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SOCS1: phosphorylation, dimerization and tumor suppression
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ABSTRACT
Suppressor of cytokine signaling (SOCS) family members are upregulated 

following JAK-STAT pathway activation by cytokines. SOCS proteins are recognized 
inhibitors of cytokine signaling playing roles in cell growth and differentiation. 
Moreover, SOCS1 and SOCS3 have been shown to be involved in tumor suppression 
through their ability to interact with p53 leading to the activation of its transcriptional 
program and showing the implication of SOCS family members in the regulation 
of apoptosis, ferroptosis and senescence. More recently, we demonstrated that 
the SRC family of non-receptor tyrosine kinases (SFK) can phosphorylate SOCS1 
leading to its homodimerization and inhibiting its interaction with p53. Then, we 
reactivated the SOCS1-p53 tumor suppressor axis with the SFK inhibitor dasatinib 
in combination with the p53 activating compound PRIMA. This work suggests new 
avenues for cancer treatment and leaves open several new questions that deserve 
to be addressed.

INTRODUCTION

SOCS1 (Suppressor Of Cytokine Signaling-1) is a 
member of the SOCS family comprising 8 members (SOCS1, 
2, 3, 4, 5, 6, 7, and cytokine-inducible SH2 domain-containing 
protein (CISH)) which all contain an SH2 (Src Homology 
2) domain and a SOCS box region [1-3]. Some members of 
the SOCS family (CISH, SOCS1, SOCS2 and SOCS3) are 
induced following JAK-STAT signaling activation and are 
also recognized retro-inhibitors of cytokine signaling (Cartoon: 
#1 and #2) [1-3]. We recently demonstrated that SOCS1 can 
be phosphorylated on tyrosine (Y)80 in its extended SH2 
domain by members of the SRC family of non-receptor 
tyrosine kinases (SFKs) including YES1, SRC, LCK, LYN 
and BLK (Cartoon: #3) [4]. Tyrosine phosphorylation in the 
SH2 domain of SRC, LCK and LYN has been reported to 
decrease or impair binding to pY-peptides [5-7]. Because SH2 
domains are structurally very similar, we were accordingly able 
to demonstrate that a phosphomimetic substitution of SOCS1 
Y[80] in the SH2 domain is less effective to inhibit JAK-
STAT signaling (Cartoon: #4) [4]. In line with these results, 

it is tempting to speculate that other SH2 domain containing 
members of the SOCS family could be phosphorylated by 
members of the SRC family of non-receptor tyrosine kinases 
(Cartoon: #5). If confirmed, this will expand our knowledge on 
SOCS-family functions following non-receptor tyrosine kinase 
activation.

While performing in vitro kinase assays, we found that 
SOCS1 can dimerize and that the dimeric form is strongly 
phosphorylated compared to the monomeric form (Cartoon: 
#3) [4]. This is the first demonstration of a SOCS family 
member dimerization and we confirmed this ability in cellulo 
by pulling down a MYC-tagged version of SOCS1 following 
immunoprecipitation of a FLAG-tagged SOCS1 [4]. Of 
note, deletion of the SOCS box region did not abrogate the 
dimerization suggesting that the SH2 domain might be 
implicated in SOCS1 homodimerization [4]. Considering 
that all member of the SOCS family contain an SH2 domain 
and a variable N-terminal region, which could be involved in 
homodimerization, it is plausible for other SOCS members 
to have the capacity to homodimerize (Cartoon: #5). If 
this is confirmed, we will have to consider the possibility 
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of heterodimerization between the different SOCS family 
members.

SOCS1 has been shown to be a tumor suppressor 
with the ability to bridge p53 and ATM at DNA damage foci 
leading to p53 phosphorylation and a subsequent increase 
in its transcriptional activity (Cartoon: #6) [8, 9]. This direct 
interaction involves the SH2 domain of SOCS1 and the 
p53 N-terminal transactivation domain 2 (TAD2) [4, 8]. We 
have shown that a phosphomimetic substitution of SOCS1 
Y[80] is less effective to interact with p53 (Cartoon: #7) [4]. 
Moreover, the inhibition of SFKs with the small molecule 
dasatinib [10, 11] in combination with the compound 
PRIMA, which reactivates mutant p53 [12-14], leads to an 
increase of the endogenous p53-SOCS1 interaction in human 
lymphoma SU-DHL4 cells [4]. These results, combined with 
immunohistochemistry studies, suggested that SFK inhibitors 
could be an option to reactivate p53-SOCS1 tumor suppressor 
activity in patients with lymphomas [4]. Another interesting 
fact is a study conducted in many DLBCL cell lines treated 
with dasatinib. The results of the study showed that cells treated 
with dasatinib demonstrated a decreased SFK phosphorylation 
and decreased cellular proliferation. More interestingly, the 
cells did not respond to imatinib, a specific ABL inhibitor, 
suggesting that the action of dasatinib (an ABL-SFK inhibitor) 

was dependent on SFKs rather than ABL inhibition [15, 
16]. Our results show that the p53-SOCS1 interaction and 
tumor suppressor activity is modulated by the SFKs. SOCS1 
phosphorylation by SFKs leads to its dimerization which 
inhibits its anti-tumor activity by preventing its interaction 
with p53 [4]. It would be interesting to evaluate the ability 
of other pan or more specific tyrosine kinase inhibitors to 
activate the p53-SOCS1 tumor suppressor axis. Furthermore, 
our laboratory has shown that the SH2 domain of SOCS3 can 
interact with p53 by GST pull-down (unpublished data) and 
some groups have shown interaction of SOCS3 with p53 [17, 
18]. It is then likely that phosphorylation of SOCS3 by the 
SRC family also controls its ability to regulate p53.

Our work sheds light on the dynamic regulation of 
SOCS1 by the SRC family of tyrosine kinases and provide 
convincing evidence for SOCS1 dimerization. These two 
events, phosphorylation and dimerization regulate the p53-
SOCS1 tumor suppressor axis [4] and open new avenues in 
the regulation of SOCS proteins and in cytokine signaling. 
Moreover, our results suggest that a subset of patients with 
lymphomas could benefit from treatment with inhibitors of 
SRC family kinases [4]. Finally, it has been shown that HER+ 
breast cancer cells treated with SRC inhibitors allowed tumor 
regression in xenografts and inhibition of proliferation [19] in a 
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Figure 1: STAT signaling leads to SOCS1, SOCS2, SOCS3 and CISH transcription and protein accumulation. 2- SOCS 
implication in inhibition of JAK-STAT signaling. 3- SOCS1 phosphorylation by the SRC family of non-receptor tyrosine kinases leads to 
SOCS1 homodimerization. 4- Phosphorylated SOCS1 is suggested to be less effective to inhibit JAK-STAT signaling. 5- Other members 
of the SOCS protein-family might be phosphorylated, could dimerize and could be implicated in p53 regulation. 6- Tumor suppressor role 
of SOCS1. 7- Phosphorylated SOCS1 is suggested to be less effective to activate p53.
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p53 dependent manner, suggesting that our results are relevant 
to other cancer models.
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