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Review

Introduction

c-Jun N-terminal Kinases (JNKs) are known as stress acti-
vated protein kinases (SAPK). They belong to the mitogen acti-
vated protein kinase (MAPK) superfamily, which also includes 
the ERKs and the p38 MAPKs.1,2 JNKs were originally iden-
tified by their ability to phosphorylate c-Jun in response to 
stress induced by a variety of chemical or physical stimuli such 
as TNF-α,3 heat shock,4 osmotic stress,5 or UV radiation.6 It 
has been well-established that JNKs are activated by MAP2 
kinases such as mitogen-activated protein kinase kinase (MKK) 
4/77, and regulate apoptosis,8,9 proliferation10 and respond to 
stresses.11

Recently some studies have implied that JNK signaling may 
also be important during the formation of cell-cell junctions 
including adherens junctions (AJ), tight junctions (TJ), and gap 
junctions (GJ).12–14 In addition, JNKs are involved in processes 
that require dynamic formation and dissolution of junctions, 
such as movement of epithelial sheets15 during tissue develop-
ment, cell migration during wound healing,16 angiogenesis,17 and 
tumor metastasis.18

This review will focus on studies that addressed the role of 
JNKs during the formation of cell-cell junctions and the pro-
cesses requiring dynamic formation and dissolution of cell-cell 
junctions. The possible mechanisms and potential implications 

of JNK during epithelial development, wound healing, and can-
cer metastasis will be discussed as well.

Overview of JNK Cascade and Function

Three genes are known to encode for JNK proteins. The jnk1 
and jnk2 genes are expressed ubiquitously in all tissues, while 
jnk3 is only expressed in brain, heart, and testis.1 JNK proteins 
are encoded by alternative splicing of these three genes, jnk1, jnk2 
and jnk3 to produce at least 10 isoforms.19 There are two key 
alternative splicing sites: one is between subdomain IX and X of 
the C-terminal lobe of the protein; the second one occurs at the 
C-terminus of the protein. This causes 42 or 43 amino acids dif-
ference among JNK proteins.20

JNKs are typical serine/threonine kinases, comprising 11 
protein kinase subdomains. The domains VII and VIII contain-
ing threonine and tyrosine residues form the activation loop. 
Complete activation of JNKs requires dual phosphorylation of 
these threonine and tyrosine residues within the loop. The pro-
tein kinase kinases, MKK4 and MKK7, are known to be the 
direct upstream activators of JNKs. MKK4 targets mainly tyro-
sine 185, whereas MKK7 phosphorylates preferably threonine 
183. These protein kinase kinases are, in turn, phosphorylated 
and activated by upstream MAPKK kinases (MAPKKKs).20,21

MKK4 and MKK7 together with their respective scaffolding 
proteins activate different signaling pathways that mediate JNK 
activation in response to various stimuli.22 Accordingly, JNK pro-
teins play distinctive and sometimes opposing roles in cellular 
processes associated with proliferation, apoptosis, differentiation, 
or carcinogenesis. For example, in fibroblasts JNK1 promotes 
cell proliferation through activation of its downstream effector, 
c-Jun, whereas JNK2 inhibits cell proliferation by promoting 
c-Jun degradation.10 JNKs are known to phosphorylate BH3-
only subgroup of Bcl2-related proteins (Bim and Bmf) to induce 
Bax-dependent apoptosis,23 but they can also phosphorylate pro-
apoptotic Bcl-2 family BAD protein to inhibit apoptosis.9 JNKs 
have been reported to be necessary for embryonic stem cells (ES) 
differentiation. Jnk1−/− Jnk2−/− ES cells exhibited major defects 
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c-Jun N-terminal Kinase (JNK) is a family of protein kinases, 
which are activated by stress stimuli such as inflammation, heat 
stress and osmotic stress, and regulate diverse cellular pro-
cesses including proliferation, survival and apoptosis. in this 
review, we focus on a recently discovered function of JNK as a 
regulator of intercellular adhesion. we summarize the existing 
knowledge regarding the role of JNK during the formation of 
cell-cell junctions. The potential mechanisms and implications 
for processes requiring dynamic formation and dissolution of 
cell-cell junctions including wound healing, migration, cancer 
metastasis and stem cell differentiation are also discussed.
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in lineage-specific differentiation.24 However, inhibition of JNK 
promotes differentiation of epidermal keratinocytes.25 Distinctive 
stimuli affect JNK differently. JNKs promote leukemia oncogene 
Bcr-Abl-induced lymphoma in B cells26 but suppress Ras-induced 
tumorigenesis in fibroblasts.27 During different stage of tumori-
genesis, JNK plays a dual role in the development of hepatocel-
lular carcinoma.28 Additionally, the duration of JNK activity 
matters. Ventura et al. reported that the early transient phase (< 
1hr) of JNK activation protects cells from apoptosis, whereas the 
later and more sustained phase (1–6hr) of JNK activation medi-
ates pro-apoptotic signaling.29 These studies strongly indicate 
that the biological effects of JNK signaling depend on cellular 
context e.g., cell type, type of stimulus, and duration of JNK 
signaling.

Cell-Cell Junction Formation

Even though JNK regulates contradictory cellular responses 
such as proliferation, apoptosis, differentiation, or carcinogenesis, 
only recently it has emerged as a cell-cell junction regulator.

Adherens junctions
Cell-cell adhesion is crucial to many aspects of multi-cellular 

existence, including morphogenesis, tissue integrity and differ-
entiation.30 In epithelial cells AJ are formed by Ca2+-dependent 
homotypic interactions between E-cadherins on the surface of 
opposing cells. The cytoplasmic domain of E-cadherin forms 
complexes with plaque proteins known as catenins, namely 
α- and β-catenin. The C-terminus of β-catenin interacts with 
E-cadherin whereas its N-terminal portion interacts with 
α-catenin. Monomeric α-catenin binds to the E-cadherin cyto-
plasmic domain via β-catenin, whereas dimeric α-catenin can 
bind and cross-link filamentous (F-) actin.31 Phosphorylation of 

the cytoplasmic domain of E-cadherin results in enhanced cell 
adhesion,32 whereas tyrosine phosphorylation of β-catenin has 
been implicated in AJ disassembly.33 On the other hand, serine 
phosphorylated β-catenin can be incorporated in newly formed 
AJ but undergoes dephosphorylation as junctions mature.34

Recently, our group12,35 and one other study36 demonstrated 
that JNK plays an important role in AJ formation in epithelial 
cells. Our group reported that JNK phosphorylates β-catenin 
leading to AJ disassembly, whereas inhibiting JNK induces AJ 
formation and re-organization of actin into bundles right under-
neath the AJ.12,35 Furthermore, blocking JNK resulted in AJ for-
mation only in the presence of α-catenin, which dissociated from 
the E-cadherin/β-catenin complex and associated with the actin 
cytoskeleton35 (Fig. 1). Interestingly, blocking JNK also resulted 
in AJ formation in two carcinoma cell lines, A431 and α-catenin 
ME180, revealing a previously unknown link between JNK and 
AJ.35

Similar observations were reported for intestinal epithelia 
where increased JNK phosphorylation correlated with disas-
sembly of AJ and TJ. The JNK inhibitor SP600125 accelerated 
formation of AJ and TJ, while JNK activator anisomycin sup-
pressed them. JNK1, not JNK2, was found to colocalize with 
junctions and knocking down JNK1 attenuated junction disas-
sembly. Their findings also suggested JNK acts as a downstream 
target of actin-reorganizing Rho-dependent kinase (ROCK) and 
an upstream regulator of F-actin-membrane linker proteins of 
the ERM (ezrin-radixin-moesin) family.36

In addition, our group implicated JNK as a major reg-
ulator of substrate rigidity-mediated balance between 
cell-cell and cell-substrate adhesion (Fig. 2).37 It is well 
known that stiffness of substrates mediates the cross talk 
between cell-substrate and cell-cell adhesion.38 Under low 

Figure 1. Schematic summarizing our recent findings. JNK binds to the adherens junction complex and phosphorylates β-catenin, preventing adherens 
junction formation. Upon inhibition of JNK kinase activity, β-catenin is dephosphorylated and adherens junctions are formed. Also α-catenin leaves the 
adherens junction complex and binds to actin, which is reorganized into parallel bundles underneath the adherens junction.12,35 This figure was taken 
from Lee et al35 with permission from the FASeB Journal. 
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Ca2+ concentration, epithelial cells prefer to stay as individual 
cells and adhere firmly on stiff substrate through integrin-medi-
ated focal adhesion. On the other hand, on soft substrates, inter-
cellular adhesion is favored and epithelial cells form colonies. 
The integrin-regulated cell-substrate adhesion is reduced and 
E-cadherin-mediated AJ formation is enhanced. Interestingly, we 
discovered that JNK, also a downstream target of integrin signal-
ing, was phosphorylated on stiff and dephosphorylated on soft 
substrates. In addition, expression of constitutively active JNK 
induced AJ dissolution even on soft substrates, while JNK knock-
down induced AJ formation even on hard substrates. In human 
epidermis, formation of AJ was severely compromised when JNK 
was activated either genetically or by use of stiff scaffolds. On the 
other hand, knocking down JNK induced strong AJ even in the 
basal layer of bioengineered epidermal tissues. Interestingly, the 
changes in AJ formation affected the architecture and differentia-
tion state of epidermal tissue as well. Notably, similar results were 
observed in the epidermis of jnk1−/− or jnk2−/− mice and shRNA 
JNK1 and JNK2 bioengineered epidermis, supporting our 
hypothesis that JNK mediates the effects of substrate stiffness on 
AJ formation in 2D and 3D context, affecting the structure and 
differentiation status of epithelial tissues.

Tight junctions
The TJ is an intracellular junctional structure. TJ from neigh-

boring cells not only mediate cell-cell adhesion but also serve 
as a fence to restrict the intramembrane diffusion of molecules 

from apical to basolateral membranes of polarized cells. More 
than 40 different proteins have been discovered in TJ com-
plexes.39,40 The most studied ones are claudins, occludin and 
Zonula occludens (ZO). The claudin family of transmembrane 
proteins has emerged as the most critical protein in charging 
selectivity.41

In epithelial cells, highly phosphorylated occludin proteins are 
selectively concentrated at TJ, whereas non-phosphorylated occlu-
din mostly localizes in the cytoplasm.42 Claudin phosphorylation 
regulates paracellular permeability - i.e., the flow of molecules 
in the intercellular space between the cells of epithelial tissues - 
depending on upstream kinase activity. For example, phosphory-
lation of claudin-1 and -4 by protein kinase C is required for TJ 
assembly in intestinal epithelial,43 while phosphorylation by pro-
tein kinase A reduced incorporation of claudin-3 into TJ.44 Both 
occludin45 and claudins46 are capable of binding to ZO-1, -2 and 
-3. As polarization of the epithelia proceeds, claudin and occlu-
din gradually accumulate at ZO-1 positive spot-like junctions to 
form belt-like TJ.47 Both ZO-1 and -2 associate with AJ protein 
α-catenin,46,48 and ZO-1 also interacts with the GJ proteins, con-
nexin 4349/45.50 Additionally, both ZO-2 and -3 bind to actin.51

In Caco-2 cells, activation of JNK and c-Src lead to tyrosine 
phosphorylation of ZO-1 and occludin and disruption of TJ.52 
Further studies with Caco-2 cells demonstrated that reduction of 
p-JNK levels increased ZO-1 and occludin expression, changed 
their cellular distribution, and consequently enhanced the 

Figure 2. Schematic illustration of JNK regulating rigidity-dependent balance between focal adhesion (integrins) and cell-cell junction (cadherins).
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transepithelial electrical resistance.53 More detailed mechanisms 
have been illustrated in other cell types by Carrozzino et al. In 
mammary and kidney epithelial cells, inhibition of JNK activity 
by the chemical inhibitor SP600125 increased claudin-4 and -9 
but downregulated claudin-8, leading to restriction of paracel-
lular transport of Cl- across the epithelial monolayer. Similarly, 
knocking down JNK1 or JNK2 by shRNA increased claudin-9 
and decreased claudin-8 mRNA levels. Collectively, these results 
suggest that blocking JNK pathway decreased paracellular per-
meability, possibly through upregulation of claudin-9.14

Ex vivo studies using intestinal epithelial explants and in vivo 
studies using piglets supported the in vitro data. Specifically, 
15-ADON (15-acetylated trichothecene mycotoxin deoxynivale-
nol) – a well known food contaminant that has been associated 
with outbreaks of gastroenteritis - activated JNK and decreased 
expression of claudin-3 and -4, leading to leakage of the intesti-
nal epithelium barrier.54 Hu et al. reported that inflammatory 

factors TNF-α, IL-6 and IFN-γ increased JNK phosphorylation 
and decreased claudin-1 and ZO-1 in the intestines of a wean-
ing pig model.55 However, other studies did not observe a similar 
correlation between JNK activation and loss of TJ. For example, 
side stream smoking induced JNK activation but also increased 
claudin-3 and ZO-2 expression in a mouse model.56 Also, tran-
sient activation of JNK by methamphetamine did not induce loss 
of TJ proteins in brain microvessels.57 Further studies employing 
animal models are needed to establish the relationship between 
JNK and TJ formation/dissolution.

Gap junctions
In contrast to AJ and TJ, GJ do not seal membranes together, 

nor do they restrict the passage of molecules between mem-
branes. Rather, GJs are composed of arrays of intercellular chan-
nels that form tunnels connecting the interior of adjacent cells, 
and permit small molecules to transfer from one cell to another. 
Importantly, GJ allow ions and metabolites passing though cells 

Figure 3. Analysis of tissue microarray data to uncover the correlation between p-JNK and e-cadherin levels in tumor cells. Tissues sections were graded 
on a 4-point scale based on the intensity of staining (from low to high 0, +1, +2, +3). The number of cells in each grade was counted using imageJ.
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facilitating signals initiated in one cell to propagate to neighbor-
ing cells. The GJ locate in the area of two membranes that are 
connected by hexagonal tubes known as connexons. The major 
protein in purified preparations of GJ is connexin. Connexins are 
modified by phosphorylation, primarily on serine amino acids. 
Phosphorylation has been implicated in the regulation of a broad 
variety of processes, such as the trafficking, assembly/disassem-
bly, degradation, as well as the gating of GJ channels.58 Most of 
the studies have focused on connexin 43, which contains 21 ser-
ine and two tyrosine residues. It has been identified that con-
nexin 43 is targeted by numerous protein kinases, such as protein 
kinase A, protein kinase C (PKC), p34(cdc2)/cyclin B kinase, 
casein kinase 1, MAPK, and pp60 (src) kinase.59 Phosphorylation 
of connexin 43 by PKC caused reduction of the channel perme-
ability58 whereas phosphorylation by MAPK resulted in closure 
of GJ channels between cells.60

4-phenyl-3-butenoic acid (PBA), an irreversible inhibitor of 
peptidylglycine-α-monooxygenase (PAM), inhibited JNK activ-
ity, activated p38, increased connexin 43 expression and GJ 
communication in human lung carcinoma cells H2009 and ras-
transformed rat liver epithelial cells.61 In addition to epithelial 
cells, similar role of JNK in GJ formation was observed in car-
diomyocytes. JNK activation in rat heart myocytes diminished 
the expression as well as the stability of connexin 43 protein, and 
prevented its accumulation in GJ.62 In HL-1 cell cultures, JNK 
activation by anisomycin treatment led to reduction of connexin 
43, which impaired cell-cell communication between atrial myo-
cytes and ultimately prompted the development of atrial arrhyth-
mias. These effects were prevented by the specific JNK inhibitor, 
SP600125.13 An in vivo study in rabbits showed that treatment 
with anisomycin reduced connexin 43 by 34% and increased 
pacing-induced atrial arrhythmias.13 Collectively, these studies 
suggest that there is an intracellular link between stress-induced 
JNK signaling pathway and GJ function, ultimately affecting 
intercellular communication and cellular behavior.62

JNK and Focal Adhesions

Focal adhesions (FAs), also known as cell-matrix adhesions, 
are large and dynamic protein complexes coupling the intracellu-
lar cytoskeleton to the surrounding extracellular matrix (ECM). 
The major proteins in FAs are integrins, which are heterodimers 
- each containing one α and one β subunit - linking ECM to 
intracellular actin cytoskeleton. In mammals, the combination of 
19 α and 8 β subunits can form at least 25 distinct integrin recep-
tors. The physical engagement of integrin with ECM ligands 
supports cell adhesion and results in generation of traction forces 
that modulate cell proliferation, differentiation and migration.63

Engagement of integrins with their ECM ligands is followed by 
integrin clustering leading to a sequence of intracellular responses 
including activation of FA proteins and associated kinases such as 
focal adhesion kinase (FAK), paxillin, Src-family, Abl, and Syk, 
Rho-family small GTPases as well as MAPK pathway kinases 
including ERK and JNK.64,65 ECM molecules, such as fibronec-
tin, laminin, vitronectin and collagen, have all been implicated in 
JNK activation.66–69 Recently, a new concept of integrin cycling 

was described in endothelial cells, where the dynamic and con-
stant formation of new FAs required newly engaged integrins in 
order to fully activate the JNK pathway.70 In addition, it has been 
observed that JNK signaling could be activated by mechanical 
strain71,72 and fluid shear stress through phosphorylation of FAK 
at Tyr-397.73

Conversely, JNK was shown to regulate some of the FA 
proteins. For example, paxillin is a multi-domain adaptor that 
provides multiple docking sites at the plasma membrane for FA 
molecules such as FAK, Src and Abl as well as actin-associated 
proteins such as vinculin and actopaxin.64 Phosphorylation of 
paxillin at Ser-178 by JNK was shown to be essential for the 
formation of FAs in epithelial cells,74,75 enabling the turnover of 
paxillin at the FA sites.76 On the other hand, JNK pathway-asso-
ciated phosphatase (JKAP or DUSP22) dephosphorylated FAK 
and suppressed cell motility.77 However, the precise role of JNK 
during formation of FAs remains to be elucidated.

JNK and Cell Migration

Cell migration is a highly integrated and multi-step process 
that is critical for many cellular processes, including embryogen-
esis,78 wound healing, angiogenesis and cancer metastasis.79 The 
process of cell migration is comprised of four steps: polarization, 
protrusion, adhesion, and retraction.78 The junctional complex 
molecules, such as cadherins, catenins, integrins and actin, par-
ticipate in modulating the direction and speed of migration and 
regulating intracellular signaling cascades by sensing the physical 
and chemical cues of the local microenvironment.

Dynamic formation and dissolution of cell-cell junction is 
critical for migration of epithelial sheets to maintain tissue mor-
phogenesis.80 The role of JNK during cell migration was first 
reported in Drosophila.81–83 Embryos lacking DJNK were defec-
tive in dorsal closure, a process in which the lateral epithelial cells 
migrate and join at the dorsal midline during embryogenesis.82 
Similarly, JNK was required for epithelial cell migration in eyelid 
closure during mouse development.15,84–86

In addition, cell motility and migration play an important 
role during tissue repair, e.g., epithelial sheet movement to close 
wounds or endothelial cell migration to form new blood vessels. 
In Drosophila wing and abdomen wound models, JNK signal-
ing was required for epithelial cells at the wound edge to move 
and close the wound through formation and contraction of an 
actin cable.16,87,88 In agreement, c-Jun, the downstream effector of 
JNK, was predominantly phosphorylated in cells bordering the 
wound, which were the cells that migrate into the wound gap.89 
JNK was also required for rapid movement of fish keratinocytes 
and rat bladder tumor epithelial cells (NBT-II).74 Similarly, JNK 
activity was persistently enhanced in migrating epidermis at the 
wound site of a mouse model.90 In another mouse model, RhoA 
positively regulated wound healing by upregulating the levels of 
p-JNK and p-c-Jun.91 Finally, JNK was transiently phosphory-
lated in a mouse corneal wound model, whereas JNK inhibition 
suppressed epithelial spreading and wound healing in an organ-
culture of mouse eyes, rabbit corneal blocks and human corneal 
epithelial cells.92
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During angiogenesis, JNK was activated during migration 
of endothelial cells, while suppressing JNK activity using domi-
nant negative JNK1 blocked vascular endothelial growth factor-
induced endothelial cell migration.17 Inhibition of JNK activity 
and siRNA knockdown of c-Jun reduced endothelial cell prolif-
eration and migration,93 even in the presence of JNK agonists 
such as TNF-α and anisomycin.94,95 Collectively, all these studies 
suggest that the JNK pathway is required for cell migration dur-
ing tissue development and repair. However, the detailed mecha-
nism through which JNK interacts with junctional complexes 
and regulates the dynamic formation and dissolution of intercel-
lular junctions is still under investigation.

JNK and Cancer Metastasis

The JNK signaling pathway has been implicated in inva-
sive behavior during tumor metastasis. In a Drosophila model 
of invasion, JNK was involved in Src-regulated actin dynamics 
during invasive migration.96 JNK2 was found to be activated in 
more than 70% of human squamous cell carcinoma (SCC) sam-
ples and pharmacologic or genetic inhibition of JNK2 impaired 
tumorigenesis of human SCC cells.97 JNK was also implicated in 
several other cancers including melanoma, head and neck, breast, 
gastric and ovarian cancers,98–103 suggesting that JNK may be an 
attractive target for cancer therapy. Indeed, suppressing expres-
sion of the oncoprotein SPAG9 diminished JNK activation in 
human non-small cell lung cancer (NSCLC) cells.104 In addition, 
JNK inhibition by the chemical inhibitor SP600125 inhibited 
growth of head and neck squamous cell carcinoma,105 whereas 
another JNK inhibitor, WBZ_4 was effective in inhibiting ovar-
ian cancer in cell lines in vitro and in vivo.106

E-cadherin is well known for its potent malignancy sup-
pressing, anti-metastatic activity. Sequestration of β-catenin by 
E-cadherin prevents the transcriptional activity of β-catenin 
through TCF/LEF, which among other effects, leads to andro-
gen independent prostate cancer growth.107,108 In many epithelial 
tumors such as gastric, breast, pancreatic and ovarian cancers, 
E-cadherin expression is partially or completely lost as they move 
toward malignancy.109–115 The mechanisms for this loss include 
loss of heterozygosity, inactivating mutations, epigenetic silenc-
ing of the E-cadherin locus or transcriptional silencing.116 In addi-
tion to E-cadherin and β-catenin, loss-of-function mutations in 
α-catenin have been found in lung, ovary, and prostate tumor 
samples.117 In agreement, α-catenin expression was significantly 
reduced or absent in 33 of 40 human squamous cell carcinomas of 
the skin.118 Although homozygous deletion of α-catenin blocked 
development of mouse embryos at the blastocyst stage,119,120 con-
ditional knockout of α-catenin in the mouse skin revealed the 
formation of internalized masses of hyperproliferative epithelial 
cells resembling squamous cell carcinomas.121

Interestingly, we have discovered that blocking JNK resulted 
in AJ formation in two carcinoma cell lines, A431 and ME180, 

revealing a previously unknown link between JNK and AJ.12,35 
Research work of the Xu laboratory showed a molecular link 
between loss of cell polarity and tumor malignancy. Mutation 
of different apicobasal polarity genes activated JNK signaling 
and downregulated the E-cadherin/β-catenin adhesion complex, 
which was necessary and sufficient to turn RasV12 benign eye 
tumors into invasive, metastatic cancers.18,122,123 In agreement, 
loss of the polarity gene, scribble, increased expression of JNK 
and decreased expression of E-cadherin leading to develop-
ment of invasive phenotype.124 Transition of pancreatic tumors 
to metastatic cancers required JNK activation, N-cadherin 
upregulation and dissolution of adherens junction.125 Mutation 
of casein kinase 1 epsilon promoted the Wnt/Rac-1/JNK path-
ways, decreased E-cadherin expression and promoted migration 
of breast cancer cells.126 Collectively, these studies suggested a 
strong negative correlation between JNK activity and E-cadherin 
expression, especially during the transition of benign tumors 
into invasive, metastatic cancer cells. Indeed, using cancer tissue 
microarrays, we recently uncovered a strong negative correlation 
between p-JNK and E-cadherin in some aggressive cancers, such 
as breast invasive lobular carcinoma (ILC), oligodendroglioma, 
glioblastoma, and end-stage (grade-3) squamous cell carcinoma 
(SCC). However, the correlation was not observed in the less 
invasive grade-1/2 SCC (Fig. 3).

Conclusion and Future Perspectives

JNK plays complicated and even contradictory roles in many 
cellular processes, such as apoptosis, proliferation, and responses 
to stress from inflammatory, heat shock, and osmotic stress. 
Application of JNK inhibitors in inflammatory, vascular, neuro-
degenerative, metabolic, and oncological diseases in human has 
been wildly pursed.20 However, the function of JNK serving as 
a regulator of AJ, TJ, and GJ is currently being uncovered.12,35–37 
In vitro traditional 2D cultures, 3D bioengineered tissues as well 
as in vivo studies have implicated JNK in regulation of cell-cell 
junction formation, in biological processes requiring dynamic 
formation and dissolution of junctions, such as development, 
wound healing, angiogenesis and cancer metastasis. More studies 
are necessary to reveal the molecular mechanisms through which 
JNK regulates junction formation and intercellular adhesion in 
normal or pathological disease states.
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