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A B S T R A C T   

The transition from childhood to adolescence is marked by significant changes in peer interactions. However, 
limited research has examined the brain systems (e.g., mentalizing and reward networks) involved in direct peer 
interaction, particularly during childhood and early adolescence. Here, we analyzed fMRI data from 50 children 
aged 8–12 years while they participated in a task in which they chatted with a peer (Peer) or answered questions 
about a story character (Character). Using a beta-series correlation analysis, we investigated how social inter
action modulates functional connectivity within and between mentalizing and reward networks and whether this 
modulation changes with age. We observed effects of social interaction on functional connectivity were modu
lated by age within the mentalizing and reward networks. Further, greater connectivity within and between these 
networks during social interaction was related to faster reaction time to the Peer versus Character condition. 
Similar effects were found in the salience and mirror neuron networks. These findings provide insights into age- 
related differences in how the brain supports social interaction, and thus have the potential to advance our 
understanding of core social difficulties in social-communicative disorders, such as autism spectrum disorder.   

1. Introduction 

Social interaction is essential for our everyday lives. From the first 
moments after birth, we interact with others; throughout the lifespan, 
we seek out partners, develop social relationships, and importantly, 
learn from social interactions. Theoretical work suggests that both 
social-cognitive and social-motivational networks may play important 
and integrated roles in social interaction (for reviews, see Chevallier 
et al., 2012; Krach et al., 2010; Ruff and Fehr, 2014) and that these 
social-affective and cognitive networks undergo functional changes both 
within and between networks during key phases of social development, 
such as the transition to adolescence when peers become more salient 
(Nelson et al., 2016). However, while recent work has highlighted the 
contributions of these two networks to social interaction (for a review, 
see Redcay and Warnell, 2018), very little work has tested how func
tional connectivity within and between these networks may contribute 
to social interaction. Further, no study has examined age-related dif
ferences in network organization in social-interactive contexts during 

this transition period (i.e., from childhood to adolescence). 
Successful social interaction requires mentalizing, or theory of mind, 

the ability to infer one’s own or others’ mental states (Schurz et al., 
2014). A group of regions, referred to together as the “mentalizing 
network,” has been identified based on third-person (i.e., 
non-interactive) explicit tasks (e.g., tasks in which participants reason 
about a story character’s beliefs) that contrast mental with non-mental 
reasoning. These regions include bilateral temporal-parietal junction 
(TPJ), bilateral anterior temporal lobes (ATL), precuneus (PC), ventro
medial prefrontal cortex (vmPFC), and dorsomedial prefrontal cortex 
(dmPFC) (Molenberghs et al., 2016; Schurz et al., 2014). Developmen
tally, these regions show increasing selectivity and greater functional 
network integration that is related to both age and social-cognitive 
abilities (Gweon et al., 2012; Richardson et al., 2018). 

In addition to the mentalizing network, theoretical (Rekers et al., 
2011; Tomasello et al., 2005; Tomasello and Carpenter, 2007) and 
empirical work (Chevallier et al., 2012; Hill, 1987; Krach et al., 2010, 
2008; Leary, 2010; Rilling and Sanfey, 2011; Tamir and Mitchell, 2012) 
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suggest a key role of motivation and reward processes in social inter
action. These processes are supported by a reward network, including 
the orbitofrontal cortex (OFC), vmPFC, anterior cingulate cortex (ACC), 
bilateral ventral striatum (VS), and bilateral amygdala (Knutson et al., 
2001; McClure et al., 2004; for a review, see Haber and Knutson, 2010). 
Theoretical work suggests that these reward-relevant regions may 
communicate with regions of the mentalizing network described above 
in socially-motivating contexts (Ruff and Fehr, 2014). However, gaps 
remain in our understanding of how these networks work together 
during social interaction due to two main limitations of prior work. 

A first limitation is that most of our understanding of the mentalizing 
and reward networks comes from non-interactive studies. However, 
“second-person” neuroscience studies (i.e., those in which the partici
pant is engaged in interaction) demonstrate that the brain likely re
sponds to social stimuli differently in interactive compared to non- 
interactive contexts (Redcay and Schilbach, 2019; Redcay and War
nell, 2018; Schilbach et al., 2013). For example, in interactive studies, 
mentalizing regions are engaged spontaneously during social interaction 
even in the absence of explicit mentalizing demands (Alkire et al., 2018; 
Redcay and Schilbach, 2019; Rice et al., 2016; Rice and Redcay, 2016; 
Warnell et al., 2018). Further, reciprocal engagement with a real-time 
social partner elicits greater activation within these reward sensitive 
regions than non-interactive social processing (Pfeiffer et al., 2014; 
Schilbach et al., 2010; Redcay et al., 2010; Alkire et al., 2018). Further, 
children responded more quickly and reported higher subjective reward 
when interacting with a social partner (i.e., interactive) compared to 
answering questions about a story character (i.e., non-interactive) 
(Alkire et al., 2018). Thus, fully understanding the developmental 
neural correlates of social interaction requires examining social inter
action within an interactive context. 

A second limitation is that much of the work described above has 
characterized regions that are sensitive to various aspects of social 
interaction by measuring their activation, or average stimulus-evoked 
response across repeated trials. In contrast, functional connectivity, or 
the temporal correlation of activity between regions provides informa
tion on how regions or networks communicate with each other during 
different task contexts. Characterizing brain function in this way—that 
is, beyond the activation of individual regions—allows examining novel 
questions that cannot be addressed with activation analyses alone. For 
example, while language and mentalizing regions show functionally 
distinct activation profiles, they demonstrate significant functional 
connectivity during language comprehension, suggesting distinct but 
integrated roles of these networks during language comprehension 
(Paunov et al., 2019). In the context of social interaction, theoretical 
work suggests that engaging in real-time social interaction (compared to 
non-interactive contexts) may lead to greater functional connectivity (or 
integration) among networks relevant to social processing (Redcay and 
Schilbach, 2019; Schilbach et al., 2013). However, while research has 
demonstrated coactivation of regions within reward and mentalizing 
networks during social reward processing (Izuma et al., 2008; Powers 
et al., 2013; for a review, see Ruff and Fehr, 2014), direct evidence of 
functional connectivity between regions in the reward and 
social-cognitive networks during social interaction is still lacking, 
leaving gaps in our understanding of whether and how reward and 
social-cognitive networks function together. 

This prediction that social interaction will drive greater connectivity 
between regions within mentalizing and reward networks is based on 
the growing second-person neuroscience research in adults. However, 
this question has not been addressed developmentally. Middle child
hood, a period of transition to early adolescence, contains significant 
changes in social interaction and social relationships, including greater 
time spent with and more attention to peers (Devine and Hughes, 2013; 
Farmer et al., 2015; Parker et al., 2015; Rubin et al., 2007). The social 
re-orientation theory posits that the enhanced sensitivity to peers during 
early adolescence is associated with changes in brain networks involved 
in social functions (Nelson et al., 2016). During this period of transition 

to adolescence (i.e., middle childhood) peers may become more moti
vating and this may lead to greater integration between motivational 
and social-cognitive networks when engaged with a peer compared to 
another social stimulus. 

In the present study, we examined functional connectivity of men
talizing and reward networks during a social-interactive task in 8–12 
year-olds using an interactive social prediction paradigm (Alkire et al., 
2018). We predicted that reward and mentalizing networks would be 
correlated but that they would show greater within than between 
network connectivity across conditions, suggesting they are functionally 
distinct. We further predicted modulations in connectivity based on 
social context. Specifically, making predictions about a peer (i.e., 
real-time social partner) would result in greater connectivity within and 
between reward and mentalizing networks than making predictions 
about a story character (i.e., non-interactive). Finally, we predicted this 
connectivity would be modulated by age, with increasing integration 
between mentalizing and reward systems with age as peers become 
more salient and motivating. Behaviorally, as previous work has shown 
faster reaction time (RT) related to higher social motivation (Chevallier 
et al., 2016; DiMenichi and Tricomi, 2015), we predicted higher moti
vation (e.g., faster RT and higher subjective reward) when making 
predictions about a peer versus story character, and that this increases 
with age. Further, we predicted that children who demonstrate greater 
social motivation (i.e., faster RT and greater subjective reward to Peer 
versus Character condition) would show greater functional connectivity 
within and between reward and mentalizing networks. 

2. Material and methods 

2.1. Participants 

We recruited 65 children using a database of families in the Wash
ington, DC, metropolitan area to participate in behavioral and MRI 
sessions at the University of Maryland. Fifteen of them were excluded 
after either the behavioral or MRI visit for the following reasons: Five 
children had excessive motion in the scanner (see fMRI data analysis 
section below for detailed descriptions), six children did not believe the 
illusion of peer interaction, one child did not finish the scan due to a 
technical error, one child scored low in both IQ (< 85) and reading 
fluency (< the 3rd grade level) tests, and one child scored low in the 
reading fluency test (< the 3rd grade level). The final sample included 
50 children (30 males, mean age 10.38 ± 1.33 years, range 8.18–12.97 
years) with available behavioral measures (see Behavioral assessments 
section below) and MRI data. The age distribution of these participants 
is shown in Fig. S1A. Among 50 subjects, 10% identified as Hispanic/ 
Latino, 60% as White/Caucasian, 22% as Black/African American, and 
18% as more than one race, with race and ethnicity (Hispanic/Latino or 
not) information collected separately. Eighty-six percent of participants 
are from families reporting over $75,000 in total family income, 6% 
from families reporting family income between $35,000–$75,000%, and 
4% from families reporting family income less than $35,000 (4% did not 
report on income). Prior to participating, all participants gave informed 
assent and their parents gave informed consent. They were full-term, 
native English speakers, without any MRI contraindication, diagnosis 
of neurological or psychiatric disorder, or first-degree relatives with 
autism or schizophrenia. All MRI and behavioral data were collected 
between 2017 and 2018. This study was approved by the University of 
Maryland Institutional Review Board. A subsample of this cohort has 
been reported in a prior study (Alkire et al., 2018). 

2.2. Behavioral assessments 

On a separate visit prior to the scan, each child completed a battery 
of behavioral measures including the Kaufman Brief Intelligence Test 
Second Edition (KBIT-2; Kaufman and Kaufman, 2004) and reading 
fluency (Woodcock and McGrew, 2001). Total IQ (standard score ≥ 85) 
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and reading fluency (≥ 3rd grade level) served as screening criteria for 
participation in the current study; as aforementioned, two children were 
excluded from the final sample due to low scores in these two tests. 

2.3. fMRI design and procedure 

We used a 2 * 2 event-related design with factors of mentalizing 
(Mental and Non-Mental) and social interaction (Peer and Character) 
(Alkire et al., 2018). In the experiment, we told participants they would 
be chatting with an age- and gender-matched peer in another lab who 
would also be participating in an MRI study, when in reality the task 
consisted of pre-programmed responses. To enhance the peer illusion, 
we took a picture of the participants before the scan under the guise of 
exchanging it with another lab and asked them to choose a chat partner 
from two pictures of children matched on age and gender. The photos of 
children were selected from the NIMH Child Emotional Faces Pictures 
Set (Egger et al., 2011) as well as from Getty Images (www.gettyimages. 
com) and Google Images, with the goal of matching the racial and ethnic 
diversity of our participants. In addition, participants were aware that 
they would be chatting with and making predictions about the peer half 
of the time and “chatting” with the computer and making predictions 
about a fictional character of the same gender and age as the participant 
for the other half of the time. 

In the scanner, participants were engaged in an interactive game and 
made predictions about either the peer or the character. Each trial 
consisted of two periods: Guess (8 s) and Feedback (2 s). The Guess 
period included receiving a hint and making a prediction based on that 
hint. Specifically, participants were presented with the name of the chat 
partner (Peer condition) or “Computer” (Character condition), followed 
by a one-sentence hint about the peer (e.g., “I think flying is fun”) or the 
story character (e.g., “Mia likes to run”), which either contained a 
mental state (Mental, e.g., beliefs, desires, preferences, emotions, and 
knowledge) or not (Non-Mental, e.g., facts or situations about the peer 
or character). Then, participants answered either “Which will I/she/he 
pick” (Mental) or “Which of these match” (Non-Mental) by choosing 
between two choices via pressing the button. In the Feedback period, 
participants learned whether their predictions matched the answers of 
the peer or the computer. The experimental design is shown in Fig. S2. 
This 2 * 2 design included four conditions: Peer Mental, Peer Non- 
Mental, Character Mental, and Character Non-Mental, with 24 trials 
for each condition and a total of 96 trials in the task. We determined the 
trial distribution and inter-stimulus/trial intervals using Design Explorer 
(Moraczewski et al., 2016 unpublished software) as it minimizes 
collinearity between events in the design matrix. Next, we submitted the 
resulting matrix to AFNI’s 1d_tool program (Cox, 1996) which 
confirmed minimal correlations between regressors of interest. 

The presentation of the trials was performed by PsychoPy (Peirce, 
2009) with 4 runs of 24 trials. A fixation cross was presented for 10 s at 
the beginning and 15 s at the end of each run, and the chat partner’s 
photo appeared at the end of each run. Trials were separated by a fix
ation cross presented for a jittered 2–6 s, centered around 3.5 s and 
distributed exponentially. The Guess and Feedback periods were sepa
rated by a fixation cross with the same jittered parameters. 

2.4. In-scanner performance 

We measured participants’ performance (i.e., accuracy and RT) 
during the fMRI task across the four conditions, in which RT was a proxy 
measure of social motivation. To examine whether behavioral perfor
mance was modulated by social interaction or mentalizing and whether 
the modulation of social interaction changed with age, we used mixed 
effects models to test the effects of social interaction, mentalizing, age, 
and the interaction effect of social interaction and age with subjects as a 
random effect, controlling for gender and IQ. For the main effect of 
social interaction, we performed a post-hoc paired t-test with mean RT 
or accuracy in Peer versus Character condition. For interaction effects of 

social interaction and age, we ran a post-hoc regression analysis con
trolling for gender and IQ. 

2.5. Post-scan assessments 

Following the scan, we asked participants to complete a post-scan 
questionnaire to assess their subjective experience on the interactive 
task. All ratings were made on a 5-point scale. These questions 
attempted to assess: (1) subjective reports of enjoyment when interact
ing with the peer and making predictions about the story character (i.e., 
Liked Chatting, Liked Guessing, Felt When Matched); (2) subjective re
ports of motivation for social-interactive (i.e., making predictions about 
the peer) and non-interactive (i.e., making predictions about the story 
character) conditions (i.e., Wanted to See); (3) subjective reports of 
attention for social-interactive (i.e., making predictions about the peer) 
and non-interactive (i.e., making predictions about the story character) 
conditions (i.e., Paid Attention); (4) subjective reports of difficulty when 
making predictions (Perceived Difficulty). Detailed questions for Peer 
and Character conditions are shown in Table S1. 

We examined whether children’s subjective experience, including 
Liked Chatting, Liked Guessing, Felt When Matched, Wanted to See, Paid 
Attention, and Perceived Difficulty, was modulated by social context in 
the interactive task, i.e., Peer versus Character. Specifically, we tested 
the effects of social interaction, age, and their interaction, controlling for 
gender and IQ. 

We tested whether children’s subjective reports of enjoyment (Liked 
Chatting, Liked Guessing, Felt When Matched), attention (Paid Atten
tion), and motivation (Wanted to See) were correlated with RT as they 
are all measures of social motivation. 

At the completion of the study, children and parents were debriefed 
about the deception. We used both the post-scan questionnaire and 
debriefing to probe participants’ belief in the peer illusion, and excluded 
six children from the analysis as they showed doubts or disbelief in the 
illusion. 

2.6. Data acquisition 

MRI data were collected at the Maryland Neuroimaging Center on a 
3 T Siemens scanner (MAGNETOM Trio) with a 32-channel head coil. 
Four task runs were acquired using multiband-accelerated echo-planar 
imaging (66 interleaved axial slices, voxel size = 2.19 × 2.19 × 2.20 
mm, TR/TE = 1250/39.4 ms, flip angle = 90, a multiband factor of 6), a 
total of 352 volumes and lasting 7 min 20 s per run. The following 
structural scan was obtained with a three-dimensional T1 
magnetization-prepared rapid gradient-echo sequence (192 contiguous 
sagittal slices, voxel size = 0.45 × 0.45 × 0.90 mm, RT/TE = 1900/2.32 
ms, flip angle = 9◦). The first 4 volumes of each run were automatically 
discarded to allow for magnetization equilibrium. 

2.7. fMRI data preprocessing 

Neuroimaging data were preprocessed using fMRIPrep 1.4.1 (Este
ban et al., 2019). Briefly, anatomical images were segmented and 
normalized to MNI space; functional images were skull-stripped, sus
ceptibility distortion corrected, realigned, slice-time corrected, cor
egistered and warped to the normalized anatomical image (see htt 
ps://osf.io/u62ef/ for full report of the preprocessing pipeline). 

In order to account for the head motion, the voxel-wise framewise 
displacement (FD) was calculated following Power et al. (2012) to 
quantify head movements in the scanner and to control it as a nuisance 
variable in the later analyses. Specifically, we censored volumes with 
mean FD exceeding 1 mm and removed runs with remaining volumes 
less than 90% or mean FD greater than 0.5 mm. Additionally, we took 
participants’ in-scanner performance into account and excluded runs 
with low accuracy: 1) the average accuracy in any condition in each run 
less than 50% and 2) the average accuracy across conditions by run less 
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than 66.7%. We included participants with at least three usable runs in 
the analyses, yielding a final sample of 33 children with four runs and 17 
with three runs. In the final sample, the mean FD across participants was 
0.23 ± 0.08 mm (range 0.1–0.42 mm), and there was a medium effect 
size of negative correlation between mean FD and age (r(48) = − 0.24, p 
= 0.09; Cohen’s d = 0.5) (Fig. S1B). 

2.8. Beta-series correlation analysis 

We generated individual beta estimates for each trial following the 
estimation approach recommended by Mumford et al. (2012) to gain 
trial-specific activation estimates, similar to previous studies (e.g., Cisler 
et al., 2014; Ray et al., 2017; Turner et al., 2017). First, we used AFNI’s 
3dDeconvolve to construct the design matrix. For a given condition of 
interest, we convolved that condition’s Guess period with a hemody
namic response function that modulated amplitude as a function of 
response time (‘dmBLOCK’ in AFNI), which is recommended when event 
durations vary based on response time (Grinband et al., 2008; Poldrack, 
2015). In addition, the following nuisance regressors of no interest were 
also added into the design matrix: 1) the demeaned motion parameters 
and their derivatives; 2) volumes with FD greater than 1 mm; 3) the 
events of no interest including Guess period for all other conditions and 
Feedback period for all conditions. Thus, for each participant we con
structed four design matrices, one for each condition of interest (i.e., 
Peer Mental, Peer Non-mental, Character Mental, and Character 
Non-mental). We then used AFNI’s 3dLSS to calculate the voxel-wise 
beta series of each trial using an iterative procedure to estimate task 
activity unique to each trial (Mumford et al., 2012). For example, for the 
Peer Mental condition with 24 trials, one general linear model (GLM) is 
conducted with a design matrix including two columns: one column for 
the first Peer Mental trial and the other column containing all other Peer 
Mental trials. Another GLM is then conducted with a design matrix 
including two columns: one column for the second Peer Mental trial and 
the other column containing all other Peer Mental trials. This iterative 
procedure is repeated until a beta estimate has been obtained for each 
individual trial (i.e., 24 separate GLMs). This procedure was then 
repeated similarly for Peer Non-Mental, Character Mental, and Char
acter Non-Mental conditions. 

The procedure of beta-series correlation analysis is shown in Fig. 1. 
Specifically, we selected 7 regions of interest (ROIs) for the mentalizing 
network, which were identical to those used in Schmälzle et al. (2017) 
and were derived from an automated meta-analysis of functional neu
roimaging literature on the term “mentalizing” in Neurosynth (htt 
p://neurosynth.org; Yarkoni et al., 2011). Following the same proced
ure, we selected 7 ROIs for the reward network on the term “reward” in 
Neurosynth (http://neurosynth.org; Yarkoni et al., 2011). The details of 
all 14 ROIs are shown in Table 1 and visualized in Fig. 1B; all 14 ROIs 

were spatially non-overlapping. Finally, for each participant, we calcu
lated correlation matrices for each condition based on the voxel-wise 
beta series by averaging beta series of each ROI sphere (5 mm radius) 
and computing the Pearson’s correlation between each ROI’s beta series, 
resulting in four correlation matrices for each participant (Fig. 1C). 

2.9. Within- versus between-network connectivity 

We first tested whether mentalizing and reward networks are func
tionally distinct by comparing within- versus between-network con
nectivity for each network using one-tailed paired t-tests. Specifically, 
we ran the tests on functional connectivity averaged across conditions. 
The results were corrected for multiple comparisons using the false 
discovery rate (FDR) correction (Benjamini and Hochberg, 1995) in R 
(“fdr” function). 

2.10. Regression analyses on functional connectivity 

In order to examine how social interaction modulates brain organi
zation within and between the mentalizing and reward networks, we 
conducted regression analyses with linear mixed effects models on mean 

Fig. 1. The fMRI data analysis procedure. (A) 
Trial-wise beta series were extracted from the 
Guess period for each condition and for each 
participant on the basis of separate general 
linear models. (B) Seven nodes for the mental
izing network were from Schmälzle et al. 
(2017) and seven nodes for the reward network 
were selected from meta-analysis in Neurosynth 
(http://neurosynth.org; Yarkoni et al., 2011). 
(C) Correlation matrices were calculated for 
each condition and for each participant by 
computing the correlation coefficients between 
beta-series of each ROI using Pearson’s corre
lation. Abbreviations: L, left; R, right; dmPFC, 
dorsomedial prefrontal cortex; vmPFC, ventro
medial prefrontal cortex; TPJ, temporo-parietal 
junction; ATL, anterior temporal lobe; PC, pre
cuneus; VS, ventral striatum; OFC, orbitofrontal 

cortex; ACC, anterior cingulate cortex.   

Table 1 
Regions of interest for the mentalizing network from Schmälzle et al. (2017) and 
for the reward network from Neurosynth (http://neurosynth.org).  

Network Region MNI coordinates 

x y z 

Mentalizing network ( 
Schmälzle at al, 2017) 

Dorsomedial prefrontal 
cortex (dmPFC) 

0 53 30 

Ventromedial prefrontal 
cortex (vmPFC) 

0 48 -18 

Precuneus (PC) 0 -54 44 
Left temporo-parietal 
junction (L TPJ) 

-48 -56 23 

Right temporo-parietal 
junction (R TPJ) 

48 -56 23 

Left anterior temporal lobe 
(L ATL) 

-53 -12 -16 

Right anterior temporal lobe 
(R ATL) 

53 -12 -16 

Reward network Left orbitofrontal cortex (L 
OFC) 

-22 36 -14 

Ventromedial prefrontal 
cortex (R vmPFC) 

2 58 -8 

Anterior cingulate cortex 
(ACC) 

2 32 16 

Left ventral striatum (L VS) -12 10 -8 
Right ventral striatum (R VS) 12 10 -8 
Left amygdala -20 -2 -14 
Right amygdala 24 -2 -18  
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connectivity within and between these two networks using the ‘lme’ 
function in R (‘nlme’ package), separately. The within-network con
nectivity was calculated as the mean strength of all pairwise connec
tivity within the network (7 * 6/2 = 21 pairs of nodes for each network) 
and between-network connectivity as the mean strength of connectivity 
between nodes from different networks (7 * 7 = 49 pairs of nodes). In 
separate models for within mentalizing network, within reward 
network, and between mentalizing and reward networks, the mean 
connectivity was the dependent variable, and social interaction, men
talizing, and age as well as the interaction between social interaction 
and age were regressors of interest, with gender, mean FD, and IQ as 
regressors of no interest. Subjects were treated as a random effect in the 
model as we used a within-subject experimental design in the current 
study. For models showing significant main or interaction effects, post- 
hoc analyses were performed with linear mixed effects models. We 
determined that multicollinearity of the models was not a concern as no 
other independent variables except for the interaction term and its 
categorical variable (i.e., social interaction) had a variance inflation 
factor greater than 2 (Gareth et al., 2013). 

Further, we examined how the involvement of brain regions within 
social-cognitive and social-motivational processing, including dmPFC, 
vmPFC, PC, bilateral TPJ, bilateral ATL, left OFC, right vmPFC, ACC, 
bilateral VS, and bilateral amygdala, is modulated by social interaction. 
Following previous studies (Costa et al., 2007; Gu et al., 2015), for each 
region, we computed its within-network strength (mean strength of 
functional connectivity between each region and other regions in the 
same network) and between-network strength (mean strength of func
tional connectivity between each region in one network and regions in 
the other network). The regression analyses of within-network and 
between-network strength of each region were implemented using 
similar linear mixed effects models as aforementioned, and the results 
were corrected for multiple comparisons using the FDR correction 
(Benjamini and Hochberg, 1995) in R (“fdr” function). 

2.11. Brain–behavior correlation analyses 

Next, we examined effects of social motivation and social interaction 
as well as their interaction on functional connectivity averaged across 
collapsed conditions of Peer and Character using linear mixed effects 
models. In separate models, social interaction (i.e., Peer, Character), 
behavior (i.e., RT or subjective reward), and their interaction were in
dependent variables, mean functional connectivity (i.e., within men
talizing network, within reward network, and between mentalizing and 
reward networks) as a dependent variable, controlling for age, gender, 
mean FD, and IQ. Subsequently, for models showing significant main or 
interaction effects, post-hoc analyses were performed with linear mixed 
effects models. For subjective reward, we included children’s subjective 
reports of enjoyment, attention, and motivation, i.e., Liked Chatting, 
Liked Guessing, Felt When Matched, Paid Attention, and Wanted to See. 

2.12. Specificity and control analyses 

To verify the specificity of the effects shown in the mentalizing and 
reward networks, we ran a specificity analysis with two brain networks 
that are relevant to social interaction, i.e., mirror neuron and salience 
networks (for a review, see Redcay and Warnell, 2018), but these two 
networks were not predicted to be involved specifically in making pre
dictions about a social partner within a text-based chat setting that did 
not include rejection. Further, we ran a control analysis with the motor 
network including bilateral somatomotor and paracentral regions which 
we did not predict to have any differential relation to the task condi
tions. All ROIs were selected from the meta-analyses of functional 
neuroimaging literature on terms “mirror”, “salience network”, and 
“motor network” separately and were identified with functional con
nectivity and coactivation maps in Neurosynth (http://neurosynth.org; 
Yarkoni et al., 2011), resulting in 10 ROIs for the mirror neuron 

network, 3 ROIs for the salience network, and 3 ROIs for the motor 
network (Figs. S3A–C; Table S2). All the ROIs were spatially 
non-overlapping. We performed regression analyses and brain–behavior 
correlation analyses within each of these networks using the same pro
cedures as aforementioned. 

3. Results 

3.1. Behavioral results 

Mean accuracy across all conditions was 90.17% (SD 7.49%) and 
mean RT was 2.04 s (SD 0.32). We examined the effects of social 
interaction, mentalizing, age, and the interaction between social inter
action and age on accuracy and RT, with gender and IQ controlled in 
models. The results showed a main effect of social interaction on RT (F 
(1, 147) = 27.08, p < 0.001), and post-hoc pairwise t-test on mean RT of 
collapsed conditions revealed that children responded more quickly to 
Peer than Character condition (mean differences = − 0.08 s, t(49) = −

4.7, p < 0.001; Fig. 2A). There was also a main effect of age on RT (F 
(45) = 27.06, p < 0.001), with negative correlations between age and 
RT in both Peer and Character conditions (ps < 0.001). We did not 
observe a main effect of mentalizing or interaction effects of social 
interaction and age on RT. For accuracy, there was no main effect of 
social interaction but there was an interaction effect (Fig. 2B) of social 
interaction and age (F(1, 147) = 5.82, p = 0.02), which was driven by a 
positive relation between accuracy in the Character condition and age (F 
(45) = 5.46, p = 0.024) as shown in the post-hoc regression analysis 
controlling for gender and IQ. 

We examined the effects of social interaction, age, and the interac
tion between social interaction and age on children’s subjective reports 
on the interactive task, controlling for gender and IQ. We found a main 
effect of social interaction on all examined reports (ps < 0.001) but 
Perceived Difficulty (p = 0.73). As the subjective reports were ordinal 
data (i.e., 5-point scale), we used paired Wilcoxon tests (i.e., Wilcoxon 
signed rank test) in post-hoc analysis. The follow-up Wilcoxon signed 
rank tests demonstrated that children reported more enjoyment, atten
tion, and motivation during peer interaction compared to reasoning 
about the character (Fig. 2C and Table 2). The interaction effect of social 
interaction and age was seen in reports of Liked Chatting (F(1, 148) =
5.35, p = 0.022), Wanted to See (F(1, 148) = 6.48, p = 0.012), and Paid 
Attention (F(1, 148) = 16.3, p < 0.001) after correction for multiple 
comparisons using the FDR correction. However, in the post-hoc 
Spearman correlation analysis, these interaction effects did not show 
any significant effects between age and either Peer or Character condi
tion; see Fig. S4. 

The relationships between RT and subjective reports of enjoyment, 
attention, and motivation when interacting with a peer were tested 
using the one-tailed Spearman’s correlation, and the results are shown in 
Table S3. 

3.2. Greater within- versus between-network connectivity 

For connectivity averaged across conditions, we observed signifi
cantly greater within-mentalizing versus between-network connectivity 
(t(49) = 9.96, p < 0.001; one-tailed paired t-test) and within-reward 
versus between-network connectivity (t(49) = 2.13, p = 0.02; one- 
tailed paired t-test) after correcting for multiple comparisons using the 
FDR correction. 

3.3. Effects of social interaction on functional connectivity 

In the mixed effects models, we examined the main effects of social 
interaction, mentalizing, age, and also the interaction effect of social 
interaction and age; in addition, gender, mean FD, and IQ were fixed 
effects of no interest, subjects as a random effect. Contrary to our hy
potheses, there were no main effects of social interaction or mentalizing 
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Fig. 2. In-scanner performance and post-test 
assessments. (A) The regression analysis 
showed a main effect of social interaction on 
reaction time (F(1, 147) = 27.08, p < 0.001); 
participants responded more quickly to Peer 
versus Character trials (differences in averaged 
reaction time of collapsed conditions: t(49) = −

4.7, p < 0.001). (B) For accuracy, there were no 
main effects of social interaction or mentaliz
ing. (C) Children rated on a Likert-type scale of 
1–5 which assessed their subjective reports of 
enjoyment, attention, motivation, and difficulty 
(i.e., Liked Chatting, Liked Guessing, Felt When 
Matched, Wanted to See, Paid Attention, and 
Perceived Difficulty); detailed questions for 
Peer and Character conditions are shown in 
Table S1. The Peer and Character conditions 
were compared by the Wilcoxon signed rank 
tests. * p < 0.05, ** p < 0.01, *** p < 0.001; ns, 
not significant.   

Table 2 
Subjective reports of experience assessed by the post-scan questionnaire.  

Measure Peer Character p (Wilcoxon signed rank test) 

median mean±sd range median mean±sd range 

Liked Chatting 4.5 4.3 ± 0.81 2–5 3 2.76 ± 1.04 1–5 < 0.001 
Liked Guessing 4 3.84 ± 0.96 1–5 3 3.26 ± 1.12 1–5 < 0.001 
Felt When Matched 4 4.26 ± 0.83 2–5 4 3.96 ± 0.88 2–5 0.031 
Wanted to See 4 4.08 ± 0.92 2–5 3 3.38 ± 1.23 1–5 < 0.001 
Paid attention 4 3.9 ± 0.91 2–5 3 3.4 ± 0.97 1–5 0.002 
Perceived difficulty 2 2.38 ± 1.23 1–5 2 2.2 ± 1.29 1–5 0.38  

Fig. 3. Results of regression analysis on mean 
functional connectivity within and between the 
mentalizing and reward networks. Scatterplots 
(A–C) depict interaction effects of social inter
action and age. The significant interaction ef
fects of social interaction and age (marked with 
red boxes) were seen within the mentalizing 
and reward network (mentalizing network: F(1, 
147) = 9.4, p = 0.003; reward network: F(1, 
147) = 7.13, p = 0.008); there was a marginal 
interaction effect of social interaction and age 
for between networks (F(1, 147) = 3.48, 
p = 0.064). Pearson’s correlation coefficients 
were calculated and are shown in the scatter
plots. * p < 0.05. (For interpretation of the 
references to colour in this figure, the reader is 
referred to the web version of this article.)   
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on functional connectivity within or between mentalizing and reward 
networks. There was also no main effect of age. However, there were 
interaction effects of social interaction and age on mean connectivity 
within the mentalizing and reward networks (mentalizing network: F(1, 
147) = 9.4, p = 0.003; reward network: F(1, 147) = 7.13, p = 0.008) 
and a marginal interaction effect of social interaction and age for be
tween networks (F(1, 147) = 3.48, p = 0.064); see Fig. 3. For the men
talizing and reward networks, the post-hoc regression tests did not show 
significant correlations between mean connectivity and age in the Peer 
(mentalizing network: F(45) = 1.41, p = 0.24; reward network: F 
(45) = 0.36, p = 0.55) or Character condition (mentalizing network: F 
(45) = 1.68, p = 0.2; reward network: F(45) = 3.25, p = 0.08). 

In a follow-up exploratory analysis, we examined functional con
nectivity (averaged across collapsed conditions) between Peer versus 
Character condition in older children (upper quartile, i.e., age > 11.37 
years) and younger children (lower quartile, i.e., age < 9.33 years) using 
two-tailed paired t-tests, separately. For older children, there was a 
pattern of greater connectivity in Peer relative to Character condition 
(mentalizing network: t(12) = 1.93, p = 0.078; reward network: t 
(12) = 0.93, p = 0.37; between network: t(12) = 0.68, p = 0.51); how
ever, for younger children, the pattern is the opposite such that con
nectivity was greater in the Character compared to Peer condition 
(mentalizing network: t(12) = − 2.33, p = 0.038; reward network: t 
(12) = − 4.55, p = 0.001; between network: t(12) = − 2.3, p = 0.04). 

For the regression analysis on mentalizing and reward regions, we 
did not observe any significant results after correcting for multiple 
comparisons (See Supplementary Information–Results–Effects of social 
interaction on node connectivity strength). 

3.4. Relations between functional connectivity and behavior 

We examined the main effects of social motivation (RT and subjec
tive reward) and social interaction as well as the interaction effect of 
social motivation and interaction on functional connectivity within and 
between reward and mentalizing networks using mixed effects regres
sion models. We did not find main effects of social interaction on within 
or between network connectivity (mentalizing network: F(1, 146) = 0.2, 
p = 0.65; reward network: F(1, 146) = 0.02, p = 0.89; between net
works: F(1, 146) = 0.47, p = 0.49) or RT (mentalizing network: F(1, 
146) = 0.52, p = 0.47; reward network: F(1, 146) = 0.00006, p = 0.99; 

between networks: F(1, 146) = 0.08, p = 0.78). However, we observed 
an interaction effect of social interaction and RT on mean connectivity 
within and between the mentalizing and reward networks (mentalizing 
network: F(1, 146) = 13.77, p = 0.0003; reward network: F(1, 146) 
= 7.6, p = 0.007; between networks: F(1, 146) = 8.32, p = 0.005). This 
interaction effect revealed that the brain–behavior relations in the Peer 
condition were significantly different from that in the Character condi
tion (see Fig. 4A–C and Table 3), although functional connectivity 
averaged across Peer and Character conditions was not significantly 
correlated with mean RT (mentalizing network: r(48) = − 0.02, 
p = 0.87; reward network: r(48) = 0.039, p = 0.79; between networks: r 
(48) = 0.12, p = 0.39). The post-hoc tests showed a pattern of positive 
relation between mean connectivity and RT in the Character condition 
(significant relation in between networks: F(48) = 4.37, p = 0.04) and a 
pattern of negative relations between mean connectivity and RT in the 
Peer condition (significant relation in the mentalizing network: F(48) =
4.31, p = 0.043). 

We did not see any main effects or interaction effects of social 
interaction and subjective reports of enjoyment, attention, and moti
vation on within- or between-network connectivity after correction for 
multiple comparisons. 

3.5. Effects generalize to other social brain networks 

The specificity analysis with the motor and the mirror neuron 

Fig. 4. The relations between brain functional 
connectivity and reaction time (RT) in Peer and 
Character conditions. The scatterplots depict 
interaction effects of social interaction and RT 
on mean connectivity within and between the 
mentalizing and reward networks (mentalizing 
network: F(1, 146) = 13.77, p = 0.0003; 
reward network: F(1, 146) = 7.6, p = 0.007; 
between networks: F(1, 146) = 8.4, p = 0.004). 
Partial Pearson’s correlation coefficients con
trolling for age were calculated and are shown 
in the scatterplots.   

Table 3 
Brain–behavior correlation results. The interaction effects of social interaction 
and RT on connectivity within and between mentalizing and reward networks 
and post-hoc regression results.  

Network Interaction effect of social 
interaction * RT 

Post-hoc regression analysis 

Peer Character 

Mentalizing 
network 

F(1, 146) = 13.72 *** F(48) =
4.47 * 

F(48) =
2.13 

Reward network F(1, 146) = 7.55 ** F(48) =
1.61 

F(48) =
2.65 

Between 
networks 

F(1, 146) = 8.32 ** F(48) =
0.86 

F(48) =
4.31 * 

Note:* p < 0.05, ** p < 0.01, *** p < 0.001. 
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networks did not show any main or interaction effects on within- 
network connectivity. However, we found an interaction effect of so
cial interaction and age on mean connectivity within the salience 
network (F(1, 147) = 5.87, p = 0.017); post-hoc regression tests showed 
a significant positive association between age and connectivity in the 
Peer condition (F(45) = 5.68, p = 0.02) but not in the Character con
dition (F(45) = 0.76, p = 0.39). Thus, the interaction effects of age and 
social interaction on mean connectivity reported above are not specific 
to reward and mentalizing networks alone, but extend to other networks 
associated with social interaction. In addition, we tested the effect of the 
brain–behavior relations in RT and subjective reports of reward with 
motor regions, mirror neuron, and salience networks. The results 
showed an interaction effect of RT and social interaction in the mean 
connectivity within the mirror neuron network (F(1, 147) = 7.49, 
p = 0.007), and post-hoc regression tests demonstrated negative corre
lations between mean connectivity and RT in the Peer condition (F 
(48) = 4.36, p = 0.04), although there was no correlation between 
connectivity averaged across all conditions and RT (r(48) = − 0.12, 
p = 0.4). No other main or interaction effects were found in these con
trol regions or networks. 

3.6. Validation of results with low age-motion correlation sample 

Given the medium effect size of correlation between age and head 
motion (r = − 0.24, Cohen’s d = 0.5), to test whether observed findings 
were driven by the head motion, we ran the aforementioned analyses in 
a subsample (n = 30) where motion and age were uncorrelated. We 
observed similar results in this low age-motion correlation group (for 
details see Supplementary Information–Results–Validation of results 
with low age-motion correlation sample), indicating the results in the 
full sample were not driven by head motion. 

4. Discussion 

The current study brings a social-interactive neuroscience approach 
(Redcay and Schilbach, 2019; Redcay and Warnell, 2018; Schilbach 
et al., 2013) and a brain network perspective to examine the neural 
mechanisms underlying social interaction in middle childhood. Contrary 
to our hypotheses, neither social interaction nor mentalizing demon
strated main effects on functional connectivity. Instead, the effect of 
social interaction on functional connectivity was modulated by both age 
and behavioral performance. Specifically, as age increased the differ
ences in mean functional connectivity between Peer and Character 
conditions got larger within and between mentalizing and reward net
works. This age-dependent effect was also seen in the salience network, 
but not other networks (i.e., motor and mirror neuron networks). 
Further, brain functional connectivity between the mentalizing and 
reward networks associated with children’s reaction time to peer, 
reflecting a link between stronger brain coupling during social interac
tion and faster responses to the Peer condition. This effect of RT was also 
present in the mirror neuron network, but not the other control networks 
(i.e., motor and salience networks). Collectively, these findings suggest 
that age-related increases in functional connectivity among brain re
gions support social processing—beyond the mentalizing and reward 
networks—and that this increasing connectivity may relate to increasing 
motivation (e.g., faster response) to engage with a social partner from 
middle childhood to adolescence. 

4.1. Age-related differences in network connectivity during social 
interaction 

Previous studies have highlighted involvement of both the mental
izing and reward networks in social interaction (Alkire et al., 2018; 
Chevallier et al., 2012; Redcay et al., 2010; Rilling and Sanfey, 2011). 
Theoretical work suggests social interaction may lead to greater func
tional connectivity among networks relevant to social processing 

(Redcay and Schilbach, 2019; Ruff and Fehr, 2014; Schilbach et al., 
2013). Further, coactivations of mentalizing and reward regions are 
related to social reward processing (e.g., Izuma et al., 2008; Powers 
et al., 2013). However, in the current study the hypothesis that making 
predictions about a peer would lead to greater connectivity within and 
between these networks than making predictions about a story character 
was not supported, as there was no significant main effect of social 
interaction. 

One possible account for the lack of an effect of social interaction is 
that our hypotheses were based on the adult literature, and thus these 
effects may be emerging during childhood into adolescence (Devine and 
Hughes, 2013; Farmer et al., 2015; Nelson et al., 2016; Parker et al., 
2015). In support of this, we found that effects of social interaction on 
brain connectivity were modulated by age. The increasing connectivity 
within the mentalizing network during this period is consistent with 
previous studies showing age-related changes in functional connectivity 
within the mentalizing network during mental state reasoning (Gweon 
et al., 2012; Richardson et al., 2018; Mukerji et al., 2019). Our data also 
accord with findings that social context, including social rewards and 
peer evaluation, can alter neural activity within the reward and men
talizing networks, and that age modulates these effects (Guyer et al., 
2012; Somerville et al., 2013; Warnell et al., 2018). 

Notably, our findings differ from those reported in univariate acti
vation analyses using the same task (Alkire et al., 2018). Specifically, 
our previous study found decreasing activation for Peer versus Character 
condition with age within social-cognitive regions, whereas here we 
found increasing functional connectivity for Peer versus Character 
condition with age within similar regions. One account for this 
discrepancy is that large activation may “quench” neural variability 
between regions, which can lead to decreased functional connectivity 
(Cole et al., 2021; Ito et al., 2020). That is, the younger children show 
greater activation for Peer versus Character condition, which perhaps 
reduces the regional variability, leading to less functional connectivity. 
Since the difference in activation between Peer versus Character reduces 
with age, we are then able to observe the functional connectivity dif
ferences. Nevertheless, future studies are needed to further elucidate the 
potential reasons for the differences in activation versus functional 
connectivity findings. 

4.2. The linkage between functional connectivity and individual 
differences in behavior 

Functional connectivity during social interaction covaried with 
participants’ reaction time to Peer conditions, and this brain–behavior 
relation was significantly different between Peer and Character condi
tions, suggesting these connectivity patterns contribute to social- 
interactive performance. Overall, children who responded faster when 
interacting with a social partner showed greater functional connectivity 
within and between mentalizing and reward networks. The faster 
response to a peer may be attributed to heightened motivation when 
interacting with a social partner compared to guessing about a char
acter. Expecting a social reward (i.e., positive feedback from a peer) may 
lead to greater connectivity within the reward network, resulting in the 
relation between faster response and greater connectivity within the 
reward network during social interaction. Similarly, greater functional 
connectivity within the mentalizing network and between mentalizing 
and reward networks may relate to the motivation to “succeed” in a 
social interaction (e.g., making a correct guess about a social partner, 
receiving a matched response from a peer). As such, this linkage be
tween greater functional connectivity within and between mentalizing 
and reward networks and faster reaction time is consistent with theo
retical and empirical work suggesting that engaging with a social part
ner is motivating (Chevallier et al., 2012; Pfeiffer et al., 2014; Schilbach 
et al., 2010). However, the brain–behavior relation observed here may 
be driven by the negative correlation pattern between functional con
nectivity and RT in the Character condition. This finding is not expected; 
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because the Character condition would not elicit reward engagement, 
we would not expect a systematic relation between reward functional 
connectivity and RT in Character condition. This somewhat surprising 
finding needs further research to elucidate. 

Participants also reported greater enjoyment of and motivation for 
interacting with the peer than reasoning about the story character. 
However, despite our predictions, these self-reports did not relate to 
connectivity within or between networks during social interaction, nor 
was this relation different from the relation between participant’s re
ported enjoyment and motivation for the story character and connec
tivity during the Character condition. The lack of a relation might be due 
to little variability in the self-report measures of subjective reward in the 
Peer condition, which limits the power to detect their potential relations 
with brain connectivity. For example, 82% of children rated a 4 or 5 out 
of 5 for their enjoyment of chatting with the peer, and 80% of children 
rated a 4 or 5 out of 5 for their enjoyment when their answer matched 
the answer from the peer. However, the subjective report of enjoyment 
for answering questions about the character showed decent variability 
(36% rated 1 or 2; 48% rated 3; 16% rated 4 or 5). Thus, it is likely to 
reflect high enjoyment chatting with peer instead of minimal variability 
in enjoyment across conditions. Nevertheless, future studies could shed 
light on this point by designing measures of subjective reward that elicit 
better variability, especially in social interaction. 

4.3. Mirror neuron and salience networks demonstrate behavior-relevant 
functional connectivity during social interaction 

Our a priori hypotheses were that the mentalizing and reward net
works would show greater connectivity during this task in which par
ticipants made predictions about a social partner compared to a 
character. While salience and mirror neuron networks are also associ
ated with social interaction, the text-based contexts in the current study 
were not a priori expected to engage them. Here, though, we did find 
that, like the mentalizing and reward networks, the salience network 
demonstrated greater connectivity during social interaction with greater 
age. The salience network has been found to be activated when directing 
attention to self-relevant and salient events, such as physical and 
emotional pain (for a review, see Menon and Uddin, 2010). Although the 
involvement of the salience network during social interaction is mostly 
documented in studies of social rejection (for a review, see Wang et al., 
2017), it has also been shown that regions of this network are sensitive 
to social interaction, especially when reciprocal and contingent re
sponses from a human partner are present (Guionnet et al., 2012; Red
cay et al., 2010). Recent studies have shown an increase of involvement 
of the salience networks with age in non-interactive contexts (e.g., Biagi 
et al., 2016; Jones et al., 2014; Shaw et al., 2012). Our findings provide 
primary evidence that the salience network is functionally connected 
more in social-interactive versus non-interactive contexts as children get 
older, suggesting that connectivity during social interaction may be a 
more general feature of social brain networks as children enter 
adolescence. 

While the mirror neuron network did not show age-related func
tional connectivity changes during social interaction, it did demonstrate 
a relation to behavior, specifically reaction time. The mirror neuron 
network encompasses regions associated with goal-directed action in 
adults (Biagi et al., 2016; Morales et al., 2019) and children (Biagi et al., 
2016; Morales et al., 2019; Reynolds et al., 2019, 2015), which may be 
related to its role in responding via button press. Additionally, prior 
work has shown that the mirror neuron network is modulated by social 
context. For example, it is engaged when processing communicative 
intent and demonstrates greater functional connectivity with the men
talizing network in communicative versus non-communicative contexts 
(Ciaramidaro et al., 2014, 2007; Schippers et al., 2010, 2009; Sperduti 
et al., 2014). Thus, one account for the greater connectivity within the 
mirror neuron network may be related to the role of this network in 
recognizing communicative intent when making predictions about a 

social partner versus a story character. 

4.4. Limitations 

A few limitations are worth noting when interpreting these findings. 
First, this fMRI task was a highly-structured, chat-based interaction that 
was built on an illusion of a live, real-time social partner (Alkire et al., 
2018; Warnell et al., 2018). Though we have taken extensive pre
cautions to ensure participants believed the illusion—including the 
post-scan questionnaire and debriefing—this experience still differs 
from a real-world social interaction. In real life, social interactions 
contain many components, such as gestures, eye gaze, facial expressions, 
tones, and physical features, and all of these components can signifi
cantly affect cognitive and emotional processing. Future attempts to 
develop more ecologically valid social interaction tasks during fMRI 
data acquisition would provide greater insight into the neural un
derpinnings of real-world social interactions. 

Second, the relatively small number of trials may affect the reliability 
of the beta series functional connectivity analysis. In the current study, 
there were only 24 trials for each condition. Research has shown that 
more trials tend to have greater power for beta series functional con
nectivity (Cisler et al., 2014). Nevertheless, as shown in Cisler et al. 
(2014), beta series functional connectivity analysis with 24 trials would 
still outperform other functional connectivity analysis (i.e., psycho
physiological interaction analysis). 

Third, we only explored the brain–behavior relations with partici
pants’ in-scanner performance and self-reported subjective reward 
assessed by the post-scan questionnaire. However, the behavioral rele
vance of brain organization during social interaction can be further 
explored by examining correlations with measures of real-world social 
networks (Schmälzle et al., 2017), or subjective experience of social 
rewards in real life. 

5. Conclusions 

In sum, our data provide evidence for the development of brain 
mechanisms supporting social interaction in the context of a real-time 
interaction. We found that functional connectivity within mentalizing, 
reward, and salience networks during social interaction changes with 
age over middle childhood. The brain–behavior relations demonstrated 
that responding faster to the Peer than Character condition was related 
to greater connectivity within and between mentalizing and reward 
networks, as well as within the mirror neuron network. These results 
highlight the increasing importance of the mentalizing, reward, mirror 
neuron, and salience networks, as well as the interactions between 
mentalizing and reward networks in responding to social interaction, as 
children get older. The findings demonstrate how functional connec
tivity analysis may provide complementary information to univariate 
activation results (Alkire et al., 2018) and facilitate a more compre
hensive understanding of brain function during social interaction. 
Furthermore, these findings from typically developing children may 
serve as a baseline for investigating atypical brain organization under
lying social difficulties in developmental disorders, such as autism 
spectrum disorder. 
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