as the intra-aortic balloon
pump, Impella, and left and right ventricular assist de-
vices. Pre-ECMO cardiac arrest was defined as an
episode that necessitated the use of cardiopulmonary
resuscitation and performance of external cardiac mas-
sage within 24 hours of ECMO support. Central cannula-
tion was outlined as the placement of cannula in the aorta.
Peripheral cannulation was outlined as the placement of
cannula in the peripheral vessels. Bridge to transplant
was defined as a patient being placed on ECMO for
“bridging” the patient to heart or lung transplant. Trauma
was defined as a patient undergoing ECMO because of
traumatic injury. Chapter name included the location of
the ELSO center: Asia-Pacific, Europe, Latin America,
North America, and South and West Asia. ECMO dura-
tion was defined as the number of hours patients received
ECMO once cannulated.

Machine Learning Algorithm and Pipeline
With the fine-tuned hyperparameters, all of the 4

selected models were fitted onto the training dataset
and evaluated on the test set with the best performing
model being selected for further optimization. Given
the low prevalence of ABI in our dataset, random over-
sampling of patients with ABI in the training set was per-
formed at different frequencies; for each oversampling
frequency, the model was evaluated with a 10-CV
approach. Upon identification of the optimal oversam-
pling rate, we applied our best performing model to the
entirety of the cohort with a LOOCV approach. The
LOOCV works by including all observations in the
training set except 1 singular observation to be used in
the test set. The LOOCV stepwise approach was repeated
for the entire dataset. Each observation was used as the
test set at 1 point, producing a total of “N” models that
were trained and then tested on the holdout “N” observa-
tions. These observations were then combined to form 1
singular test set of size “N” observations. This LOOCV
approach mitigates the risk of bias by testing the ML al-
gorithm on the entire cohort and ensuring reproducibility
of these results. Our tree-based ML models have built-in
mechanisms to account for binary features and nonbinary
features in our training set and modeling. At nodes at a
branch point, for continuous variables, it is arbitrarily

discretized into less than versus greater than at a partic-
ular number and it does this until each bin/leaf is
optimized.

Subsequently, we calculated the AUC-ROC, area under
the precision recall curve, and a Brier score on these observa-
tions to assess the predictive performance of our models. Af-
ter choosing a threshold that maximizes the F1 score, further
model metrics including accuracy, true-positive, true-nega-
tive, false-positive, false-negative rates, PPV, NPV, precision,
and recall were calculated. The accuracy represents how
often the MLmodel correctly predicted the outcome of inter-
est (number of correct predictions/total number of predic-
tions); clinically, this represents the quality of the model in
predicting ABI. Precision calculates how often the model
correctly predicts the positive class (true-positives/true-
positive þ false-positives); clinically, this metric tells us
how often ABIs that are captured by the model are truly
ABIs (this is important because a false-positive measurement
of ABI may be unnecessarily treated and lead to increased
resource use for the hospital and patient). Recall determines
how often themodel correctly identifies all true-positives that
are indeed actual positives (true-positives/true-
positives þ false-negatives); this metric is important clini-
cally when it is important to not miss any positive outcome
as an undetected ABI can be devastating and lead to mortal-
ity. The F1 score represents the harmonic mean of both the
precision and recall of the model (2*precision*recall/
precision þ recall). A higher F1 score represents a well-
balanced performance by the model and can thus achieve
both high precision and high recall, accurately identifying
true ABIs and not under detecting any ABIs. The true-
positive rate represents the proportion of positive instances
that were correctly predicted by the ML model (true-posi-
tives/true-positives þ false-negatives) and has similar clin-
ical implications as recall. The false-positive rate
represents the proportion of negative instances that are
incorrectly classified by the ML model (false-positives/
false-positives þ true-negatives) and the similar clinical im-
plications as precision. The true-negative rate represents the
specificity of the model, determining the probability that a
true-negative sample will actually test negative (true-nega-
tives/true-negatives þ false-positives). Clinically, this is
important in “ruling in” ABIs, with similar implications to
precision and the false-positive rate. The false-negative rate
(“miss rate”) is the probability that a true-positive sample
will indeed be missed by the model (false-negatives/
false-negatives þ true-positives). This has similar clinical
implications as recall and the true-positive rate. The PPV is
the probability that if a sample is recognized as a positive
result, then the sample truly has the disease (true-positives/
true-positives þ false-positives), whereas the NPV is the
probability that if a sample is recognized as a negative result,
then the sample truly does not have the disease (true-nega-
tives/true-negatives þ false-negatives).
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Feature Importance Scores in Machine Learning
The Feature Importance Scores show the relative contri-

bution of each feature ranked from highest (top bar) to
lowest (bottom bar). In the SHAP plot, red values denoted
features of high importance versus blue values denoted fea-
tures of low importance. Each dot represents the feature
attribution value of each patient and is plotted as a SHAP
value on the x-axis. SHAP values quantify the predictive
impact of each feature. SHAP values greater than zero
represent a greater likelihood of having ABI.

SUPPLEMENTAL RESULTS
Feature Importance in Venoarterial Extracorporeal
Membrane Oxygenation

The median ECMO duration was higher in patients with
ABI versus patients without ABI (4.8 vs 4.3 days, P<.001).
The median ECMO pump flow rate at 24 hours was higher
in patients with ABI versus patients without ABI (4 vs
3.95 L/min, P< .001). The median on-ECMO PaO2 was
higher in patients with ABI versus patients without ABI
(162 vs 141 mm Hg, P<.001). The median ECMO pump
flow rate at 24 hours was higher in patients with CNS
ischemia versus patients without CNS ischemia (4 vs
3.95 L/min, P< .001). The prevalence of CNS ischemia
in patients with pre-ECMO cardiac arrest was higher than
patients without cardiac arrest (5.8% vs 3.3%, P<.001).
The prevalence of CNS ischemia in patients with conven-
tional venting at 24 hours of ECMO support was higher
than patients without conventional venting at 24 hours of
ECMO support (8.6% vs 2.7%, P < .001). The median
ECMO duration was higher in patients with ICH versus pa-
tients without ICH (6 vs 4.3 days, P<.001). The median
ECMO pump flow rate at 4 hours was higher in patients
with ICH versus patients without ICH (3.98 vs 3.82 L/
min, P<.001). The median on-ECMO PaO2 was similar be-
tween patients with ICH versus patients without ICH (151
vs 142 mm Hg, P ¼ .27).

Exploratory Analysis: Hyperoxia in Venoarterial
Extracorporeal Membrane Oxygenation

Patients receiving VA-ECMOwith ABI were more likely
to have hyperoxia (>120 mmHg at 24 hours of cannulation,

n ¼ 1475, 53%) than patients without ABI (n ¼ 14,822,
45%, P<.001). The median MAP was slightly lower in pa-
tients with ABI with hyperoxia (12 mm Hg) versus the me-
dian MAP in patients with ABI without hyperoxia (13 mm
Hg, P ¼ .003).

Feature Importance in Extracorporeal
Cardiopulmonary Resuscitation
The median ECMO duration was higher in patients

with ABI versus patients without ABI (3.1 vs 2.5 days,
P<.001). Patients with ABI were older versus patients
without ABI (median age of 57.7 vs 54.4 years,
P<.001). The median ECMO pump flow rate at 24 hours
of ECMO support was higher in patients with ABI versus
patients without ABI (3.8 vs 3.6 L/min, P<.001). The top
3 variables for predicting CNS ischemia were duration of
ECMO support, serum bicarbonate level at 24 hours of
ECMO support, and body mass index (Figure E2, B,
Figure E3, B, Table E8). The median ECMO duration
was higher in patients with CNS ischemia versus those
without CNS ischemia (3.3 vs 2.5 days, P< .001). Pa-
tients with CNS ischemia had similar levels of serum bi-
carbonate at 24 hours of ECMO support as patients
without CNS ischemia (23 vs 23 mEq/L, P ¼ .47). Pa-
tients with CNS ischemia had a higher median body
mass index than patients without CNS ischemia (29.1
vs 27.6 kg/m2, P<.001). The top 3 variables for predict-
ing ICH were being supported on ECMO at a North
American ELSO center, positive-end expiratory pressure
at 24 hours of ECMO support, and being supported on
ECMO at a European ELSO center (Figure E2, C,
Figure E3, C, Table E9). The prevalence of ICH was
higher in patients supported on ECMO at a North Amer-
ican ELSO Center versus those not supported on ECMO
at a North American ELSO Center (3.3% vs 1.7%,
P<.001). The median positive-end expiratory pressure
at 24 hours of ECMO support for patients with ICH was
not different than that of patients without ICH (8 vs
8 mm Hg, P ¼ .25). The prevalence of ICH was lower
in patients supported on ECMO at a European ELSO
Center versus those not supported on ECMO at a Euro-
pean ELSO center (1.2% vs 3%, P<.001).
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FIGURE E1. SHAP value plots for (A) ABI, (B) CNS ischemia, and (C) ICH in patients receiving VA-ECMO. VA-ECMO, Venoarterial extracorporeal

membrane oxygenation; ECMO, extracorporeal membrane oxygenation; PaO2, partial pressure of oxygen; HCO3, bicarbonate; BP, blood pressure;

SaO2, arterial blood gas oxygen saturation; PIP, peak inspiratory pressure; SvO2, mixed venous oxygen saturation; DBP, diastolic blood pressure.
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FIGURE E4. SHAP value plots for (A) ABI, (B) CNS ischemia, and (C) ICH in patients receiving ECPR. ECPR, Extracorporeal cardiopulmonary

resuscitation;ECMO, extracorporeal membrane oxygenation;PaO2, partial pressure of oxygen;HCO3, bicarbonate; BP, blood pressure; SaO2, arterial blood

gas oxygen saturation; PIP, peak inspiratory pressure; SvO2, mixed venous oxygen saturation; DBP, diastolic blood pressure.
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TABLE E1. Variables with missingness in Extracorporeal Life Support Organization Registry for all adult patients receiving extracorporeal

membrane oxygenation from 2009 to 2021

Variable Missing X (%)

Pulmonary capillary wedge pressure at 24 h 87,017 99

Pre-ECMO pulmonary capillary wedge pressure 86,774 98

Pre-ECMO cardiac index 82,670 94

Cardiac index at 24 h 81,750 93

Pre-ECMO mean pulmonary arterial pressure 80,178 91

Pre-ECMO mixed venous oxygen saturation 79,730 90

Pre-ECMO diastolic pulmonary arterial pressure 78,978 90

Pre-ECMO systolic pulmonary arterial pressure 78,845 89

Mixed venous oxygen saturation at 24 h 76,111 86

Diastolic pulmonary arterial pressure at 24 h 75,479 86

Systolic pulmonary arterial pressure at 24 h 75,388 86

Mixed venous oxygen saturation at 24 h 66,204 75

Pre-ECMO peripheral oxyhemoglobin saturation 65,314 74

Peripheral oxyhemoglobin saturation at 24 h 60,599 69

Pre-ECMO mean airway pressure 56,242 64

Pre-ECMO lactate 53,670 61

Lactate at 24 h 48,005 54

Time to extubation 47,511 54

Pre-ECMO peak inspiratory pressure 45,232 51

Mean airway pressure at 24 h 43,657 50

Pre-ECMO positive end-expiratory pressure 34,613 39

Pre-ECMO mean blood pressure 34,500 39

Pre-ECMO ventilation rate 34,263 39

Peak inspiratory pressure at 24 h 32,346 37

Pre-ECMO arterial oxyhemoglobin saturation 32,126 36

Patient being transported to ELSO center 31,678 36

Pre-ECMO percentage of inspired oxygen 28,816 33

Height 26,604 30

Pre-ECMO diastolic blood pressure 26,570 30

Pre-ECMO systolic blood pressure 26,270 30

Arterial oxyhemoglobin saturation at 24 h 24,642 28

Mean blood pressure at 24 h 24,149 27

Pre-ECMO serum bicarbonate 23,588 27

Pre-ECMO PaO2 22,914 26

Pre-ECMO partial pressure of carbon dioxide 22,713 26

Ventilation rate at 24 h 22,255 25

Positive end-expiratory pressure at 24 h 21,837 25

Diastolic blood pressure at 24 h 20,687 23

Pre-ECMO pH 20,641 23

Systolic blood pressure at 24 h 20,582 23

Percentage of inspired oxygen at 24 h 20,430 23

PaO2 at 24 h 17,543 20

Partial pressure of carbon dioxide at 24 h 17,432 20

Serum bicarbonate at 24 h 16,402 19

(Continued)
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TABLE E1. Continued

Variable Missing X (%)

ECMO pump flow rate at 24 h 15,935 18

pH at 24 h 15,283 17

Time to intubation 14,839 17

ECMO pump flow rate at 4 h 11,937 14

Weight 3116 4

ECMO duration 78 0

Patient ID 0 0

Run ID 0 0

Run number 0 0

Sex 0 0

Race/ethnicity 0 0

Age 0 0

Primary diagnosis by ICD-10 0 0

Primary diagnosis by ICD-9 0 0

ECMO modality 0 0

Support type 0 0

Discontinuation of ECMO 0 0

Discharged alive off of ECMO 0 0

Discharge location 0 0

Year on ECMO 0 0

Pre-ECMO ventilation type 0 0

Pre-ECMO handbagging 0 0

Vent type at 24 h 0 0

Handbagging at 24 h 0 0

Pre-ECMO cardiac arrest 0 0

Bridged to transplant as indication for ECMO 0 0

ID of ELSO center 0 0

Continent of chapter name 0 0

Trauma as indication for ECMO 0 0

Placement of artificial airway during ECMO 0 0

ECMO, Extracorporeal membrane oxygenation; ELSO, Extracorporeal Life Support Organization; ICD-10, International Classification of Diseases, 10th Revision; ICD-9, In-

ternational Classification of Diseases, 9th Edition.
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TABLEE2. Baseline characteristics and clinical variables of patients on venoarterial extracorporeal membrane oxygenation stratified by presence

of acute brain injury

Variable

Total VA-ECMO

(no ECPR) (n ¼ 35,855)

ABI

(n ¼ 2769, 8%)

No ABI

(n ¼ 33,086, 92%) P value

Demographics

Age (y) 57.80 (45.9-66.4) 56.1 (43.2-64.8) 57.9 (46.1-66.6) <.001

Male sex 23,542 (66%) 1726 (62%) 21,817 (66%) <.001

Body mass index, kg/m2 27.8 (24.1-32.6) 28.4 (24.5-33.1) 27.8 (24.1-32.5) <.001

Race/ethnicity <.001

Asian 4763 (13%) 319 (12%) 4445 (13%)

Black 3560 (10%) 327 (12%) 3234 (10%)

Hispanic 1941 (5%) 160 (6%) 1782 (5%)

White 20,133 (56%) 1605 (58%) 18,529 (56%)

Others 5458 (15%) 358 (13%) 5096 (15%)

Year ECLS <.001

2009 319 (1%) 283 (10%) 36 (1%)

2010 448 (1%) 398 (14%) 50 (1%)

2011 646 (2%) 578 (21%) 68 (1%)

2012 1093 (3%) 991 (36%) 102 (1%)

2013 1339 (4%) 129 (5%) 1210 (4%)

2014 1796 (5%) 166 (6%) 1630 (5%)

2015 2483 (7%) 212 (8%) 2271 (7%)

2016 3090 (9%) 242 (9%) 2848 (9%)

2017 4128 (12%) 259 (9%) 3869 (12%)

2018 4651 (13%) 325 (12%) 4326 (13%)

2019 5581 (16%) 404 (15%) 5177 (16%)

2020 5189 (14%) 387 (14%) 4802 (15%)

2021 5092 (14%) 389 (14%) 4703 (14%)

Medical history

Diabetes 2924 (8%) 252 (9%) 2672 (8%) .06

Hypertension 4205 (12%) 382 (14%) 3823 (12%) <.001

Atrial fibrillation 3083 (9%) 218 (8%) 2865 (9%) .16

Cardiomyopathy 3413 (10%) 248 (9%) 3165 (10%) .30

COPD 1083 (3%) 66 (2%) 1017 (3%) .04

Pre-ECMO support

Additional temporary mechanical circulatory support 11,730 (33%) 973 (35%) 10,757 (33%) .005

Vasopressor infusions 22,584 (63%) 1876 (68%) 20,708 (63%) <.001

Inotrope infusions 11,503 (32%) 824 (30%) 10,679 (32%) .006

Pre-ECMO blood pressure variables

Systolic blood pressure (mm Hg) 87 (72-104) 85 (70-103) 87 (72-104) <.001

Diastolic blood pressure (mm Hg) 54 (43-65) 52 (42-64) 54 (44-65) <.001

Mean blood pressure (mm Hg) 65 (54-76) 63 (53-75) 65 (54-76) .001

Pulse pressure (mm Hg) 32 (20-45) 31 (20-43) 32 (20-45) .053

Mean arterial pressure (mm Hg) 14 (10-18) 14 (11-19) 14 (10-18) .03

Pre-ECMO ABG

pH 7.29 (7.18-7.38) 7.26 (7.14-7.35) 7.29 (7.19-7.38) <.001

HCO3- (mEq/L) 20 (16-23.2) 19 (15.1-22.9) 20 (16-23.4) <.001

PaO2 (mm Hg) 103 (68-217.5) 93.95 (62-212) 104 (68-218) <.001

PaCO2 (mm Hg) 41 (33.80-50) 42.2 (34-54) 41 (33.7-50) <.001

Lactate (mmol/L) 6.1 (2.9-10.8) 6 (2.8-10.7) 8 (3.8-12) <.001

SpO2 (%) 98 (92-100) 97 (89-100) 98 (93-100) <.001

SaO2 (%) 97 (90-100) 96 (86-99) 97 (91-99) <.001

On-ECMO blood pressure variables

Systolic blood pressure (mm Hg) 96 (84-110) 94 (81-108) 96 (84-110) <.001

Diastolic blood pressure (mm Hg) 64 (55-72) 64 (56-73) 64 (55-72) .04
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TABLE E2. Continued

Variable

Total VA-ECMO

(no ECPR) (n ¼ 35,855)

ABI

(n ¼ 2769, 8%)

No ABI

(n ¼ 33,086, 92%) P value

Mean blood pressure (mm Hg) 74 (67-81) 73 (66-81) 74 (67-81) .001

Pulse pressure (mm Hg) 31 (18-46) 28 (15-44) 31 (18-46) .053

Mean arterial pressure (mm Hg) 12 (10-15) 13 (10-15) 12 (10-15) <.001

On-ECMO ABG

pH 7.42 (7.37-7.46) 7.41 (7.36-7.46) 7.42 (7.37-7.47) .005

HCO3- (mEq/L) 24.1 (21.7-27) 24 (21-27) 24.1 (21.8-27) .02

PaO2 (mm Hg) 142 (91.8-250) 162 (94.1-297.57) 141 (91.5-244.2) <.001

PaCO2 (mm Hg) 38 (33.3-42) 38 (33-42.5) 38 (33.3-42) .50

Lactate (mmol/L) 2.3 (1.4-4.4) 3.1 (1.8-5.7) 2.3 (1.4-4.2) <.001

SpO2 (%) 99 (97-100) 99 (97-100) 99 (97-100) .30

SaO2 (%) 98 (97-99) 99 (97-100) 98 (97-99) .007

DPaCO2 �3 (�12 to 4.7) �4 (�16 to 3) �2.9 (�12 to 5) <.001

Pump flow rate (4 h, L/min) 3.83 (3.17-4.42) 3.9 (3.2-4.48) 3.82 (3.16-4.41) .01

Pump flow rate (24 h, L/min) 3.24 (3.96-4.5) 4 (3.34-4.6) 3.95 (3.22-4.5) <.001

Days on ECMO support 4.33 (2-7.71) 4.83 (2.5-8.67) 4.29 (2-7.63) <.001

Neurological complications on-ECMO

Composite ABI

Composite Ischemia 1459 (4%) 1459 (53%) 0 (0%) <.001

Hypoxic-ischemic brain injury 280 (1%) 280 (10%) 0 (0%) <.001

Ischemic stroke 1194 (3%) 1194 (43%) 0 (0%) <.001

Composite ICH 792 (2%) 792 (29%) 0 (0%) <.001

Intra-/extra-parenchymal hemorrhage 269 (1%) 269 (10%) 0 (0%) <.001

Intraventricular hemorrhage 108 (1%) 108 (4%) 0 (0%) <.001

Brain death 659 (2%) 659 (24%) 0 (0%) <.001

Neurosurgical intervention 31 (1%) 31 (1%) 0 (0%) <.001

Seizures confirmed by EEG 31 (1%) 31 (1%) 0 (0%) <.001

Seizures clinically determined 188 (1%) 188 (7%) 0 (0%) <.001

Other complications on-ECMO

ECMO circuit mechanical failure 4413 (12%) 472 (17%) 3941 (12%) <.001

Renal replacement theory 9446 (26%) 1092 (39%) 8354 (25%) <.001

Hemolysis 1303 (4%) 159 (6%) 1144 (3%) <.001

Cardiac arrhythmia 4152 (12%) 474 (17%) 3678 (11%) <.001

Gastrointestinal hemorrhage 1338 (4%) 174 (6%) 1164 (4%) <.001

Outcomes

In-hospital mortality 19,030 (53%) 2320 (84%) 16,710 (51%) <.001

Bolded P values represent a statistically significant association (P<.05). VA-ECMO, Venoarterial extracorporeal membrane oxygenation; ECPR, extracorporeal cardiopulmonary

resuscitation; ABI, acute brain injury; ECLS, Extracorporeal Life Support; COPD, chronic obstructive pulmonary disorder; ABG, arterial blood gas; HCO3, bicarbonate; PaCO2,

partial pressure of carbon dioxide; SpO
2
, peripheral oxygen saturation; SaO

2
, arterial blood gas oxygen saturation;D, delta; ICH, intracranial hemorrhage; EEG, electroencephalo-

gram.

TABLE E3. Comparisons among the top 3 most important features for acute brain injury in patients on venoarterial extracorporeal membrane

oxygenation

Variable With ABI Without ABI P value

Median ECMO duration 4.8 d 4.3 d <.001

Median ECMO pump flow rate at 24 h 4 L/min 3.95 L/min <.001

Median on-ECMO PaO2 162 mm Hg 141 mm Hg <.001

ABI, Acute brain injury; ECMO, extracorporeal membrane oxygenation; PaO2, partial pressure of oxygen.

JTCVS Open c Volume 20, Number C 83

Kalra et al Adult: Mechanical Circulatory Support



TABLE E4. Comparisons among the top 3 most important features for central nervous system ischemia in patients on venoarterial extracorporeal

membrane oxygenation

Variable With CNS ischemia Without CNS ischemia P value

Median ECMO pump flow rate at 24 h 4 L/min 3.95 L/min <.001

Pre-ECMO cardiac arrest 5.8% (n ¼ 633) N/A <.001

Without pre-ECMO cardiac arrest 3.3% (n ¼ 796) N/A

With conventional venting at 24 h 8.6% (n ¼ 2342) N/A <.001

Without conventional venting at 24 h 2.7% (n ¼ 44) N/A

CNS, Central nervous system; ECMO, extracorporeal membrane oxygenation; N/A, not available.

TABLE E5. Comparisons among the top 3 most important features for intracranial hemorrhage in patients on venoarterial extracorporeal

membrane oxygenation

Variable With ICH Without ICH P value

Median ECMO duration 6 d 4.3 d <.001

Median ECMO pump flow rate at 4 h 3.98 L/min 3.82 L/min <.001

Median on-ECMO PaO2 151 mm Hg 142 mm Hg .27

ICH, Intracranial hemorrhage; ECMO, extracorporeal membrane oxygenation.
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TABLE E6. Baseline characteristics and clinical variables among patients on extracorporeal cardiopulmonary resuscitation stratified by presence

of acute brain injury

Variable

Total ECPR

(n ¼ 10,775)

ABI

(n ¼ 1787, 17%)

No ABI

(n ¼ 8988, 83%) P value

Demographics

Age (y) 57.1 (45.5-65.9) 57.70 (46.30-66.50) 54.40 (41.50-63.00) <.001

Male sex 7388 (68%) 1273 (71%) 6116 (68%) .008

Body mass index, kg/m2 27.68 (24.22-32.46) 28.29 (24.91-33.44) 27.55 (24.22-32.19) <.001

Race/ethnicity .002

Asian 2093 (19%) 319 (18%) 1775 (20%)

Black 993 (9%) 197 (11%) 797 (9%)

Hispanic 425 (4%) 89 (5%) 337 (4%)

White 5855 (54%) 956 (53%) 4900 (55%)

Others 1409 (13%) 226 (13%) 1179 (13%)

Year ECLS <.001

2009 83 (1%) 27 (2%) 56 (1%)

2010 102 (1%) 21 (1%) 81 (1%)

2011 147 (1%) 38 (2%) 109 (1%)

2012 241 (2%) 54 (3%) 187 (2%)

2013 442 (4%) 85 (5%) 357 (4%)

2014 497 (5%) 82 (5%) 415 (5%)

2015 813 (8%) 143 (8%) 670 (7%)

2016 927 (9%) 159 (9%) 768 (9%)

2017 1189 (11%) 158 (9%) 1031 (11%)

2018 1443 (13%) 215 (12%) 1228 (14%)

2019 1911 (18%) 301 (17%) 1580 (18%)

2020 1580 (15%) 272 (15%) 1308 (15%)

2021 1400 (13%) 232 (13%) 1168 (13%)

Medical history

Diabetes 872 (8%) 173 (10%) 699 (8%) .007

Hypertension 1148 (11%) 234 (13%) 914 (10%) <.001

Atrial fibrillation 550 (5%) 93 (5%) 457 (5%) .83

Cardiomyopathy 518 (5%) 104 (6%) 414 (5%) .03

COPD 214 (2%) 42 (2%) 172 (2%) .23

Pre-ECMO support

Additional temporary mechanical circulatory support 1420 (13%) 231 (13%) 1189 (13%) .73

Vasopressor infusions 6393 (59%) 1068 (60%) 5325 (59%) .68

Inotrope infusions 1371 (13%) 215 (12%) 1156 (13%) .34

Pre-ECMO blood pressure variables

Systolic blood pressure (mm Hg) 82 (60-108) 80 (57-109) 83 (60-108) .18

Diastolic blood pressure (mm Hg) 50 (33-66) 48 (30-67) 50 (33-66) .3695

Mean blood pressure (mm Hg) 58 (40-74) 58 (41-80) 58 (40-74) .04

Pulse pressure (mm Hg) 30 (19-47) 30 (19-44) 30 (19-47) .2177

Mean arterial pressure (mm Hg) 14 (11-18) 13 (10-18) 14 (11-18) .1473

Pre-ECMO ABG

pH 7.16 (7.00-7.30) 7.090 (6.920-7.250) 7.170 (7-7.310) <.001

HCO3- (mEq/L) 17.60 (13.00 -22.00) 17.00 (12.95-21.35) 17.7 (13.0-22.0) .05333

PaO2 (mm Hg) 76.0 (51.0-137.4) 67.7 (45.0-118.5) 77.2 (52.0-144) <.001

PaCO2 (mm Hg) 49.00 (36.00-68.00) 55.00 (39.00-76.20) 48.00 (35.30-66.00) <.001

Lactate (mmol/L) 10.30 (5.00-14.60) 11.60 (7.425-15.475) 10.00 (5.80-14.32) <.001

SpO2 (%) 94 (81-99) 91 (77-99) 94 (82-99) .02

SaO2 (%) 92 (76-98) 88 (67-97) 93 (78-98) <.001

On-ECMO blood pressure variables

Systolic blood pressure (mm Hg) 94 (80-109.5) 91 (79-107) 95 (80-110) <.001

Diastolic blood pressure (mm Hg) 64 (56-73) 65 (55-74) 64 (56-73) .4142
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TABLE E6. Continued

Variable

Total ECPR

(n ¼ 10,775)

ABI

(n ¼ 1787, 17%)

No ABI

(n ¼ 8988, 83%) P value

Mean blood pressure (mm Hg) 72 (65-81) 73 (65-82) 72 (65-81) .049

Pulse pressure (mm Hg) 28 (14-44) 25 (12-41) 29 (15-44) <.001

Mean arterial pressure (mm Hg) 14 (11-18) 13 (10-18) 14 (11-18) .93

On-ECMO ABG

pH 7.4 (7.34-7.46) 7.4 (7.34-7.45) 7.41 (7.34-7.46) .042

HCO3- (mEq/L) 23 (20-26) 23 (19.7-26) 23 (20-26) .07

PaO2 (mm Hg) 138.4 (95.65-290) 152 (95.65-290) 135 (87.3-258) <.001

PaCO2 (mm Hg) 37 (32-42) 37 (32-42) 37 (32-42) .67

Lactate (mmol/L) 3.3 (1.8-7) 4 (2.25-7.4) 3.1 (1.8-6.8) <.001

SpO2 (%) 99 (97-100) 99 (97-100) 99 (97-100) .48

SaO2 (%) 98 (96-99) 98 (97-99) 98 (96-99) .08

DPaCO2 �11 (�29 to 1) �15.65 (�38.20 to �1) �10 (�27 to 1.2) <.001

Pump flow rate (4 h, L/min) 3.5 (2.9-4.1) 3.6 (3.0-4.2) 3.5 (2.86-4.1) <.001

Pump flow rate (24 h, L/min) 3.6 (3.0-4.24) 3.8 (3.15-4.36) 3.6 (2.91-4.2) <.001

Cannulation strategy

Days on ECMO support 2.625 (0.875-5.333) 3.083 (1.583-5.625) 2.458 (0.6667-5.2917) <.001

Neurological complications on-ECMO

Composite ABI

Composite Ischemia 799 (7%) 799 (9%) 0 (0%) <.001

Hypoxic-ischemic brain injury 357 (3%) 357 (4%) 0 (0%) <.001

Ischemic stroke 462 (4%) 462 (5%) 0 (0%) <.001

Composite ICH 281 (3%) 281 (3%) 0 (0%) <.001

Intra/extra parenchymal hemorrhage 82 (1%) 82 (1%) 0 (0%) <.001

Intraventricular hemorrhage 39 (0%) 39 (1%) 0 (0%) <.001

Brain death 681 (6%) 681 (8%) 0 (0%) <.001

Neurosurgical intervention 13 (0%) 13 (1%) 0 (0%) <.001

Seizures confirmed by EEG 175 (2%) 175 (2%) 0 (0%) <.001

Seizures clinically determined 152 (1%) 152 (2%) 0 (0%) <.001

Other complications on-ECMO

ECMO circuit mechanical failure 1217 (11%) 222 (12%) 995 (11%) .10

Renal replacement theory 2450 (23%) 606 (34%) 1844 (21%) <.001

Hemolysis 319 (3%) 228 (13%) 91 (1%) <.001

Cardiac arrhythmia 1384 (13%) 1053 (59%) 331 (4%) <.001

Gastrointestinal hemorrhage 457 (4%) 348 (19%) 109 (1%) <.001

Outcomes

In-hospital mortality 7490 (70%) 1579 (88%) 5911 (66%) <.001

Bolded P values represent a statistically significant association (P<.05). ECPR, Extracorporeal cardiopulmonary resuscitation; ABI, acute brain injury; ECLS, Extracorporeal

Life Support;COPD, chronic obstructive pulmonary disorder; ECMO, extracorporeal membrane oxygenation; ABG, arterial blood gas;HCO3, bicarbonate; PaO2
, partial pressure

of oxygen; PaCO2, partial pressure of carbon dioxide; SpO
2
, peripheral oxygen saturation; SaO2, arterial blood gas oxygen saturation; D, delta; ICH, intracranial hemorrhage;

EEG, electroencephalogram.

TABLE E7. Model performance in patients on extracorporeal cardiopulmonary resuscitation for predicting acute brain injury, central nervous

system ischemia, and intracranial hemorrhage

Variable Accuracy TPR TNR FPR FNR PPV NPV

ABI 69% 61% 70% 30% 39% 29% 90%

CNS ischemia 81% 41% 85% 15% 59% 18% 95%

ICH 88% 28% 89% 11% 72% 7% 98%

Accuracy, True-positiveþ true-negative/true-positiveþ true-negativeþ false-positiveþ false-negative; TPR, true positive rate; TNR, true negative rate; FPR, false-positive rate;

FNR, false-negative rate; PPV, positive predictive value; NPV, negative predictive value; ABI, acute brain injury; CNS, central nervous system; ICH, intracranial hemorrhage.
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TABLE E8. Comparisons among the top 3 most important features for acute brain injury in patients receiving extracorporeal cardiopulmonary

resuscitation

Variable With ABI Without ABI P value

Median ECMO duration 3.1 d 2.5 d <.001

Age 57.7 y 54.4 y <.001

Median ECMO pump flow rate at 24 h 3.8 L/min 3.6 L/min <.001

ABI, Acute brain injury; ECMO, extracorporeal membrane oxygenation.

TABLE E9. Comparisons among the top 3 most important features for central nervous system ischemia in patients receiving extracorporeal

cardiopulmonary patients

Variable With CNS ischemia Without CNS ischemia P value

Median ECMO duration 3.3 d 2.5 d <.001

Serum bicarbonate at 24 h 23 mEq/L 23 mEq/L .47

Body mass index 29.1 kg/m2 27.6 kg/m2 <.001

CNS, Central nervous system; ECMO, extracorporeal membrane oxygenation.
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TABLE E10. Comparisons among the top 3 most important features for intracranial hemorrhage in patients receiving extracorporeal

cardiopulmonary resuscitation

Variable With ICH Without ICH P value

Supported at North American ELSO center 3.3% (n ¼ 195) N/A <.001

Not supported at North American ELSO center 1.7% (n ¼ 86) N/A

Median positive-end expiratory pressure at 24 h 8 mm Hg 8 mm Hg .25

Supported at North American ELSO center 1.2% (n ¼ 29) N/A <.001

Not supported at North American ELSO center 3% (n ¼ 252) N/A

ICH, Intracranial hemorrhage; ELSO, Extracorporeal Life Support Organization; N/A, not available.

88 JTCVS Open c August 2024

Adult: Mechanical Circulatory Support Kalra et al


	Acute brain injury risk prediction models in venoarterial extracorporeal membrane oxygenation patients with tree-based mach ...
	Material and Methods
	Study Design and Population
	Data Collection
	Definitions
	Outcomes
	Statistical Analysis
	Data Preprocessing
	Machine Learning Algorithm and Pipeline
	Feature Importance Scores in Machine Learning

	Results
	Venoarterial Extracorporeal Membrane Oxygenation (Nonextracorporeal Cardiopulmonary Resuscitation)
	Model performance
	Feature importance

	Extracorporeal Cardiopulmonary Resuscitation
	Model performance
	Feature importance
	Exploratory analysis: Features and mortality


	Discussion
	Venoarterial Extracorporeal Membrane Oxygenation Versus Venovenous Extracorporeal Membrane Oxygenation Risk Factors
	Machine Learning Methodologies
	Lack of Standardized Neurological Monitoring
	Study Limitations

	Conclusions
	Conflict of Interest Statement

	References
	Appendix E1. Supplemental Methods
	Definitions
	Machine Learning Algorithm and Pipeline
	Feature Importance Scores in Machine Learning

	Supplemental Results
	Feature Importance in Venoarterial Extracorporeal Membrane Oxygenation
	Exploratory Analysis: Hyperoxia in Venoarterial Extracorporeal Membrane Oxygenation
	Feature Importance in Extracorporeal Cardiopulmonary Resuscitation



