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REVIEW

Organoids in domestic animals: with which 
stem cells?
Bertrand Pain* 

Abstract 

Organoids are three-dimensional structures that are derived from the self-organization of stem cells as they differ-
entiate in vitro. The plasticity of stem cells is one of the major criteria for generating organoids most similar to the 
tissue structures they intend to mimic. Stem cells are cells with unique properties of self-renewal and differentiation. 
Depending on their origin, a distinction is made between pluripotent (embryonic) stem cells (PSCs), adult (or tissue) 
stem cells (ASCs), and those obtained by somatic reprogramming, so-called induced pluripotent stem cells (iPSCs). 
While most data since the 1980s have been acquired in the mouse model, and then from the late 1990s in humans, 
the process of somatic reprogammation has revolutionized the field of stem cell research. For domestic animals, 
numerous attempts have been made to obtain PSCs and iPSCs, an approach that makes it possible to omit the use 
of embryos to derive the cells. Even if the plasticity of the cells obtained is not always optimal, the recent progress in 
obtaining reprogrammed cells is encouraging. Along with PSCs and iPSCs, many organoid derivations in animal spe-
cies are currently obtained from ASCs. In this study, we present state-of-the-art stem cell research according to their 
origins in the various animal models developed.
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1  Introduction
In part I, we present a summary of the state-of-the-art 
models of pluripotent stem cells (PSCs), adult stem cells 
(ASCs), and stem cells induced in two original murine 
and human models with the data available in the mam-
malian agricultural domestic species of interest, and also 
in birds. A schematic figure illustrates the interactions 
between stem cells, organoids, and species (Figure  1). 
In part II, we summarize the main fields of application 
of organoids, the use of which will be described in more 
detail in the following chapters, which are dedicated to 
several tissues of interest.

2 � Part I: organoids and 3D structures established 
in mouse and human models

2.1 � Definition
An organoid is defined as a three-dimensional struc-
ture that self-organizes from a PSC or an ASC and has 
the capacity to self-renew and to differentiate to give rise 
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to the different constitutive morphotypes of the tissue it 
aims to mimic and to reproduce at least some of its phys-
iological functions. This functional notion becomes pre-
ponderant in the definition of an organoid derived from 
stem cells and differentiates organoids from explants, 
which maintain the preexisting functions of an already 
developed tissue. This same notion of functionality of 
organoids also differentiates them from embryoid bodies, 
obtained by the aggregation of PSC cells but according to 
a mode of non-directed differentiation and which do not 
self-organize. Different types of stem cells can generate 
organoids, depending on their developmental or tissue 

origin [1]. In a very general description, the main steps 
to generate an organoid are the initial proliferation of 
stem and precursor cells in a 3D structure and then their 
induction in an environment which allows it to differenti-
ate under the effect of inducers (media, growth factors, 
chemical molecules, etc. …). These changes in culture 
conditions are either put together or sequentially to 
guide stem cell differentiation. The whole process ensures 
the development and maturation of the organoid which 
then presents several cellular morphtypes representative 
of the tissue. Cancer stem cells can also help produce 3D 
tumors in certain conditions, but are not considered in 
the context presented here.

Figure 1  Schematic illustration of the various stem cells that could be used to generate 3D organoids, depending on their origin and 
species. Pluripotent stem cells (PSCs) exhibit unique self-renewal and differentiation properties. Derived from embryos or obtained through 
somatic reprogramming, PSCs have been obtained in model species (human, rodents) and in some domestic birds and mammals. Currently, 
the PSCs isolated from these mammalian species do not exhibit the same cell plasticity or differentiation properties as those of model and avian 
species. Multipotent stem cells are usually assimilated to the adult stem cells (ASCs) found in embryonic and adult tissues, such as hematopoietic, 
intestinal, neural, or dermal stem cells. These cells are presently the major sources for deriving organoids in domestic animals. Among the organoids 
of interest, we will illustrate in the next chapters of this review those developed for the brain, intestines, liver, lungs, mammary glands, muscles, 
reproductive system, and skin.
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2.2 � Embryonic PSCs
One of the goals of cell culture is to mimic the functions 
of the tissue from which the cells are taken. Whether it 
is healthy or pathological tissue, the objective is to have 
an in vitro model to study the physiological functions or 
the pathological state of the tissue. Numerous cell lines 
have been isolated and characterized, including stem 
cells derived either from embryos to obtain embryonic 
stem cells (ESCs) or from tissues to obtain ASCs. ESCs 
were first isolated in the 1980s in the mouse model [2, 
3]. Characterized by their self-renewal and their poten-
tial for differentiation in vitro, mouse ESCs (mESCs) also 
have the unique property of contributing to the somatic 
and germinal chimerism of an embryo when they are 
injected into a preimplantation blastocyst. Non-human 
and human primate ESCs were first obtained in the 1990s 
[4, 5] from the culture of preimplantation embryos. The 
culture conditions remain the critical point in the estab-
lishment of these cells and their plasticity, depending on 
the species. In the 2000s, epiblast stem cells (EpiSCs) 
were isolated from a postimplantation mouse embryo [6, 
7]. These cells no longer have the property of contribut-
ing to chimerism in vivo even if they retain the properties 
of differentiating in vitro in the three embryonic lineages 
(the ectoderm, the endoderm, and the mesoderm). This 
property of colonization of the embryo and, in particu-
lar, of germinal colonization is currently considered as 
one of the most stringent criteria, making it possible to 
distinguish ESCs in a state known as “naive” versus the 
“primed” state, whose archetype are EpiSCs [8]. Numer-
ous publications have characterized these two types of 
stem cells, which also differ in their culture conditions 
and in their molecular and epigenetic characterization 
[9–11].

The existence of these same stages in species other than 
rodents is still widely debated, especially in human and 
non-human primate models, for which many works have 
tried to define culture conditions to obtain and maintain 
naive cells [12]. In particular, the use of different cocktails 
of small molecules that inhibit signaling pathways have 
been described, which make it possible to obtain naive 
cells [13–15].

In other species, ESCs have been isolated, but this strict 
definition of germ colonization is currently restricted to 
rodents. We can therefore undoubtedly qualify these cells 
as embryonic stem (ES)-like cells in the absence of this 
fundamental property, in particular for mammalian spe-
cies other than rodents. These “ES-like” cells have been 
isolated, amplified, and established in lines with self-
renewal and differentiation properties in many species, 
including agricultural species such as pigs [16–19], cows 
[20, 21], sheep and goats [22–24], horses [25, 26] and 
rabbits [27, 28]. PSCs have been obtained and validated 

in birds, such as chickens [29, 30], and in fish such as 
medaka [31, 32] and zebrafish [33]. Most of these cells 
were characterized by their proliferation and differen-
tiation potential in  vitro and by the presence of certain 
markers, such as surface antigens, including SSEA1, 
SSEA3, and SSEA4, antigens initially identified in mice 
but whose cross-reactivity with other species has been 
found to be important in identifying these cells [34, 35]. 
Among these cells, very few have the property of coloni-
zation of the embryo, even at the somatic level, with the 
notable exceptions of chicken [29, 30] and zebrafish cells 
[33].

More recently, using strategies similar to those devel-
oped for human cells based on cocktails of inhibi-
tory molecules, studies have been conducted of 
obtaining ESCs in bovine and porcine species even if 
chimera experiments were not reported [18, 20, 21]. In 
addition, recent molecular analyses carried out at the 
level of cells isolated from preimplantation embryos have 
made it possible to better define the markers associated 
with these early stages in species such as cattle, pigs, and 
rabbits and to compare them with mouse, primate, and 
human models [36–38]. These studies should help the 
development of cells with properties close to or identi-
cal in their developmental properties to those of murine 
naive cells.

2.3 � Adult stem cells
ASCs are multipotent cells that can generate all the 
specialized cell types that are present in the specific tis-
sue or organ from which they have been isolated. They 
have been isolated progressively from most human tis-
sues because of the characterization of numerous mark-
ers specific to each tissue niche. Hematopoietic stem 
cells were the first to be identified, purified, and charac-
terized in the 1960s by the pioneering work of Till and 
McCullough [39]. Mesenchymal stem cells were also 
very quickly identified in the same bone marrow tissue, 
and their presence in a multitude of tissues was con-
firmed subsequently, even if the nature of the markers to 
identify them varies. Neural stem cells were also identi-
fied in the 1960s from fetal brain tissue and later, in the 
1990s, in adult brain tissue. The isolation of neurospheres 
under well-defined culture media conditions allowed 
their culture [40]. Progressively, stem cells from other tis-
sues have been isolated and characterized, notably with 
the pioneering work of H. Clevers on the intestinal and 
epithelial stem cells of numerous organs and the identi-
fication of LGR5 as a marker for many of these cells [41]. 
To date, stem cells have been identified in most organs 
[42, 43], including the skin [44], muscles [45], the intes-
tine [46], the liver [47], the lungs [48, 49], the mammary 
glands [50], and the reproductive system, for which the 
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reproductive cells also have very particular properties 
of self-renewal and differentiation. Organoids derived 
from ASCs are generated without genetic modification 
by transcription factors, unlike organoids derived from 
iPSCs.

2.4 � Induced PSCs
The arrival of somatic reprogramming technology in 
2006 truly revolutionized the field of stem cell research 
[51–53]. Induced PSCs (iPSCs) share properties similar 
to ESCs without the inconvenience of the ethical issues 
(at least for the human species). Initially demonstrated in 
the mouse model, the concept was extended quickly to 
non-human primates, humans [54], and many other spe-
cies, including rabbits [55, 56], sheep and cattle [57–60], 
pigs [18, 61–63], dogs [64, 65], cats [66], horses [67, 68], 
and even some endangered species such as the snow 
leopard [69]. However, in these animal species, it is dif-
ficult to validate the status of the reprogrammed cells 
[70] because the developmental potential of the repro-
grammed cells is rarely tested. In non-mammalian spe-
cies, the results are scarcer for avian cells [71–73] and 
tests on other species [72]. Nevertheless, the main inter-
est in iPSCs, in particular for humans but also for agri-
cultural species, lies in obtaining cells with properties 
similar to ESCs, but without going through the deriva-
tion from embryos. Even if the conditions of derivation 
and maintenance by different culture media are not yet 
conducive to obtaining the most plastic cells possible in 
agricultural species, progress is being made constantly, 
providing hope to obtaining such cells in a timely and 
reasonable manner.

The concept of somatic reprogramming is to intro-
duce a cocktail of genes –including transcription factors 
involved in the control of pluripotency–into a somatic 
cell, thus leading to its reprogramming to a pluripotent 
cell. The first canonical combination (OSKM, OCT4, 
SOX2, KLF4, and c-MYC genes) was described by S. 
Yamanaka’s team in 2006. Subsequently, other combina-
tions and genes have been identified gradually, such as 
the OCT4, SOX2, NANOG, and LIN28 (OSNL) combi-
nation [54] and actors such as Nr5a2 [74], ESRRB [75], 
GLIS1 [76], ZIC3 [77], TBX3 [78], H1f00 [79], NKX3.2 
[80], and miR302 [81]. These factors either participate 
directly in the reprogramming process or increase the 
reprogramming efficiency [82, 83]. Surprisingly, it was 
recently reported that the absence of OCT4 may favor 
reprogramming [84]. The mechanisms controlling the 
epigenetic barriers that exist between somatic and pluri-
potent cells have also been taken into account to better 
understand and facilitate reprogramming [85–87]. Many 
methods and molecules have been described to have a 

positive or negative impact in the reprogramming stages 
[88–90].

2.5 � Initial establishment of organoids
The self-renewing and differentiating properties of ESCs 
or iPSCs as well as ASCs are the two critical properties 
for the generation of organoids. The pioneering work of 
the laboratory of Y. Sasai [91] and then of H. Clevers [41] 
was quickly popularized by the development of numer-
ous approaches for the production of organoids in most 
tissues. Initially developed from tissue stem cells, more 
complex protocols also appeared from PSCs. Most of 
these studies were carried out in mouse and human mod-
els and, so far, little data are available for other species, 
especially those of agricultural interest [92].

In this review, we focus on the achievements and pro-
jects carried out in non-human and rodent species, with 
special focus on species of agricultural interest.

3 � Part II: biological issues addressed by 3D 
organoids

In recent years, the significant development of 3D orga-
noid approaches has allowed various applications. 
Human organoids were first presented as tools to study 
tissue development with pioneering achievements 
(retina, intestine, etc.) [93]. Soon after, they were used 
as models to mimic and reproduce certain patholo-
gies in  vitro [43, 94]. In particular, the development of 
brain organoids has paved the way for the modeling of 
many neurodegenerative pathologies, for which access 
to brain tissue is almost impossible. The possibility of 
deriving reprogrammed human-induced PSCs (hiPSCs) 
from patient biopsies, modifying them, and obtaining 
isogenic cells by reversing mutations through genome 
editing approaches, for example, has also allowed numer-
ous studies and publications for a large spectrum of 
pathologies that affect the nervous system [94–98]. The 
same hiPSCs from patients with genetic diseases have 
been used to generate brain organoids and to model the 
impact of the mutation that is observed in the patient 
during the development of these structures with exam-
ples such as the RETT syndrome or amyotrophic lateral 
sclerosis [97–99].

If the analysis of mutations is a privileged axis at both 
the developmental and pathological levels for congenital 
genetic alterations in particular, the organoid approach 
also makes a contribution to obtain models for studies 
in oncology, in particular, through the potential devel-
opment of personalized medicine to adapt treatment 
for individual patients with cancer. This new methodol-
ogy has already been implemented in the intestine, kid-
ney, prostate, ovary, bladder, pancreas, liver, breast, and 
brain [100–103] and new models and uses are likely to 
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emerge. Through the development of tumoroids derived 
from patient biopsies, it may be possible to test the most 
efficient molecules on diseased organoids in parallel with 
healthy organoids obtained from the same patient and 
therefore to better adapt a targeted antitumor treatment 
and target tumoral cells in the patients. The published 
results are encouraging [104–106]. Unthinkable only a 
few years ago, the first demonstrations are underway to 
screen certain anticancer agents and adapt treatment to 
each patient.

Owing to their near-physiological state, organoids are 
promising innovative tools for toxicological studies. Their 
low ethical concerns, as compared with in  vivo animal 
studies, also argue in favor of their use in this field. They 
have already been used to assess the toxicity of many 
substances in humans. It is probable that animal-based 
organoids will also be used more widely in the future to 
predict the adverse effects of drugs in the target species. 
Similarly, toxicological screening approaches are particu-
larly concerned by this 3D organoid approach to better 
define the toxicological threshold of a molecule in an 
environment different from that of an adherent line or 
culture without complexity, therefore trying to fit with 
what is observed in a tissue. If the difficulty is to oper-
ate with a “floating” structure and one that takes longer 
to obtain than the simple seeding of an adherent cell line, 
the answers are more relevant as to the availability of the 
molecules tested within the tissue.

Studies of infectious diseases have been limited by the 
paucity of functional models that mimic normal physiol-
ogy and pathophysiology in a species-specific manner. 
The development of brain, lung, and intestine organoids, 
among others, of human and animal species constitutes 
a considerable advance that facilitates studies of host–
pathogen interactions. Breakthroughs in their under-
standing, for viruses as well as bacteria and parasites, 
are greatly expected. In the dedicated sections, examples 
will be given of some of the major discoveries that have 
been made in this field thanks to organoids. Another area 
that has received special attention is the development 
of approaches to study pathogen–host relationships, 
whether these pathogens are bacteria [107], parasites 
[108], or viruses [109, 110], by targeting different tissue 
models via brain organoids [109], intestinal organoids 
[111], or pulmonary organoids [107, 111, 112], among 
others. For example, approaches to the infection of cere-
bral organoids by the Zika virus have highlighted the tro-
pism of this virus for neuronal precursors and therefore 
make an a priori link with the microcephaly observed in 
infants following the infection of mothers [109, 113, 114]. 
More recently, the same approach was put forward to 
follow the impact of the viral spread of largely unknown 
viruses, such as SARS-Cov-2. The tissue complexity 

reproduced at the organoid scale makes it possible to 
study the propagation of the pathogen in all the tis-
sue components, in particular to reproduce the kinet-
ics of contamination [115–117]. In an original manner, 
the organoids, in this case intestinal, can make it possi-
ble to compare different susceptibilities to SARS-Cov-2 
between human and bat models [118]. Mention should 
also be made of studies on microbiota–host interac-
tions, whether these are normal or pathogenic. The study 
of microbiota has become important in many develop-
mental and pathological aspects and in several tissues, 
although the intestine remains the reference tissue for 
these approaches. The skin, the lungs, etc., also have their 
own microbiota and having in  vitro models to test the 
balance and imbalance of these ecosystems is relevant.

4 � Conclusion
In the rapidly developing field of organoids, the human 
model is still the most studied, but many new develop-
ments concern agricultural animals. At this level, having 
physiological in  vitro models that closely mimic whole 
tissues, but are different from explants that require 
repeated biopsies, will be an advantage. The development 
of organoids also responds to the increasingly significant 
and important societal demand to limit animal testing.
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