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Abstract
Background: In today’s modern medicine, the use of radiological imaging devices has spread at 
medical centers. Therefore, the need for accurate, reliable, and portable medical image analysis 
and understanding systems has been increasing constantly. Accompanying images with the required 
clinical information, in the form of structured reports, is very important, because images play a 
pivotal role in detect, planning, and diagnosis of different diseases. Report‑writing can be exposure 
to error, tedious and labor‑intensive for physicians and radiologists; to address these issues, there is 
a need for systems that generate medical image reports automatically and efficiently. Thus, automatic 
report generation systems are among the most desired applications. Methods: This research proposes 
an automatic structured‑radiology report generation system that is based on deep learning methods. 
Extracting useful and descriptive image features to model the conceptual contents of the images 
is one of the main challenges in this regard. Considering the ability of deep neural networks 
(DNNs) in soliciting informative and effective features as well as lower resource requirements, 
tailored convolutional neural networks and MobileNets are employed as the main building blocks 
of the proposed system. To cope with challenges such as multi‑slice medical images and diversity 
of questions asked in a radiology report, our system develops volume‑level and question‑specific 
deep features using DNNs. Results: We demonstrate the effectiveness of the proposed system 
on ImageCLEF2015 Liver computed tomography (CT) annotation task, for filling in a structured 
radiology report about liver CT. The results confirm the efficiency of the proposed approach, as 
compared to classic annotation methods. Conclusion: We have proposed a question‑specific DNN‑
based system for filling in structured radiology reports about medical images.
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Introduction
Medical imaging plays an important 
role in the health care and treatment 
domains by facilitating rapid and reliable 
detection, treatment planning, and response 
analysis. With the advent of medical 
imaging systems and their widespread 
application, the number of medical images 
is continuously increasing. Most medical 
imaging techniques, which are employed 
in studying, diagnosing, and patient care 
planning, are noninvasive. This makes them 
less expensive than invasive methods and 
highly facilitates their usage by physicians 
and patients. Specialized medical 
professionals usually conduct the reading 
and interpretation of medical images via 

generating reports. For less experienced 
and even experienced radiologists, writing 
imaging reports is an inconvenient task as it 
is tedious, is time‑consuming, and demands 
various skills.

This issue creates the need to build 
systems that automatically, reliably, and 
effectively process such data and generate 
useful and relevant information in the 
form of medical image reports. To make 
the generated reports more helpful for 
physicians and patients, they should be 
structured and domain specific. Such 
organized reporting with a standard 
format is useful in highlighting salient 
pieces of information, reflecting image 
interpretation, and elevating the efficiency 
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of the workflow.[1] Furthermore, this results in increasing 
the search performance and retrieval rate from radiology 
databases for comparative diagnosis, medical education, 
etc., which are highly desirable in practice.

The automatic structured report generation system could 
be defined as a system that annotates medical images 
with clinical and specialized prior information, or a 
system that answers several clinical questions, given the 
patient’s medical image. To this end, the medical image 
(e.g., radiology) automatic report generation involves 
conducting the following tasks: question answering,[2,3] 
image annotation,[4‑6] or image classification tasks.[7‑9] For 
the development of such systems, the main approaches in 
the literature are based on classic pattern recognition or 
modern deep learning methods.

Studies reveal that for implementing a computer‑aided 
diagnosis system with purposes such as medical image 
analysis, and classification, the image representation, 
feature extraction, and learning methods play a pivotal role 
in the research efforts.[10]

Accordingly, the adopted image parameterization 
frameworks are grouped into two categories, namely 
classic handcrafted features extracted via engineered 
algorithms and modern learned features extracted via deep 
neural networks (DNNs).[11] The bulk of the literature in the 
structured radiology reports generation is based on medical 
image annotation or retrieval methods, which employ the 
classical approach. That is, extracting handcrafted features 
and training classification models on them. However, there 
is an expanding body of work, which adopts the modern 
approach: it takes the raw image signal as the input and 
leaves the feature extraction, to the DNN.

In this paper, we narrow down our scope to the liver 
ImageCLEF[12] annotation task in which the goal is to 
automatically fill in a structured radiology report about 
the liver computed tomography (CT) volumes. The main 
purpose of this task is to describe the physical and textural 
features of the liver, vessels, size of elements within the 
image, and the pathology of lesions. Classic approaches 
have been widely used along with this database. To that 
end, Kumar et al.[13] exploited content‑based image retrieval 
methods to find similar images to the given query and 
annotated it using the tags of the retrieved images. They 
extracted classic engineered features such as shape, texture, 
pixel intensities, and scale‑invariant feature transform‑
based bag of words and fed them into a two‑stage support 
vector machine (SVM). They also utilized a weighted 
nearest neighbor classifier for annotation. In a study by 
Nedjar et al.,[5] for generating a structured radiology report 
for liver CT images, two methods were proposed which 
employ annotation techniques. In the first method, the 
shape and texture features are extracted using Haralick[14] 
and Gabor wavelets.[15] Then, random decision forests and 
nearest neighbor classifiers were trained on top of these 

features. In the second approach, they introduce the notion 
of liver image signature, which is synthesized from the 
liver images and uniquely represents each image, and using 
hamming distance function for retrieval. Second approach 
lead to achieving the best results in ImageCLEF2015 Liver 
CT Annotation task competition. In a study by Nedjar 
et al.,[6] bi‑dimensional empirical mode decomposition 
texture features and Gabor wavelets are used for liver 
image annotation. The method incorporates intrinsic mode 
function decomposition to decompose an image into 
several components and extracts Gabor responses from the 
components. The labels of the input image are predicted 
using the labels of its five nearest neighbors. The study by 
Spanier et al.[16] focuses on the liver lesions and proposes 
an image retrieval system based on the annotations. In this 
method, SVMs, linear discriminant models, and logistic 
regression are used as binary classifiers and trained on the 
histogram of the gray levels (Hounsfield units) in the lesion 
regions. Loveymi et al.,[4] investigated the issue of the 
diversity of the question types and tried to alleviate it via 
learning question‑specific models. Along with the classic 
shape and texture features, they introduced novel spatio‑
temporal texture features to address this issue.

In the above‑cited work, the features are usually selected 
or engineered based on some priors and domain‑specific 
knowledge. Then, a model structure is selected, and a 
proper training procedure is adopted to learn the model 
parameters/variables. An optimal feature should be as 
discriminant and robust as possible. To this end, the 
feature extraction process should filter out the irrelevant 
information and only pass through the task‑related 
information. Underpinning such a filtering process in an 
abstract information space though a handcrafted pipeline of 
linear and nonlinear transforms is extremely challenging, 
if not impossible. In the modern deep learning‑based 
approach, feature engineering is replaced with feature 
learning. The learning process allows for extracting task‑
specific features with the guidance of the objective function 
optimizer. This paves the way for passing through the 
useful information and discarding the task‑irrelevant 
information. The learning instead of engineering‑based 
feature extraction paradigm is at the heart of the state‑
of‑the‑art (STOA) pattern recognition techniques.[9,17] 
Hereafter, we refer to such features as deep features, which 
is an umbrella term for representations that are extracted 
from various types of DNN.

The success of the deep learning in various domains 
triggered an ever‑increasing body of work and interest in 
the field of medical image analysis. In this regard, Jing 
et al.,[18] adopted a convolutional neural network‑long 
short‑term memory (CNN‑LSTM)‑based framework for 
automatic generation of medical imaging reports. They used 
a CNN for visual feature extraction and LSTM to model 
the long‑term dependencies and generating long paragraphs 
in a report. Zhang et al.[19] organized a multimodal mapping 
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from medical images to symptomatic reports. They used an 
auxiliary attention sharpening module to detect the image–
language alignments more efficiently. However, their 
generated symptomatic reports are limited to representing 
five types of cell appearance features, which makes their 
problem less complex than radiology report production. 
In a study by Xue et al.,[1] for generation of an automated 
radiology report, the CNNs are combined with the LSTM 
in a recurrent way. It is capable of generating high‑level 
conclusive impressions and making specific descriptive 
findings sentence by sentence. Sugimori.[20] reports an effort 
on recognizing body parts from three‑dimensional (3D) CT 
images. They use deep CNN networks to detect the brain, 
neck, chest, abdomen, and pelvis in the slices of the CT 
images. A specific dataset has been developed for each 
organ. AlexNet and GoogleNet[21] are another powerful 
CNN‑based networks which are mainly used for image 
classification.[22,23] Baltruschat et al.[24] utilized ResNet as 
the multi‑label classifier of the chest radiography images. 
Modality classification and concept detection in medical 
images is another application of deep learning which has 
been studied along with transfer learning. In a study by 
Singh et al.,[9] modality classification and concept detection 
in medical images using deep learning methods and 
transfer learning are studied. For modality classification, 
seven neural networks, namely VGG‑16,[25] VGG‑19,[25] 
ResNet‑50,[26] Inception‑v3,[27] Xception,[28] MobileNet,[29] 
and Inception‑ResNet‑v2,[30] have been investigated. All the 
networks are pretrained on ImageNet;[8] after pretraining, 
the lower layers are fixed and the last fully connected (FC) 
layer is trained from scratch to learn features tailored for 
the medical image analysis. Finally, a logistic regression 
classifier is trained on the outputs of the fully connected 
layer. Experimental results illustrated that the Inception‑v3 
and MobileNet have the highest recognition rates. In our 
earlier work,[31] we used fusion of deep and handcrafted 
features for generating structured radiology report. Deep 
features were extracted from the last layer of a fine‑tuned 
MobileNet and handcrafted features using local binary 
pattern method.

Given the centrality of the DNNs in the STOA image‑
processing systems, in this study, we propose a deep 
learning‑based framework for the automatic generation of 
structured radiology reports for volumetric medical images. 
The reasons for the selection of methods based on deep 
learning are as follows:
• Selecting the most informative low‑level features 

for modeling high‑level concepts is one of the main 
challenges in mining and analyzing the image data. 
Deep learning solves such a data representation 
problem through learning a cascade of linear and 
nonlinear transformations and with the aid of the 
objective function optimizer. The input is the raw image 
signal and the output is the corresponding label. Such 
end‑to‑end (raw data to a label) framework bypasses 

the need for any suboptimal feature engineering in the 
pipeline that may discard task‑relevant information. As 
such, the end‑to‑end deep network would automatically 
learn and solicit the proper set of features from the raw 
image signal for the intended task. Furthermore, and 
in contrast to the classic methods where the front end 
is designed irrespective of the back end, the feature 
extracting and the classifier are merged in a unified 
structure and simultaneously optimized. Therefore, they 
best fit each other

• In general, the questions in radiology reports include 
several diverse topics from various specialties. This 
implies answering the questions, and writing report 
involves solving multiple problems; the optimal set 
of features for each one is different. While using an 
identical set of features for the different questions 
is suboptimal, the classic literature abounds with 
researches employ a shared set of selected handcrafted 
features for all kinds of questions.[5,6,12,13] This is 
unavoidable if one ought to apply classic features. 
To circumvent this problem, in our previous work,[4] 
we analyzed every question independently and found 
the most discriminative handcrafted features for each 
question (task) through feature selection methods. 
Although the first strategy (using the same set of 
features for all tasks) has lower training overhead as it 
does not involve any feature‑filtering process, it leads 
to poorer overall performance. On the other hand, the 
DNNs allow for learning bespoke features for each 
task that are tailored for the given problem with a 
specific set of labels. This bypasses the need to select 
low‑level features for every question manually which 
accompanies extra overhead and is prone to missing 
relevant information. Therefore, we take this route 
to learn the most discriminative and robust feature 
representation for each question.

Having decided to work with deep learning methods, there 
are three key issues to be addressed when designing and 
implementing such techniques:
• First, how should the input be presented to the network? 

Available options are two‑dimensional (2D) color or 
intensity images, volumetric data, preprocessed set of 
regions of interest, and many more

• Second, each DNN architecture has its advantages 
and shortcomings; which architecture does best fit the 
application at hand?

• Finally, how much training data are available, and is 
it sufficient to build a reliable system? This is more 
critical when the architecture is large, which is the case 
in many deep learning applications. Possible solutions 
could be unsupervised pretraining,[32] data augmentation, 
and transfer learning. Hence, the question would be 
whether the training data are enough to train the model 
from scratch, or we should resort to the aforementioned 
solutions, for example, doing transfer learning via 
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pretrain the model on a larger database and only retrain 
the higher layers?

The optimal decision on these issues depends on the 
task, type of the images, and amount of the training data. 
In the current work, for generating a radiology report 
from volumetric abdominal CT images, we addressed the 
aforementioned challenges as follows:
• While the classification of the medical image using 

CNNs has achieved an eye‑capturing success, it is 
still difficult to accurately characterize and classify 
volumetric medical images.[10] One of the main 
limitations is the fact that the optimization of the CNNs 
in the 3D (volumetric) classification tasks is not that 
straightforward. Dealing with this issue, we use deep 
networks with 2D inputs using slices of a volume as 
their input. Then, combine the extracted features of the 
slices of a volume image to produce the 3D or volume‑
level features

• The computational complexity of the DNNs could be 
very high depending on the utilized architecture. In 
medical applications, the techniques may be run on 
common desktop PCs, laptops, and even as apps on 
smartphones with limited computational capabilities and 
memory. Therefore, to maximize the applicability and 
usefulness of such technology in practice, they should 
demand minimal computational resources and memory 
footprint while preserving optimal performance. This 
puts an upper‑bound on the architecture’s size and 
consequently, its modeling capacity which, in turn, 
could hurt the performance. To address this challenge, 
we use the MobileNet and a CNN with tailored 
structure as the basic building blocks of our system. 
The conventional CNNs, owing to weight sharing, have 
fewer parameters compared with other architectures. 
The adopted MobileNet and CNN have even fewer 
parameters than the conventional CNNs, which makes 
them further suitable for our purpose[29,33]

• Finally, the DNN‑based algorithms usually require a 
large amount of training data to render the expected 
high performance. However, in practice, and more 
specifically for many medical imaging tasks, for 
example, the subject of this work, large training 
datasets are not available. To address the challenge of 
training data size while benefiting from deep learning 
techniques, we take advantage of the data augmentation 
and transfer learning procedures in MobileNet. The 
features from the fine‑tuned MobileNet and CNNs 
generate the slice‑level features.

The rest of the paper is organized as follows. In the 
Methods Section, the proposed approach for structured 
radiology report generation is presented and explained 
in detail. The section Results is dedicated to the training 
procedure, hyper‑parameter tuning, and deep feature 
extraction from MobileNet and CNN networks. The 
Discussion part includes the experimental results along with 

consultation. Finally, the Conclusion Section concludes the 
paper and puts forward some suggestions for future work.

Methods
In this paper, we aim at developing a learning system 
that automatically generates structured reports from 
the volumetric radiology images. The desired report is 
composed of multi‑choice and binary questions about liver 
CT images and the pathology of lesions.

Dataset

We use Liver CT Annotation dataset from ImageCLEF, 
2015,[12] that is specifically collected for structured 
radiology report generation on abdomen images. It contains 
questions on liver, its vessels, and pathology of lesions. The 
dataset includes information of fifty patients in the form of:
• Abdominal 3D CT image, as a cropped CT image of the 

liver 3D matrix. The volumes had various resolutions 
(x: 190–308 pixels, y: 213–387 pixels, slices: 41–588) 
and spacing (x, y: 0.674–1.007 mm, slice: 0.399–2.5 
mm)

• Liver region, as a liver mask that specifies the part 
corresponding to the liver (a 3D matrix)

• Bounding box (volume of interest (VOI)) corresponding 
to the region of the selected lesion within the liver, as 
a vector of six numbers. They are corresponding to 
the coordinates of two opposite corners of the lesion’s 
region within the CT volume

• Resource description framework file of the radiology 
report.

Figure 1 shows the architecture of the proposed system, 
which generates automatic structured radiology report for 
volumetric images using deep features. The questions in 
radiology reports of liver CT images are related to different 
heterogeneous parts such as the liver, lesion, and vessel. 
We put forward a claim that using the same feature set for 
answering all the questions is suboptimal. In other words, 
each question is a different problem with different decision 
boundaries, and the optimal set of features for solving it is 
different. This claim will be investigated and discussed in 
the Results section. Therefore, for each question/problem, 
one should extract the most informative and discriminative 
feature. Besides, a back end with sufficient modeling 
capacity should be employed to correctly and reliably 
generate report by answering the questions of the radiology 
questionnaire. As shown in Figure 1, the key novelty of the 
proposed system lies in the question‑type guided feature 
extraction module, which is a DNN, trained based on the 
question type and the input training images.

Another challenge in the feature extraction stage is that the 
liver CT images are volumetric (3D), and it is important to 
pay attention to the multi‑slice nature of volumetric images 
for making decisions and answering the questions. In this 
work, firstly, all 2D slices are treated as independent images. 
Slices contain detailed information on the lesions, hence 
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slice‑level learning is useful for extracting informative 
features. However, for answering questions in the report, 
prediction is conducted over the CT volumes. It is worth 
mentioning that in the slices selected for mining, liver and 
its lesions are all visible. Other abdominal elements were 
removed from the slices using the Liver Mask and Lesion 
VOI metadata in the dataset. Finally, it is important to follow 
the changing process of different parts of the CT image, both 
normal and abnormal, during the third dimension, and the 
CT volume will be considered as a sequence of 2D images 
(slices). Therefore, we will maintain the relationship between 
the content of different slices, via generating volumetric 
features by applying combination operators, such as 
concatenation and mean, on the slice‑level features.

After feature extraction phase, binary or multi‑class 
classifiers should be learned for the binary or multi‑choice 
questions, respectively. In the proposed system, each 
question is tackled independently.

MobileNet

In this part of feature extraction module, we use 
MobileNet, a fully connected layer plus dropout function 
and a classification layer [Figure 2].[31]

MobileNet is a CNN with notably fewer number of 
parameters (size) and consequent complexity without 
considerable performance drop.[29] This architecture performs 
separable depth‑wise convolution[29] and is instrumental in 
mobile and embedded vision systems. It has been shown 
that the ratio of the parameters of the MobileNet to the 
VGG‑16, in the same level of accuracy, is 1:33.[34]

The main idea behind MobileNet is to replace the 
computationally intensive convolution layers with more 
computationally efficient depth‑wise separable convolution. 
In this method, instead of applying convolution filter to all 
the input feature maps (channels), the convolution process 

is decomposed into two steps: first, a filter is applied to 
each channel (depth‑wise convolution), and then, a 1 × 1 
point‑wise convolution combines all the feature maps.

The convolution layer is followed by a batch 
normalization[35] and rectified linear unit (ReLU).[36] The 
ReLU speeds up the training procedure, prevents gradient 
vanishing/explosions, and imposes sparsity. The activation 
function in MobileNet is ReLU6, as defined below, which 
is:

y x= min max( ( , ), )0 6  (1)

Where x is the pixel value of the feature map and 6 is a 
hyperparameter which puts an upper bound (6, here) on the 
activation values.

As illustrated in Figure 2, the architecture of the MobileNet 
is composed of a set of blocks where each one consists 
of depth and point‑wise convolutions, as well as batch 
normalization and activation functions (nonlinearity).

In this work, we used MobileNet‑V2 in which each block is 
limited to three convolution layers. This structure maintains 
the low computational cost while rendering the required 
recognition accuracy.[33] Each block of the MobileNet‑V2 
starts with 1 × 1‑convolution layer, which aims to increase 
effective image channels. This layer can be thought as the 
reverse of the projection layer. Expansion factor of the 
network controls the number of the resulting channels. 
Another innovation in the MobileNet‑V2 is the residual 
(skip) connections in the blocks with the same number 
of input and output channels. Residual links improve the 
flow of the gradients in a deep network and alleviate the 
gradient vanishing issue. Version2 of the MobileNet has 17 
blocks, followed by a 1 × 1 convolution and max or mean 
pooling layers.[33] The network is also characterized by a 
parameter α which is a depth scalar and defines the number 
of channels in each layer.

Figure 1: The architecture of the proposed structured radiology report generation model for volumetric images
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Our goal is to build a network for each question and then 
extract features from the middle layers. In this regard, 
the MobileNet is followed by a FC layer to obtain a one‑
dimensional feature representation of the input image. The 
neurons of the FC layer are linked to all the neurons in 
the preceding global pooling layer. The largest share of 
the network parameters belongs to the FC layer. Using a 
narrow FC layer reduces the modeling capacity of the 
system and widening it elevates the liability to overfitting. 
To deal with this issue, we employ the dropout method: at 
each training step, the neurons are turned off (multiplied by 
0) with probability 1 − p.[37] Dropout operation improves 
robustness via preventing complex co‑adaptation between 
layers. The efficacy of dropout has been widely studied, for 
example, in a study by Warde‑Farley et al.,[38] it is widely 
used in the STOA DNN‑based systems as an efficient 
regularization technique.

Finally, the FC layer(s) activations are passed to a 
sigmoid or softmax output layer for binary or multi‑class 
classification, respectively.

Convolutional neural networks

A CNN[39] is a special DNN architecture that contains a 
large number of fairly small convolution kernels (filters). 
The filter is characterized by the kernel weights which 
expectantly detect various task‑desirable patterns in a 
given input image. Compared with fully connected layers, 
such structure keeps a number of trainable parameters 
remarkably low. In addition, using a CNN with a 

sufficiently large number of filters usually obviates the 
need for preprocessing steps such as affine normalization 
and/or region‑of‑interest bindings.[8]

A CNN is usually composed of convolution, pooling, and 
FC layers. The convolution layer contains pattern detectors, 
which operate over all the input locations. The max‑
pooling layer summarizes the output of the convolution 
layer and steers the focus to the most active units per input 
patch. Combined, these layers act as feature detectors that 
are nonlinear owing to ReLU activation function and max 
operation in pooling layer. Mathematically, we can write 
convolution layer as Eq. 2, and max‑pooling layer as (3):
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Where f (.) is a nonlinear function, x j
l  is the lth layer jth 

output, xi
l−1  is ith input map from l to 1th layer, Mj represents 

a selection of input maps, k and b are kernel and additive 
bias. β j

l  is a multiplicative bias of output feature map and 
finally, the size of the input map reduced through Eq. 3.

Furthermore, stacking several convolutions and pooling 
layers makes the feature detectors at the high levels, 
shift, and scale invariant, which is highly desirable in 
classification tasks.[40] The FC layer has similar functionality 
to the hidden layers in classic feed‑forward networks. It 

Figure 2: Learning a deep neural network for each question using MobileNet
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applies global transformations on the CNN’s final feature 
maps, can adjust the dimension of the features (e.g., reduce 
dimension), extract more abstract representation, and make 
the features more linearly separable, paving the way for the 
linear classification takes place in the softmax layer.

Architecture of the proposed convolutional neural 
network

The adopted CNN in this work is similar to LeNet‑5,[41] 
which is composed of two convolutional layers followed by 
three FC layers [Figure 3]. The first and second conv layers 
include six and 12 channels, respectively. For both layers, 
the stride, kernel, and pooling sizes were set to two, 5 × 5, 
and 2 × 2, respectively. ReLU activation has been applied 
at all layers except for the output layer where the logits 
turned into posterior probabilities via softmax function. 
Given the amount of training data, we avoided using larger 
networks which could run the risk of overfitting. Output of 
either of the FC layers may be used as an embedding or 
global feature vector for the given 2D image. We refer to 
such representations as deep features. Besides overfitting 
issue, to keep the size of the deep features in a comparable 
range with the classic features, we avoided using wider FC 
layers.

Deep features

As mentioned, after training the network, output of the 
internal layers can be deployed as feature representation 
for the given image (slice level). Here, we use the 
concatenation of the outputs of the last layer of the 
MobileNet and FC layers of CNN.

Results
Accuracy is the sole measure for evaluation and 
comparison of the developed approaches,[4‑6,12,13,31] and the 
performance of the systems is evaluated via accuracy: the 
ratio of correctly labeled instances to all the instances. 
In our work, for each question that is about liver and 
its lesions or vessels, a specific model is learned. The 
system performance is measured as the mean accuracy 

over all the questions. To assess the generalization (out of 
sample) error, we have utilized cross‑validation (CV). For 
comparison purposes, a classic machine learning model is 
also employed along with the DNN‑based approaches. The 
model consists of SVM classifiers, which is learned on the 
top of the deep features of the volume images.

In this paper, only 43 of the questions have been considered for 
the task of ImageCLEF Liver CT Annotation2015. Questions 
with unbounded answers or no answer, for some images, are 
not included in the learning and evaluation processes.

Image preprocessing

Firstly, key‑slices (slices where the lesion and liver are 
observed, they are selected using the Bounding Box VOI 
metadata in the dataset) are selected from every CT image. 
The number of slices in each CT image ranges from 30 to 
500. In this study, we selected nine key‑slices for each CT 
image in which lesion and liver are both visible. Finally, 
the liver is extracted through Liver Contour in each slice.

In deep feature extraction module, key‑slices are fed into 
CNN and MobileNet‑based DNN, which will be learned for 
every question independently. Figure 4 shows "Training_
Validation” loss functions of the CNNs, in the slice‑level 
feature extraction phase for every individual question.

MobileNet configuration

The standard size of input images for MobileNet is 224 × 
224 or 96 × 96, of which we selected the 96 × 96 for the 
image size. Transfer learning has been employed to pretrain 
the MobileNet. That is, the network has been pretrained 
on the ImageNet and fine‑tuned on the dataset containing 
all the slices of volumes. Because the liver images are of 
gray scale, each image is repeated three times to imitate 
three channels of the RGB images. Binary and categorical 
cross‑entropy is the loss functions for the binary and multi‑
label questions, respectively. To prevent overfitting, the 
initial learning rate is set to 10e‑4 and decayed by factor 
of 0.9 after five epochs. The output of the last layer of the 
MobileNet layer has been extracted as the 1280‑element 

Figure 3: Proposed convolutional neural network architecture for the individual questions
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Figure 4: “Training_Validation” loss curves of the convolutional neural networks, in the slice‑level feature extraction phase for every individual question
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feature vector and reduced to 100 elements by the principal 
component analysis mapping. The network has been 
implemented and tested on Google colab1 machine with 
NVIDIA Tesla K80 GPU and 12 GB of memory.

Convolutional neural network configuration

Input images have been resized to 100 × 100 (we repeated 
our experiments with size 250 × 250 too, in which the 
accuracy was unchanged). The DNNs were trained from 
scratch using PyTorch.[42] All layers were initialized using 
the so‑called Glorot method,[43] and cross‑entropy has been 
employed as the loss function. We utilized SGD optimizer 
with a learning rate of 5e‑4; to speed up the training, 
Nesterov momentum[44] with parameter 0.5 was applied and 
the weight decay (L2‑norm) with parameter 1e‑3 was used 
for regularization. We tried ADAM[45] and RMSProp[46] 
optimizers; both led to a slightly poorer performance for 
this task and architecture. From the aforementioned CNN 
system, the following four possible feature representations 
might be extracted: H3 preactivation (before ReLU), 
H3 activation (after ReLU), H4 preactivation, and H4 
activation. The experimental results indicate the H4 
activation features led to more accurate results than H3 
features, although their size is half of the H3 layer. This 
is not surprising, as H4 activations represent a higher level 
of abstraction. The networks for this set of experiments 
have been implemented and tested on an NVIDIA GeForce 
GTX‑1080Ti GPU.

Volume‑level feature generation

In this study, for multi‑slice analysis, deep features of 
key‑slices are fused. To this end, all the slice‑level deep 
features are averaged and concatenated for every volume. 
The accuracy of the proposed system for both mean and 
concatenation fusion operators is shown and compared in 
Table 1.

Classification

For most of the questions, the training data are imbalanced, 
that is, the number of samples per class is significantly 
different. Furthermore, some of the inspected classes are 
very close to each other, which could complicate the process 
of finding a reliable decision boundary. We applied SVM, 

1  https://colab.research.google.com

which is a robust model due to max‑margin criterion and 
also because it can work well in imbalance data scenarios. 
Moreover, it can cope well with the high dimensionality of 
the combined deep and handcrafted features. We employ 
the one‑vs‑all approach for multi‑choice questions with 
linear kernels, which achieved the best accuracy among 
initial experiments using different kernels.

Table 1 shows the accuracy of the proposed systems along 
with the standard deviation for 10‑fold CV. The accuracy is 
an average over all the 43 questions/problems. To be more 
precise, for every question, an SVM classifier is trained 
on question‑specific learned deep features, the accuracy is 
computed per question [Table 2], and finally, the system’s 
accuracy is the average across all the questions. Table 2 
reports the detailed results; question number refers to the 
number in the rightmost column of Table 3.

Discussion
Table 1 summarizes the results of different question‑specific 
volumetric deep features using CNN and MobileNet along 
with the SVM classifier with a linear kernel. As shown, the 
deep features extracted from tailored CNN and averaged 
across multi key‑slices return better results than other deep 
features. Furthermore, CNN outperforms MobileNet with 
a margin of 10%, suggesting that more complex network 
would not essentially lead to higher performance. In our case, 
as an example of a small learning task, the relatively compact 
CNN architecture extracts features that are more informative 
and achieves higher accuracy for most of the questions.

Table 2 reports the recognition rates of three deep features 
for individual questions, compared with that of a study 
by Loveymi et al.,[4] which uses handcrafted features and 
finds the best feature set for every question, separately. 
Question# in Table 2 and Figure 5 refers to the number in 
the rightmost column of Table 3. Questions such as “Area‑
has‑Area‑Length‑First,” “Area‑has‑Area‑Length‑Second,” 
and “Lesion‑has‑Lesion‑Quantity” were excluded from the 
results reported for every question because they refer to the 
static size measurements and do not depend on the feature 
extraction method.

Another interesting observation is that the SVM with 
linear kernel outperforms other more complex nonlinear 
kernels, such as radial basis function. This is owing to the 

Table 1: Average of ten‑fold cross‑validation accuracy and standard deviation for all questions (using question‑guided 
deep features)

Volume‑level feature generator Slice‑level feature extractor Dimension Classifier Accuracy (%) Standard deviation
Mean of slices CNN 60 SVM_Linear 97.76 1.41

MobileNet 100 SVM_Linear 87.30 5.61
CNN+MobileNet 60+100=160 SVM_Linear 97.71 1.39

Concatenation of slices CNN 60×9=540 SVM_Linear 96.74 2.76
MobileNet 100×9=900 SVM_Linear 84.47 5.04
CNN + MobileNet 160×9=1440 SVM_Linear 96.56 2.44

CNN – Convolutional neural network; SVM – Support vector machine
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fact that the output layer of a DNN, namely the softmax 
layer, is a linear classifier. Therefore, among others, the 
DNN layers should transform the features into a space in 
which the classes are linearly separable. This makes such 
features, that is, activation of higher layers, an optimal 
representation for SVMs with a linear kernel. In addition, 
note that optimizing SVMs with linear kernels is faster than 
their nonlinear counterparts, which makes this approach 
more appealing for practical scenarios.

In this work, a structured‑radiology report generation 
system for volumetric medical images was proposed and 
tested on liver CT image task. The main contribution of 
this paper is question‑guided deep feature extraction; this 
method has two advantages over previous work:[4]

1. Question‑specific feature extraction: The hypothesis 
behind this idea is that questions in a radiology report 
are heterogeneous, about liver, lesion, and vessels, 
therefore low‑level features to represent these parts 
may be different. As a matter of fact, each question 
is a different problem with distinguished decision 
boundaries. Therefore, the optimal set of features for 
fitting those boundaries would be different. If we use an 
identical shared feature set for all the questions like,[5,6,13] 
based on the propounded hypothesis, the corresponding 
system would be suboptimal. To prove this claim, we 
compared the performance of CNN that achieved the 
highest accuracy in Table 1, with the shared feature 
set scenario. The shared feature set means to optimize 
the DNN once, extract features from its internal layer, 
and use this feature set for all the questions. On the 
other hand, for the question‑specific feature set, for 
every individual question, the DNN has optimized 

Figure 5: Accuracy obtained for every question with question‑specific and 
shared feature set

Table 2: Accuracy obtained for every question with different question‑guided deep features in comparison with a related work
Question 
number

CNN MobileNet CNN + MobileNet Reference[4]

Concatenation Mean Concatenation Mean Concatenation Mean
1 96 92 78 84 96 94 94
4 90 98 36 26 90 96 55
5 86 92 16 24 88 92 52
6 96 94 60 38 96 92 64
8 96 98 60 70 94 96 72
9 94 100 82 68 94 98 82
10 96 98 56 58 96 98 60
11 98 98 92 90 94 98 96
13 98 98 82 98 98 98 98
14 98 98 82 98 94 98 98
20 98 98 82 92 98 98 98
21 96 98 82 92 94 98 98
22 96 96 64 86 96 96 96
23 96 94 64 74 94 92 96
24 96 96 96 96 96 98 98
29 96 98 92 94 94 96 98
30 94 96 96 96 96 96 100
31 98 100 92 96 94 100 92
33 98 98 82 92 98 98 98
34 98 98 82 92 98 98 98
35 98 98 82 84 98 98 98
36 94 98 94 90 94 96 98
37 94 100 92 92 92 98 92
38 94 94 78 80 92 92 94
39 98 96 78 84 94 98 94
40 98 98 82 86 96 98 98
41 96 100 90 88 94 100 90
42 94 96 78 86 94 96 92
CNN – Convolutional neural network
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independently and then the features for every question 
are extracted from the corresponding DNN’s internal 
layer. Experimental results in Table 4 show that the 

proposed question‑specific deep feature set outperforms 
the shared deep features. As explained earlier, this 
is due to the fundamental differences between the 

Table 3: List of liver computed tomography structured radiology report questions and answers/annotations
Group Concept Properties Values Question 

number
Vessel HepaticArtery hasLumenDiameter Decreased (0), increased (1), normal (2), other (3) 13

HepaticArtery hasLumenType Obliterated (0), open (1), partially obliterated (2), other (3) 14
HepaticPortalVein hasLumenDiameter Decreased (0), increased (1), normal (2), other (3) 15
HepaticPortalVein hasLumenType Obliterated (0), open (1), partially obliterated (2), other (3) 16
HepaticPortalVein isCavernousTransformationObserved NA (−1), true (1), false (0) 17
HepaticVein hasLumenDiameter Decreased (0), increased (1), normal (2), other (3) 18
HepaticVein hasLumenType Obliterated (0), open (1), partially obliterated (2), other (3) 19
LeftHepaticVein hasLumenDiameter Decreased (0), increased (1), normal (2), other (3) 20
LeftHepaticVein hasLumenType Obliterated (0), open (1), partially obliterated (2), other (3) 21
LeftPortalVein hasLumenDiameter Decreased (0), increased (1), normal (2), other (3) 23
LeftPortalVein hasLumenType Obliterated (0), open (1), partially obliterated (2), other (3) 24
LeftPortalVein isCavernousTransformationObserved NA (−1), true (1), false (0) 25
MiddleHepaticVein hasLumenDiameter Decreased (0), increased (1), normal (2), other (3) 34
MiddleHepaticVein hasLumenType Obliterated (0), open (1), partially obliterated (2), other (3) 35
RightHepaticVein hasLumenDiameter Decreased (0), increased (1), normal (2), other (3) 38
RightHepaticVein hasLumenType Obliterated (0), open (1), partially obliterated (2), other (3) 39
RightPortalVein hasLumenDiameter Decreased (0), increased (1), normal (2), other (3) 41
RightPortalVein hasLumenType Obliterated (0), open (1), partially obliterated (2), other (3) 42
RightPortalVein isCavernousTransformationObserved NA (−1), true (1), false (0) 43

Liver LeftLobe hasSizeChange Decreased (0), increased (1), normal (2), other (3) 22
RightLobe hasSizeChange Decreased (0), increased (1), normal (2), other (3) 40
CaudateLobe hasSizeChange Decreased (0), increased (1), normal (2), other (3) 12
Liver hasDensity Heterogeneous (0), homogeneous (1), other (2) 29
Liver hasLiverContour Irregular (0), lobulated (1), nodular (2), regular (3), other (4) 30
Liver hasLiverDensityChange Decreased (0), increased (1), normal (2), other (3) 31
Liver hasLiverPlacement Downward displacement (0), normal placement (1), leftward 

displacement (2), upward displacement (3), other (4)
32

Liver hasSizeChange Decreased (0), increased (1), normal (2), other (3) 33
Lesion Lesion hasLesionQuantity 1 (1), 2 (2), 3 (3), 4 (4), 5 (5), multiple (6) 26

Lesion LesionisDebrisObserved True (1), false (0), NA (−1) 27
Lesion LesionisLevelingObserved True (1), false (0), fluid (0), fluid gas (1), fluid solid (2), gas 

solid (3), other (4)
28

Parenchyma hasDensity Heterogeneous (0), homogeneous (1), other (2) 36
Parenchyma hasParenchymaDensityChange Decreased (0), increased (1), normal (2), other (3) 37
Area hasAreaDensity NA (−1), hyperdense (0), hypodense (1), isodense (2), 

other (3)
1

Area hasAreaLengthFirst A number in millimeter which represents the width of the 
lesion

2

Area hasAreaLengthSecond A number in mm which represents the width of the lesion 3
Area hasAreaMarginType Geographical (0), ill defined (1), irregular (2), lobular (3) 

serpiginous (4), speculative (5), well defined (6), other (7)
4

Area hasAreaShape Band (0), fusiform (1), irregular (2), linear (3), nodular (4), 
ovoid (5), round (6), serpiginious (7), other (8)

5

Area hasDensityType NA (−1), heterogeneous (0), homogeneous (1), other (2) 6
Area isCalcified True (1), false (0), NA (−1) 7
Area isCentralLocalized True (1), false (0) 8
Area isGallbladderAdjacent True (1), false (0) 9
Area isPeriphericalLocalized True (1), false (0) 10
Area isSubcapsularLocalized True (1), false (0) 11

NA – Missing value 
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questions, which prevents a single set of features to be 
optimal for all questions/problems. Figure 5 compares 
the accuracies for different questions using shared and 
question‑guided deep CNN‑based feature sets

2. Applying deep features: Effectively addresses the data 
representation challenge and paves the way for finding 
the most informative and discriminative set of features 
for a given task. End‑to‑end networks that learn bespoke 
and efficient mappings for different questions result in 
higher accuracy than cited work which uses handcrafted 
features.[4] Table 5 demonstrates the higher accuracy of 
the proposed system. It is compared with the highest 
reported performance using handcrafted features for 
imageCLEF liver CT annotation dataset.

Results in Table 5 reveal that the proposed system 
outperforms similar works with a similar purpose, both 
those using question‑specific handcrafted feature set and 
those that use shared feature sets with high‑dimensional and 
diverse low‑level features. This corroborates the claim that 
the proposed question‑guided deep feature extraction method 
provides a more discriminative and informative representation 
for filling in a radiology report about CT images.

Conclusions

This paper proposed a system for automatic radiology 
report generation that aims to enhance the productivity 
and efficiency of the medical workfellows and using 
radiological image‑based diagnosis. The proposed system 
takes advantage of both the self‑exploratory nature of the 
modern deep learning techniques and the robustness and 
efficacy of the classic machine learning algorithms such as 
SVMs.

Due to the inherent problem of availability of small samples 
in medical domains, the proposed system utilized MobileNet 
and tailored CNN as the building blocks of its deep learning 
module. The networks follow the main idea of convolutional 

networks but have remarkably fewer parameters. 
Furthermore, the transfer learning has been deployed by pre‑
training the MobileNet on the ImageNet. Then, the network 
was fine‑tuned using the small sample of the specific task.

In the proposed system, two end‑to‑end networks were 
implemented and trained for each question in a radiology 
report. That is, each question has its own set of deep 
features, extracted from its specialized deep network. 
Due to the variations in the sample distributions across 
classed for each question (imbalanced training data), and 
the sample size problem, SVM was employed as a robust 
classifier to mitigate these challenges. The proposed 
methods have been evaluated on the ImageCLEF2015 liver 
CT annotation dataset.[12] Question‑specific deep features 
using CNN, lead to a more efficient learning system with 
higher accuracy. The proposed approaches can be readily 
applied in other imaging tasks and applications.

As future work, we plan to employ data augmentation 
procedures to synthetically expand the dataset, allowing to 
apply larger DNNs with higher modeling capacity. Another 
direction could be inspecting the trained network for 
possible knowledge distillations. Investigating the so‑called 
tiny DNNs is also recommended for future work.
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