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Abstract. Accurate registration of CT and CBCT images is key for
adaptive radiotherapy. A particular challenge is the alignment of flexible
organs, such as bladder or rectum, that often yield extreme deformations.
In this work we analyze the impact of so-called structure guidance for
learning based registration when additional segmentation information is
provided to a neural network. We present a novel weakly supervised deep
learning based method for multi-modal 3D deformable CT-CBCT reg-
istration with structure guidance constraints. Our method is not super-
vised by ground-truth deformations and we use the energy functional
of a variational registration approach as loss for training. Incorporating
structure guidance constraints in our learning based approach results in
an average Dice score of 0.91 ± 0.08 compared to a score of 0.76 ± 0.15
for the same method without constraints. An iterative registration app-
roach with structure guidance results in a comparable average Dice score
of 0.91±0.09. However, learning based registration requires only a single
pass through the network, yielding computation of a deformation fields
in less than 0.1 s which is more than 100 times faster than the runtime
of iterative registration.
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1 Introduction

Deformable image registration (DIR) is an important tool in radiotherapy for
cancer treatment. It is used for the alignment of a baseline CT and daily low-
radiation cone beam CT (CBCT) images, allowing for motion correction, prop-
agation of Hounsfield units and applied doses. Furthermore, organ segmenta-
tions, that are typically created by clinical experts during planning phase from
the baseline CT, can be propagated to daily CBCT images. DIR has become a
method of choice in image-guided radiotherapy and treatment planning over the
last decades [2]. However, it is a demanding task that holds several challenges
such as meaningful measurement of multi-modal similarity of CT and CBCT
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images, having low contrast and containing artifacts. Aside from that, flexible
organs, such as bladder or rectum, can introduce extreme deformations, compli-
cating an accurate registration. Conventional DIR algorithms such as [11] tend to
underestimate large deformations, which is why extended DIR approaches were
presented [9,14]. These so-called structure guided approaches include information
about corresponding anatomical delineations on the images in order to guide the
registration. While the required delineations are usually available on the plan-
ning CT due to the workflow of radiotherapy, they need to be generated on
CBCT scans before registration. As the advancements of machine learning algo-
rithms proceed, fast and accurate generation of organ segmentations becomes
easier, enabling structure guided DIR and making adaptive radiotherapy more
feasible. However, DIR in radiotherapy remains a challenging task.

In the last few years, novel deep learning based registration methods have
been proposed [12], showing potential of being superior to state-of-the-art iter-
ative algorithms both in terms of accuracy and execution time. However, in the
field of DIR in radiotherapy rather little work on deep learning based approaches
has been done. In [3] for example a patch-based learning method for mono-modal
CT-CT image registration has been proposed. Moreover, deep learning is used
to overcome multi-modality by estimation of synthetic CT images from other
modalities which then are used for registration [6]. As ground-truth deforma-
tions between images are hard to obtain, mostly unsupervised learning methods
for DIR have been proposed in the past. Therefore a deep network is trained by
minimization of a loss function inspired by the cost function of iterative registra-
tion methods [7,15]. To include additional available information, such as organ
delineations during training, so-called weakly supervised methods have been pro-
posed and showed improved registration accuracy [1,8]. Also in the context of
radiotherapy these methods show promising results [10].

In this work we aim to combine the strengths of learning DIR with weak
supervision and conventional registration using structure guidance. To this end
we present a novel weakly supervised deep learning based method for multi-
modal 3D deformable CT-CBCT registration with structure guidance con-
straints. Our method is not supervised by hard to obtain ground-truth defor-
mation vector fields. The minimized loss is inspired by variational structure
guided DIR algorithms, including an image similarity measure suitable for multi-
modal CT-CBCT alignment and an additional term rating the alignment of given
segmentation masks. Furthermore, we penalize deformation Jacobians to avoid
local changes of topology and foldings. In contrast to existing learning based
approaches, here we directly incorporate information on guidance structures as
additional input to the networks. We evaluate our method on follow-up image
pairs of the female pelvis and compare our results to conventional iterative reg-
istration algorithms.

2 Method

The goal of DIR is the generation of dense correspondences between a reference
image R and a template image T with R, T : R

3 → R. This is achieved by
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Fig. 1. Overview on our network training process. We train 3 different types of networks
which all require the input of a reference and a template image. Additionally they can
receive segmentations on the reference image or corresponding segmentations on both
images as input (indicated by red dotted lines). The output is a deformation vector
field that is applied to the template image and segmentations. The network parameters
are updated using backpropagation based on the loss function presented in Sect. 2.2.
(Color figure online)

estimating a reasonable deformation vector field y : Ω → R
3 on the field of view

Ω ⊆ R
3 of R, such that the warped template image T (y) and R are similar.

In a variational approach y is computed by minimizing a suitable cost function,
usually consisting of an image similarity measure and a regularization term.
In iterative registration this is typically done by a time-consuming gradient or
Newton-type optimization scheme. However, in a deep learning based registra-
tion, the deformation is modeled by a convolutional neural network (CNN), that
directly maps given input images to a vector field and that is parameterized
with learnable parameters θ, i.e. y ≡ yθ(R, T ). Due to the lack of ground-truth
deformations, we adapt the variational approach and minimize the variational
costs in average over all given training samples. In the context of learning, the
cost function is the so-called loss function. An overview on the training process
of our networks is given in Fig. 1.

2.1 Registration Types by Input

The networks require the input of a reference and a template image which need to
be registered. Furthermore, we allow that available segmentations are provided
as additional inputs. In this work, we distinguish between no additional input, a
set ΣR = {Σ�

R ⊂ R
3, � = 1, . . . , L} of segmentations Σ�

R on the reference image,
or two sets ΣR, ΣT with corresponding segmentations Σ�

R and Σ�
T on reference

and template image, respectively. On that account, we consider following three
types of CNNs that predict a deformation field y depending on the given inputs:

Type I: y ≡ yθ(R, T ) (images only)
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Type II: y ≡ yθ(R, T , ΣR) (images + reference segmentations)
Type III: y ≡ yθ(R, T , ΣR, ΣT ) (images + corresponding segmentations)

Note that all three CNN registration types use information about anatomical
structures during training for weak supervision. For inference, only the respective
network inputs are required. Once the training process is finished, only a single
pass though the network is needed for registration of unseen image pairs.

Above classification is clearly not limited to deep learning based registration
as the registration types just describe the given inputs. In our experiments we
will also refer to iterative registration of type I and III in analogues manner
indicating the provided inputs per registration.

2.2 Loss Function

The loss function our networks minimize is similar to cost functions in itera-
tive registration schemes [14]. It is composed of four parts, weighted by factors
α, β, γ > 0:

L(y) = NGF(R, T (y))+
α

2
‖MR−MT (y)‖2L2

+
β

2
‖Δy‖2L2

+γ

∫
Ω

ψ(det ∇y(x)) dx

(1)
with the edge-based normalized gradient fields (NGF) [5] distance measure

NGF(R, T ) =
1
2

∫
Ω

1 −
〈∇R(x),∇T (x)〉2εRεT

‖∇R(x)‖2εR‖∇T (x)‖2εT

dx, (2)

where 〈x, y〉ε := x�y + ε, ‖x‖ε :=
√

〈x, x〉ε2 . Additionally, a L2-penalty for
weakly supervised structure guidance constraints is applied to segmentation
masks hat are handled as multi-channel binary images MR,MT : R3 → {0, 1}L,
such that MR(x)� = 1 iff x ∈ Σ�

R and MT (x)� = 1 iff x ∈ Σ�
T . A spatial second

order curvature regularization [4], where Δy ≡ (Δy1,Δy2,Δy3) is the vector
Laplacian, i.e. the Laplacian is applied component-wise, and a change of volume
penalty with ψ(t) := (t − 1)2/t if t > 0 and ψ(t) = ∞ otherwise are utilized
to force physically reasonable deformations. The latter term penalizes Jacobians
that indicate high volume growth (det∇y > 1), shrinkage (0 < det ∇y < 1) and
especially unwanted grid foldings (det∇y ≤ 0).

2.3 Network Architecture

Our proposed CNN architecture is based on a U-Net [13] with four stages.
Inputs are two 3D images R and T and, depending on the registration type
(c.f. Sect. 2.1), additional reference segmentations ΣR or corresponding segmen-
tations ΣR and ΣT . Note that for each type a separate network has to be trained.
First, individual convolution kernels are applied to each input. The results are
combined by concatenation and afterwards convolution blocks and 2 × 2 × 2



48 S. Kuckertz et al.

max-pooling layers alternate. An convolution block consists of two convolutions
with a kernel size of 3 × 3 × 3, each followed by a ReLU and a batch normal-
ization layer. In each stage the number of feature channels gets doubled. In the
decoder path, we alternate between transposed convolutions, convolution blocks
and concatenating skip connections. Finally, we apply a 1 × 1 × 1 convolution,
yielding the 3-channel deformation field with the same resolution as the inputs.

3 Experiments

We evaluate our proposed deep learning based method on image data of 31 female
patients from multiple clinical sites. The dataset includes one planning CT and
up to 26 follow-up CBCT scans of the pelvis for each patient, yielding 256 intra-
patiental CT-CBCT image pairs in total. In order to focus on deformable parts
of the registration, the images were affinely registered beforehand. Additionally
the images were cropped to the same field of view and resampled to a size of
160× 160× 80 voxels, each with a size of approximately 3mm× 3mm× 2mm in
a preprocessing step. Available delineations of bladder, rectum and uterus were
generated by clinical experts.

We evaluate the performance of three network types, differing in their num-
ber of required inputs and guidance through delineated structures. First, we only
input two images that need to be registered. Second, we additionally include
available segmentations on the reference CT image that are usually available
after treatment planning phase. Third, we also include corresponding segmenta-
tions on the daily CBCT image for structure guidance. For comparison of our
method with classical variational approaches we perform an iterative registration
of all test image pairs, both with and without the guidance of given structures.
We therefore minimize the same loss function without a volume change control
term using an iterative L-BFGS optimizer. The weights in our loss and objective
function (1), respectively, have been chosen manually as α = 30, β = 3, γ = 0.3.

Each network type is evaluated performing a k−fold cross-validation with
k = 4, splitting the dataset patient-wise into four subsets, training on three of
them and testing on the left out subset. As evaluation measures we use the Dice
similarity coefficient and the average surface distance (ASD) for estimation of
segmentation overlap and registration accuracy. We check the plausibility of the
deformation fields using their Jacobians as an indicator of volume changes and
undesired grid foldings. The implementation of our deep learning framework is
done using PyTorch and processed on a NVIDIA GeForce RTX 2070 with 8 GB
memory and an Intel Core i7-9700K with 8 cores.

4 Results

The outcome of our experiments is summarized in Table 1. As expected, the
registration quality improves with providing further input. We found that solely
forwarding the reference and template image to our weakly supervised trained
CNN for registration of type I yields an average Dice score of 0.76 (Dice after
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Table 1. Quantitative results of our experiments (c.f. Sect. 3). Mean and standard
deviation of Dice scores and average surface distances (ASD) over all test images and
average runtime for a single registration are shown. Furthermore, Jacobians and average
percentage of voxels in which foldings occur (det(∇y) ≤ 0) are listed for the body region
and the union of the guiding structures (bladder, rectum, uterus).

Method Dice score ASD [mm] Body region Guiding structures Time

Jacobians Foldings Jacobians Foldings

Preregist. 0.64± 0.15 5.49± 2.87 – – – – –

Iterative I 0.72± 0.13 4.13± 2.50 1.02± 0.28 0.02% 0.96± 0.47 0.14% 15 s

Iterative III 0.91± 0.09 1.07± 0.96 1.02± 0.34 0.17% 1.00± 0.97 2.58% 20 s

Learning I 0.76± 0.15 3.34± 2.40 1.01± 0.24 0.00% 0.97± 0.68 0.06% <0.1 s

Learning II 0.80± 0.15 2.79± 2.42 1.01± 0.24 0.00% 0.95± 0.75 0.08% <0.1 s

Learning III 0.91± 0.08 1.28± 1.16 1.01± 0.18 0.01% 0.99± 0.69 0.16% <0.1 s

Iterative I Iterative III Learning I Learning II Learning III

Fig. 2. Histrogram visualizations of the Jacobians (det ∇y) representing the voxel-wise
volume change inside the body region on the x-axis for each registration type. The y-
axis shows the relative number of voxels. The values are based on all test images.

Dice score Average surface distance [mm]

Fig. 3. Comparison of Dice scores and average surface distances for all test images and
annotated labels (bladder, rectum and uterus). For each label the distributions after the
affine preregistration ( ), a conventional iterative ( ) and our proposed deep learning
based registration ( ) are illustrated (c.f. Sect. 3). (Color figure online)

affine preregistration was 0.64). The result is superior to iterative registration
of type I with an average Dice of 0.72. This is not surprising, as a particular
advantage of learning based DIR algorithms is to build in anatomical knowl-
edge and guidance, respectively, by weakly supervised training. Learning based
registration of type II with additionally passing reference segmentations to the
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R and (Dice 0.66) Iterative I (Dice 0.74) Iterative III (Dice 0.89)

)c()b()a(

Learning I (Dice 0.77) Learning II (Dice 0.86) Learning III (Dice 0.92)

)f()e()d(

Fig. 4. Qualitative comparison of registration results. (a) Reference and template with
initial Dice score (average of the three scores for bladder, rectum, uterus). (b)-(f)
Deformed template images T (y) and deformations y for iterative (type I+III) and
learning based DIR (type I-III). Additionally, we show segmentations of the blad-
der ( ), rectum ( ) and uterus ( ). (Color figure online)

network slightly improves the registration accuracy (Dice 0.80), while providing
corresponding segmentations on the CT and CBCT yields best results. In fact,
structure guided iterative and learning based registration of type III both lead
to an average Dice score of 0.91. Looking at the average surface distance shows
a comparable tendency, where the iterative and learning based structure guided
approaches both achieve values lower than the spatial resolution. The distribu-
tions of Dice scores and average surface distances are visualized in Fig. 3, showing
a systematic improvement of registration results from type I to III.

A visual comparison of registration results of all types for one case is given
in Fig. 4. Additionally, the results of structure guided iterative and learning
based registrations of type III for three different patients are shown in Fig. 5.
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Fig. 5. Results of structure guided iterative and learning based DIR for three different
cases. Additionally, Euclidean distances of the corresponding deformation vector fields
are shown together with color scales including a histogram of the respective distances.
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We observe that large deformations, especially of the bladder, are compensated
due to the guidance of these structures. The plausibility of the underlying defor-
mations can be checked with the help of the illustrated transformed grids. Fur-
thermore, Fig. 2 displays the distributions of Jacobians for all approaches. As
expected, Jacobians are centered around 1.0 with small standard deviations.

As specified in Table 1, the computational runtime of our deep learning based
registration is over 100 times faster than the (CPU based) iterative approaches
due to the fact that registration only needs a single pass through the CNN.

5 Conclusion

We presented a deep learning based method for multi-modal 3D deformable
image registration with structure guidance constraints for adaptive radiother-
apy. In our experiments we observed a significant improvement of learning based
DIR by incorporation of structure guidance constraints, realized by providing
organ segmentations as network input. More precisely, we showed that providing
segmentations at first on the reference CT image improves registration results.
These segmentations are typically generated and checked by clinical experts dur-
ing the treatment planning phase and therefore available for all subsequent CT-
CBCT registrations. Furthermore, corresponding segmentations on daily CBCT
scans become available more easily as learning based segmentation algorithms
advance. Incorporation of corresponding segmentations into our deep learning
based method yields best results which are comparable to the output of state-
of-the-art iterative approaches for structure guided image registration. However,
generating deformations over 100 times faster, our learning based approach is
capable of application nearly in real-time. Due to its short runtimes and accu-
rate results, our method for structure guided image registration makes adaptive
radiotherapy more feasible. It accelerates the clinical workflow and enables a
more precise application of radiation doses, so target volumes get irradiated
more effectively, while the harm of organs at risk is reduced.

Furthermore, we showed that the ability to build in anatomical knowledge
by weakly supervised training of our network improves registration results even
when this additional information is not provided during registration of unseen
image pairs. Our learning based method does not rely on supervision by hard to
obtain ground-truth deformations, but minimizes a suited loss function inspired
by variational structure guided registration approaches.

For each registration type, differing in their number of provided inputs,
we trained an independent neural network. In future work, we will investigate
the implementation of a more flexible approach, handling a variable number of
inputs. Additionally, we want to evaluate the integration of supplemental knowl-
edge, especially from segmentations of target volumes that typically do not follow
anatomical boundaries.
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