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Clostridium difficile (C. difficile) is the most prevalent causative pathogen of healthcare-associated diarrhea. Notably, over the past
10 years, the number of Clostridium difficile outbreaks has increased with the rate of morbidity and mortality. The occurrence and
spread of C. difficile strains that are resistant to multiple antimicrobial drugs complicate prevention as well as potential treatment
options. Most C. difficile isolates are still susceptible to metronidazole and vancomycin. Incidences of C. difficile resistance to other
antimicrobial drugs have also been reported. Most of the antibiotics correlated with C. difficile infection (CDI), such as ampicillin,
amoxicillin, cephalosporins, clindamycin, and fluoroquinolones, continue to be associated with the highest risk for CDI. Still, the
detailed mechanism of resistance to metronidazole or vancomycin is not clear. Alternation in the target sites of the antibiotics is the
main mechanism of erythromycin, fluoroquinolone, and rifamycin resistance in C. difficile. In this review, different antimicrobial

agents are discussed and C. difficile resistance patterns and their mechanism of survival are summarized.

1. Introduction

Clostridium difficile is a Gram-positive, anaerobic, spore-
forming bacterium that is the most important causative
pathogen of hospital-acquired diarrhea. Approximately 25%
to 33% of antibiotic-associated diarrhea and 90% of pseu-
domembranous enteritis are caused by CDI [1]. According to
the Centers for Diseases Control and Prevention (CDC), in
the United States, CDI is responsible for more than 400,000
cases and 29,000 deaths each year and approximately more
than $1 billion in additional medical budgetary costs [2,
3]. Thus, CDI is projected to become the most common
healthcare-associated infection and hospital-acquired intesti-
nal infection in the United States, Europe, and worldwide
[4]. The clinical symptoms of CDI range from mild to severe
diarrhea, which can lead to fulminant colitis, toxic mega-
colon, bowel perforation, sepsis, and ultimately death [5].
Although guidelines pertaining to the awareness, diagnosis,
and treatment of CDI are available, the rate of CDI continues
to increase in Europe and the United States [6].

The molecular study of the epidemiology of CDI has
proved that a significant increasing number of outbreaks
are caused by strains ribotype (RT) 027 and 078 [7]. In

recent years, strain RT 027 has become the most prominent
hypervirulent type that is responsible for severe infections
and increasing mortality worldwide [8-13]. RT 078, another
highly virulent strain, is found in European countries such
as the Netherlands; causes infections in humans, particularly
in the hospital and communities; and causes infections in
animals [14-18].

CDI begins with an unusual exposure of the normal
flora of the intestinal microbiota to antibiotics. This action
results in a disruption of the normal intestinal microflora
that allows for multiplication of C. difficile to cause disease
[19]. Antibiotic resistance plays a crucial role in spreading
CDI among hospitalized patients, particularly the elderly.
Moreover, antibiotic resistance affects healthy people who
have not been hospitalized or have not been submitted to
antibiotic treatment and even pregnant women [20, 21].

In recent years, an increase in CDI has been reported in
different countries. China, Sweden, and several other coun-
tries have reported a CDI incidence rate of ~17.1 cases/10000
admitted to a hospital [22]. CDI causes up to 30.7% of
hospital infections and diarrhea cases. Additionally, RT 027
isolates are more common in the United States, Canada,
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and Poland [22-25]. The most important risk factor for CDI
is broad-spectrum antimicrobial drugs that cause an imbal-
ance of the intestinal microflora [26]. Several antimicrobial
drugs such as erythromycin, penicillin, clindamycin, and
fluoroquinolones cause CDI to spread more widely in and out
of the hospital and increase the resistance of the epidemic
strains of C. difficile to those drugs [27, 28]. Strain 027 is
the most frequently observed drug-resistant RT strain and
shows a statistically high incidence in Europe and the United
States. Several countries have reported the resistance of strain
027 to moxifloxacin and, more recently, to metronidazole
and vancomycin [23, 24, 28-35]. Consequently, this article
discusses the general antibacterial drugs used to treat CDI,
the CDI strains most resistant to drugs, and the strains’
mechanism of resistance.

2. C. difficile Resistance to Antimicrobial
Agents in Different Countries and Regions

The wide use of antibiotic in different countries with different
treatments area causes a varying degree of drug resistance.
In C. difficile, although all isolates are usually susceptible to
metronidazole and vancomycin, resistance to other antimi-
crobials varies widely from one country to another (Table 1).
Several studies have found that C. difficile is resistant to
different antimicrobial agents in different countries (Table 1).
Interestingly, the clinical isolates of C. difficile are still sig-
nificantly sensitive to metronidazole and vancomycin, but
there are reports of decreased susceptibility to metronidazole
[24, 36-38]. Most of the antibiotics correlated with CDI,
such as ampicillin, amoxicillin, cephalosporins, clindamycin,
and fluoroquinolones, continue to be associated with the
highest risk for CDI [27, 28]. The recommended treatment
for primary and recurrent CDI involves the use of antibiotics
with activities against C. difficile, including metronidazole,
vancomycin, and fidaxomicin [27, 28]. Studies report that
more than 30 hospitals around the United State have found
the rate of resistance of C. difficile to clindamycin in around
36% (Table 1) [29]. However, the rate of resistance is higher
in European and Asian countries. The resistance rates of C.
difficile to clindamycin in Spain, Poland, and New Zealand
are approximately 74%, 65%, and 61%, respectively (Table 1)
[39-41], whereas the rates of resistance of C. difficile to clin-
damycin in China, Japan, Korea, and Iran are approximately
73.5%, 87.7%, 81%, and 89.3%, respectively (Table 1) [42-44].
C. difficile has developed a high resistance to another antimi-
crobial drug, moxifloxacin. In the United States and Canada,
the rates of resistance to moxifloxacin are approximately 36%
and 83%, respectively (Table 1) [29, 45]. A recent study in Ger-
many reported that the rate of resistance to moxifloxacin can
be ashigh as 68% (Table 1) [30]. Spain’s resistance rate to mox-
ifloxacin is 43%, whereas Poland reported a resistance rate of
nearly 100% (Table 1) [24, 40]. Recent studies have found that
in Brazil and Israel the resistance rates against moxifloxacin
are approximately 8% and 4.76%, respectively (Table 1)
(46, 47].

The epidemic strains of C. difficile are more resistant to
antibacterial drugs than are the nonepidemic strains. A study
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reported that, among 508 strains of C. difficile, PCR ribotype
found that RT 027 was the most common, accounting for
28.1% of the isolates (143/508) [29]. The rates of resistance
of C. difficile to clindamycin and moxifloxacin are ~50.3%
and ~92.3%, respectively [29]. Approximately 39.1% of the 027
strains have a lower susceptibility to vancomycin (the Mini-
mum Inhibitory Concentration (MICy,) 4 pug/ml) [29]. Note
that MIC results are based on Clinical and Laboratory Stan-
dard Institute (CLSI) document M11-A8 [29, 48, 49]. Another
study confirms that the resistance rates of epidemic strain 027
to clindamycin, moxifloxacin, and erythromycin are higher
than those of non-027 strains [33, 50]. In Asia, the RT 027
strain is rare, but the Korean epidemic strains RT 018 and 017
are resistant to clindamycin and moxifloxacin, significantly
more so than nonepidemic strains [51, 52].

3. Resistance Mechanism of C. difficile to
Most Commonly Used Drugs Recommended
for CDI Treatment

3.1. Metronidazole. Metronidazole is a nitroaromatic drug
that requires reduction of the 5-nitro group of its imidazole
ring to become cytotoxic to bacterial cells [56]. Metronida-
zole is the first-choice antimicrobial drug for treating mild to
moderate CDI [57]. Although the resistance rate of C. difficile
strains to metronidazole is very low (Table 1), several studies
have reported treatment failure after an antibiotic course of
metronidazole [57, 58]. Moreover, the majority of clinical
C. difficile isolates are still highly sensitive to metronidazole
in vitro [59]. Recent studies have found that in Israel the
rate of resistance of C. difficile against metronidazole is
approximately 20.25% (Table 1) [46].

Furthermore, 12% of clinical isolates showed a heteroge-
neous resistance to metronidazole in 2008 [60] and were cor-
related with clinical failure. Approximately 25% of C. difficile
epidemic 001 strains showed decreased sensitivity to metron-
idazole after a minimum inhibitory concentration (MIC 4 to
8 ug/ml) was given [61]. In China, 18 isolates from Shanghai
diarrhea patients with C. difficile were heterogeneously resis-
tant to metronidazole [36]. In fact, most countries’ criteria
for in vitro drug susceptibility MIC results are based on
the American Clinical and Laboratory Standards Association
(CLSI) standards [48]. C. difficile can be classified as resis-
tance to metronidazole if the MIC > 32 ug/ml, but the break-
point for reduced susceptibly is based on serum treatment
concentration rather than intestine treatment concentration
[48]. In contrast, the European Society for Clinical Microbi-
ology and Infection (ESCMID) guideline for resistance of C.
difficile to metronidazole is mainly based on activity in the
intestine. Since 2012, the reduction point has been >2 pg/ml
for drug resistance [57, 62, 63]. Therefore, the European
Antimicrobial Susceptibility Test Committee (EUCAST)
standards for detecting metronidazole resistance in C. dif-
ficile are significantly higher than those reported in the
current literature.

EUCAST and CLSI guidelines are the most popular
breakpoint guidelines used in antimicrobial susceptibility
testing worldwide. However, there are some significant
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differences between these two organizations that should be
highlighted. Both methods have standardized (e.g., metron-
idazole) susceptibility test of anaerobic bacteria. According
to their guidelines, anaerobic bacteria were classified as sus-
ceptible if the metronidazole MIC < 8 ug/ml; intermediate,
if the MIC = 16 ug/ml; or resistant if the MIC > 32 ug/ml,
using agar dilution method (CLSI book guidelines, 2012).
At least three different methods were used for C. difficile
test: CLSI agar dilution method and the agar incorporation
methods used by [64] and Etest. MIC values are higher
with the agar incorporation methods compared with agar
dilution methods, and the lowest MICs are achieved using
Etest [65, 66]. Moreover, the susceptibility breakpoint rec-
ommended by CLSI and EDCAT differs. For example, the
EUCAST breakpoints are susceptibility to metronidazole,
MIC < 2 pug/ml, and resistance to metronidazole ~MIC >
2 ug/ml. These issues should be taken into consideration
when comparing data from studies or country region utilized
different susceptibility testing methods. Perhaps the major
reason could be that all the breakpoints are based on serum
drug concentrations but that effective antimicrobial therapy
of CDI requires bactericidal intracolonic concentrations.
Thus, clinical breakpoints are needed to be revised to help
in predicting outcome and help to detect resistance mecha-
nisms.

The bactericidal mechanism of metronidazole is not yet
fully understood. Perhaps metronidazole metabolites are
nonspecifically bound to bacterial DNA, inhibit bacterial
DNA synthesis, and break the DNA strand to cause bacterial
death. Furthermore, the metronidazole susceptibility and
resistance mechanisms of C. difficile and other anaerobic bac-
teria are not yet clear. Researchers speculate that metronida-
zole may be reduced inside the cell. Increased metronidazole
activation blocks bacteria’s capacity for DNA repair [67].

3.2. Vancomycin. Vancomycin is the first antibiotic devel-
oped to treat moderate to severe CDI [57, 58]. The van-
comycin structure contains a glycosylated hexapeptide chain
and aromatic rings cross-linked by aryl ether bonds and
exhibits poor absorption in the gastrointestinal tract [68].
To date, only in Poland have researchers reported three
strains of C. difficile that are resistant to vancomycin, using
the disc diffusion method [69]. Two additional methods
have been used to detect vancomycin susceptibility: the agar
dilution method and the Etest method. According to the
European Committee on Antimicrobial Susceptibility Testing
(EUCAST), reduced susceptibly to vancomycin is defined
as an MIC of >2 ug/ml. Recent studies have found that in
Brazil and Israel approximately 58% and 31.5% of strains,
respectively, are resistant to vancomycin (Table 1) [46, 47].
Vancomycin inhibits the biosynthesis of peptidoglycan
by binding to D-alanyl-D-alanine at the end of the bacterial
peptidoglycan precursor, which inhibits the synthesis of cell
wall peptidoglycans [70]. Enterococcus spp. and Staphylococ-
cus spp. are the most common bacteria with resistance to
vancomycin. The reason is the synthesis of D-alanyl-D-lactic
acid, which replaces the normal cell wall peptidoglycan end of
D-alanyl-D-alanine such that vancomycin is not able to bind
the target (VanA, etc.). Another possibility is that synthetic
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D-alanyl-D-serine replaces the normal cell wall structure
(VanE, etc.). Nevertheless, the mechanism of resistance in C.
difficile is still unclear.

3.3. Fidaxomicin. In 2011, fidaxomicin was listed in the
United States and Europe as a new treatment against CDI [52,
54]. Fidaxomicin acts through the inhibition of RNA poly-
merase during bacterial transcription. The sequence resulting
from PCR amplification displayed a null mutation in the
rpoC of the resistant strain [71]. Studies determined that the
sequenced laboratory-induced-fidaxomicin-sensitive strains
(MIC of 1 to 4pug/ml) contained Quot, rpoB (K1073H,
Q1074K, Q1074H, V1143G, and/or V1143D) or rpoC (I10R,
R89G, Q781R, and/or D1127E); rpoB and rpoC are the coding
genes of RNA polymerase f3 subunit and 8’ subunit, respec-
tively [72]. Interestingly, the abovementioned results confirm
that target site modifications in the RNA polymerase subunit
of C. difficile against fidaxomicin are the suggested mode of
resistance. In addition, the null mutation in the CD22120 gene
that is homologous to the transcriptional regulator MarR
family was found in a susceptible experimental strain [72],
but the significance of the mutation remains to be further
studied.

3.4. Erythromycin and Clindamycin. Erythromycin and clin-
damycin are members of the macrolide-lincosamide-strepto-
gramin B (MLSB) family of protein synthesis inhibitors.
Macrolide-lincomycin-type drugs are currently reported in
countries exhibiting high resistance rates [73]. These drugs
act on the bacterial ribosome 50S subunit and target the
synthesis of bacterial proteins by inhibiting the extension
of the peptide chain. A recent study found that clinical
pathogens are resistant to erythromycin and clindamycin,
mainly through ribosomal target changes or active efflux,
while inactivated enzyme production can also cause bacteria
to be resistant. The associated ribosomal methylase, encoded
by the ermB gene, can modify ribosomal 23S rRNA, leading
to high levels of resistance to these drugs [74]. The ermB
gene is divided into different classes according to its sequence
similarity, and its subtype now includes more than 20 species
[75].

C. difficile resistance to erythromycin is encoded by the
ermB gene located on the mobilizable conjugative transposon
termed Tn5398 [75, 76], and researchers have reported that
the ermB gene is located at other sites [77]. The ermB gene
determines the polymorphism of a given region; for example,
ermB in Europe determines the genetic structure of E4 and
E15, which are the most common. Furthermore, erm gene-
negative C. difficile can also show high levels of erythromycin
resistance; however, the mechanism is unknown, particularly
in which part of the strain 23S rDNA nucleotide substitution
(C—T) at position 656 occurs [78].

3.5. Tetracycline. Recent studies have demonstrated that C.
difficile resistance to tetracycline varies among different
countries from 2.4% to 62.7% (Table1) [32, 33, 38, 79-81].
Tetracycline is a rapid bacteriostatic agent that binds specif-
ically to the axon initial segment of the bacterial ribosome
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30S subunit, preventing aminoacyl-tRNA from binding to
ribosomes, thereby inhibiting peptide chain elongation and
protein synthesis. The mechanism of resistance to tetracycline
by clinical pathogens is mainly associated with tetracycline
resistance protein (tetM) and the active efflux system (tet A,
B, C, D, etc.).

C. difficile is resistant to tetracycline, mostly by producing
ribosomal protective protein (TetM), usually found on a
conjugative Tn916-like element [81-83]. It was found that
tetramine-resistant strains of tetracycline-resistant tetracy-
cline were mostly transported by the Tn5397 transposon,
whereas tetramine 017 and 078 were mostly located on Tn916-
like transposons [84, 85].

3.6. Fluoroquinolones. Fluoroquinolones belong to a family
of broad-spectrum antibiotics and are strongly linked to CDI
[86, 87]. The widespread prevalence of strain 027 may be
associated with resistance to fluoroquinolones. Many coun-
tries, such as New Zealand, Sweden, China Taiwan, France,
and Germany, have C. difficile fluoroquinolone resistance
rates between 7% and 40%; some resistance rates even
exceed 80%, such as those of strains isolated from a multi-
institutional outbreak in Quebec, Canada (Table 1) [88-91].
Fluoroquinolones act on either bacterial DNA gyrase and/or
topoisomerase IV, leading to a cleavage of enzyme-DNA
complexes and to inhibition of bacterial DNA synthesis [92].
The resistance mechanism of bacteria to fluoroquinolones
is generally caused by two main mechanisms: (1) alteration of
the drug target by a mutation in the encoding genes, leading
to reduced affinity for the drug; and (2) either an increase
in the active efflux of the drug or a decrease in permeability
[92]. Previous studies have shown that C. difficile’s resistance
to quinolone is due to changes in DNA gyrase subunit
GyrA and/or GyrB [92]. These mutations can be found in
the quinolone-resistance-determining region (QRDR) [92].
T82I is the most common site of mutation in GyrA. D71V,
T82V, D8IN, A83V, Al118V, and All8T are the most common
mutation sites in GyrB. In addition to these, D426N, D426V,
R447K, R447L, S416 A, E466K, A503S, S366A, and D501E are
also the susceptible sites for mutations in GyrB [69, 93, 94].

3.7 Rifamycin Class. Two clinical members of rifamycin
drugs are used for the treatment of CDI, rifamycin and
rifaximin [95]. In 2009, a study reported that, in the United
States and Canada, epidemic strains of C. difficile were
resistant to RIF (approximately 7.9%) (Table 1) [23]. A study
conducted in Spain reported that RIF resistance was ~24%
(Table 1) [40]. Researchers from Hungary reported that the
resistance rate of C. difficile was ~11.5%-14.9% from 2008 to
2010 (Table 1) [54, 55]. In 2010, a study in Poland reported a
high rate of resistance of C. difficile to RIF of approximately
80% (Table 1) [53]. In China and South Korea, the resistance
rate of C. difficile to RIF is quite low compared with that in
Europe countries (~19.8%), and strains resistant to RIF (MIC
> 32 ug/ml) have also been shown to be resistant to REX
(36, 51].

The major resistance mechanism of RIF is specifically
associated with a mutation in DNA-dependent RNA poly-
merase beta subunit (RpoB), and RIF binds to form a stable

complex that inhibits polymerase activity and inhibits DNA
transcription. C. difficile and other Gram-positive bacteria
resistant to RIF are also associated with a point mutation in
RpoB. Recent studies have identified eight different RpoBs
in C. difficile. All eight of the identified mutations involve
substitutions between amino acids 488 and 548. R505K is
the most common single substitution, usually leading to
high levels of resistance (MIC > 32 yg/ml). By comparison,
H502N shows a slightly lower MIC (MIC < 32 ug/ml). Double
substitution has also been described, such as R505K being
combined with H502N or R505K being combined with
1548M [96, 97].

4. Conclusion

The rate of C. difficile resistance to antimicrobials is rapidly
growing worldwide. CDI has become a major concern for
public health officials. Infections caused by C. difficile are
unique because of their increased incidence as well as the
increased use of certain antibiotics. Although some antibi-
otics are active and can be used to treat infections caused by C.
difficile, the limitations of using these antibiotics have become
a great concern due to increasing resistance in this pathogen.
Further investigation is needed to understand the drug resis-
tance mechanism of C. difficile, particularly to metronidazole,
because it will provide new targets and new ideas for the
development of antimicrobial agents and preventing CDI.
Additionally, more attention is required at the clinical level
regarding the strengthening of C. difficile’s resistance to avoid
the blind use of broad-spectrum antimicrobial drugs, which
should decrease the number of occurrences and the spread of
drug-resistant C. difficile infections.

Abbreviations

C. difficile: Clostridium difficile
CDI: C. difficile infection
RT: Ribotype.
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