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Abstract

Attentional selection is a function that allocates the brain’s computational resources to the most important part of a
visual scene at a specific moment. Saliency map models have been proposed as computational models to predict at-
tentional selection within a spatial location. Recent saliency map models based on deep convolutional neural networks
(DCNNs) exhibit the highest performance for predicting the location of attentional selection and human gaze, which re-
flect overt attention. Trained DCNNs potentially provide insight into the perceptual mechanisms of biological visual sys-
tems. However, the relationship between artificial and neural representations used for determining attentional selection
and gaze location remains unknown. To understand the mechanism underlying saliency map models based on
DCNNs and the neural system of attentional selection, we investigated the correspondence between layers of a
DCNN saliency map model and monkey visual areas for natural image representations. We compared the characteris-
tics of the responses in each layer of the model with those of the neural representation in the primary visual (V1), inter-
mediate visual (V4), and inferior temporal (IT) cortices. Regardless of the DCNN layer level, the characteristics of the
responses were consistent with that of the neural representation in V1. We found marked peaks of correspondence
between V1 and the early level and higher-intermediate-level layers of the model. These results provide insight into the
mechanism of the trained DCNN saliency map model and suggest that the neural representations in V1 play an impor-
tant role in computing the saliency that mediates attentional selection, which supports the V1 saliency hypothesis.
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Significance Statement

Trained deep convolutional neural networks (DCNNs) potentially provide insight into the perceptual mecha-
nisms of biological visual systems. However, the relationship between artificial and neural representations
for determining attentional selection and gaze location has not been identified. We compared the character-
istics of the responses in each layer of a DCNN model for predicting attentional selection with those of the
neural representation in visual cortices. We found that the characteristics of the responses in the trained
DCNN model for attentional selection were consistent with that of the representation in the primary visual
cortex (V1), suggesting that the activities in V1 underlie the neural representations of saliency in the visual
field to exogenously guide attentional selection. This study supports the V1 saliency hypothesis.
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Introduction
Attentional selection enables the brain to allocate its

computational resources to the most important part of a
visual scene at a specific moment (Posner, 1980) and es-
tablish visual perception (Carrasco, 2011; Yang et al.,
2018). Visual saliency mediates attentional selection and
underlies the determination of gaze location (Koch and
Ullman, 1985; Zhang et al., 2012). Saliency maps have
been proposed as a biologically plausible model for pre-
dicting attentional selection within the presented visual
scene (Itti and Koch, 2000). In this model, the most sa-
lient location in a visual scene induces attentional selec-
tion. From the original model (Itti et al., 1998), various
saliency map models based on the visual system have
been proposed (Russell et al., 2014; Wagatsuma, 2019;
Uejima et al., 2020) in which the activities of model neu-
rons in early vision are the first, and necessary, process
for organizing the saliency map. The crucial role of re-
sponses in the primary visual cortex (V1) used for com-
puting visual saliency has been demonstrated by various
studies, including physiological, psychophysical, and
computational works (V1 saliency hypothesis; Li, 1999a,
2002; Jingling and Zhaoping, 2008; Zhaoping, 2014,
2019; Yan et al., 2018).
The deep neural network approach can be used to

delve even more deeply into understanding the mecha-
nism of sensory cortical processing (Yamins and DiCarlo,
2016). Deep convolutional neural network (DCNN) mod-
els, such as AlexNet (Krizhevsky et al., 2012), significantly
improve object recognition for computer vision and pro-
vide a rich interconnection between neuroscientific and
artificial approaches to explain the mechanism of visual
systems (Yamins and DiCarlo, 2016; Geirhos et al., 2018).
After AlexNet was trained on a large-scale dataset, model
neurons in its early layers demonstrated selectivity to ori-
entation and spatial frequency (Zeiler and Fergus, 2013),
similar to V1 neurons (Hubel and Wiesel, 1968) and Gabor
filters (Deco and Lee, 2004; Sakai et al., 2012). Pospisil et
al. (2018) reported that many model neurons in AlexNet
selectively respond to object boundaries and their curva-
ture, which is similar to the neuronal characteristics of the
intermediate visual area (V4; Pasupathy and Connor,
2001). These studies demonstrated that the mechanisms
used by DCNN models for object recognition correspond,
at least in part, to the hierarchical structure of the ventral
visual stream for object perception (Le et al., 2012;
Mahendran and Vedaldi, 2014).
Deep neural networks have been used as a powerful

modern tool to achieve and develop advanced saliency map

models. Pan et al. (2016) proposed a saliency map model
based on a DCNN (Fig. 1A), which outperformed previous
models based on the visual system for the prediction of
human gaze location. However, the mechanism underlying
the DCNN saliency map model after it is trained remains
unknown. Additionally, the relationship between artificial
and neural representations of attentional selection for gaze
location has not been elucidated at the layer level.
Analyses of the DCNN saliency map model will provide
crucial insight into the role of V1 responses underlying at-
tentional selection.
To understand the interconnections between the mecha-

nisms of DCNN saliency map models and neural systems
for determining attentional selection, we investigated the
correspondence between a DCNN saliency map model and
monkey visual cortices for natural image representations.
We trained the DCNN proposed by Pan et al. (2016) in sali-
ency map generation based on natural image input (Fig. 1B)
using various saliency datasets, including natural images
and associated eye-fixation data. We quantitatively com-
pared the characteristics of model neurons in each layer of
the DCNN saliency map model with those of the neural rep-
resentations in V1, V4, and the inferior temporal cortex (IT).
Regardless of the DCNN layer level, the characteristics of
the responses in the DCNN saliency map model were con-
sistent with that of the neural representation in V1. We found
marked peaks of correspondence between V1 and early
level and higher-intermediate-level layers. These results
suggest that the neural representation in V1 has a crucial
role in computing saliency that underlies attentional selec-
tion and that mediates the determination of gaze location,
which supports the V1 saliency hypothesis.

Materials and Methods
Physiologic experiments and responses of monkey
visual cortices to natural object surfaces
In the present study, we analyzed data obtained in a

previous study conducted by Tamura et al. (2016). In that
study, Tamura and colleagues extracellularly recorded the
responses of a single neuron in the V1, V4, and IT of four
monkeys (Macaca fuscata; two males and two females,
body weight 5.9–8.6 kg) to images of natural object surfa-
ces (Fig. 2) to investigate how surface-related features de-
rived from natural objects are represented in the visual
cortical areas. All experiments were performed in accord-
ance with the guidelines of the National Institutes of
Health (1996) and Japan Neuroscience Society and ap-
proved by the Osaka University Animal Experiment
Committee.
The experimental procedures were similar to those of

their previous study (Tamura et al., 2014). The monkeys
were prepared during aseptic surgery, in which a head
restraint was implanted. Additionally, the lateral and oc-
cipital part of the skull over the recording region was
covered with acrylic resin. These surgical procedures
were performed under full anesthesia via inhalation of
1–3% isoflurane (Forane, Abbott Japan) in nitrous oxide
(70% N2O, 30% O2) through an intratracheal cannula.
The monkeys were given an antibiotic (Pentcillin, Toyama
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Chemical; 40mg/kg, i.m.), and an anti-inflammatory and
analgesic agent (Voltaren, Novartis; or Ketoprofen, Nissin
Pharmaceutical) immediately after surgery. The admin-
istration of the antibiotic, and anti-inflammatory and
analgesic agent was maintained during the first post-
operative week. After one to twoweeks of recovery,
the monkeys’ eyes were examined to enable the selec-
tion of appropriate contact lenses that allowed images
placed 57 cm from the cornea to be focused on the ret-
ina. Photographs of the retinal fundus were used to de-
termine the position of the fovea.
On the day of neural recording, the monkeys were

sedated using intramuscular injections of atropine sul-
fate (0.1mg/kg) and ketamine hydrochloride (12mg/kg).
During the preparation for neural recording, the mon-
keys were analgesized via inhalation of 1–3% isoflurane
in nitrous oxide (70% N2O, 30% O2) through an intratra-
cheal cannula. These were infused with the opioid fen-
tanyl citrate (Fentanest, Daiichi Sanyo; 0.035mg/kg/h)
in lactated Ringer’s solution. Tamura and colleagues
drilled a small hole (;5 mm) in the resin-covered skull
and made a small slit (2 mm) in the dura. They inserted
an electrode through the slit to enable the recording of
the neuronal responses.

Tamura and colleagues dilated the pupil of the eye con-
tralateral to the recording hemisphere and relaxed the lens
of the eye using 0.5% tropicamide/0.5% phenylephrine hy-
drochloride (Mydrin-P, Santen). They then covered the cor-
nea of the eye with a contact lens of appropriate refractive
power and curvature, and an artificial pupil (diameter, 3 mm)
so that the eye would focus on images placed 57cm away.
After the electrode for recording the neuronal responses
was inserted, they added vecuronium bromide (Masculax,
MSD; 0.06mg/kg/h) to the infusion solution to prevent eye
movement during recording. Thus, the monkeys passively
viewed stimuli on the display without eye movement.
Tamura and colleagues made single-unit recordings

from V1, V4, and IT using a single-shaft electrode with 32
recording probes arranged linearly (A1X32-10 mm 50–
413, A1X32-10 mm 100–413; NeuroNexus) or an eight-
shaft electrode, where each shaft was a tetrode with four
recording probes at the tip arranged in a rhombus (A8X1
tetrode-2 mm 200–312; NeuroNexus), and the centers of
adjacent shafts were 0.2 mm apart. The distance between
the centers of adjacent recording probes was 50 or
100mm when using the single-shaft electrode and 25 mm
when using the eight-shaft electrode. The activity of a
single neuron was isolated offline using custom-made

Figure 1. A, CNN architecture of the saliency map model proposed by Pan et al. (2016). This DCNN consists of nine convolutional
(Conv), two max pooling (Max Pool), and one deconvolutional (Deconv) layers. We applied a variety of natural images with an inten-
sity value ranging from 0 to 1 (RGB color images, 320�240 pixels) to the input layer of the network. Human fixation data were pro-
vided to the network as the ground truth images for learning the characteristics of human fixation locations. B, Examples of the
natural images and associated eye-fixation maps (ground truth) that were used to train the DCNN (Pan et al., 2016) for the genera-
tion of saliency maps. In total, 11,580 natural images and human fixation data were applied to the DCNN to generate the saliency
map. The eye-fixation maps were generated by combining the fixation points across all images, followed by the convolution of the
combined points with a 2D Gaussian function (for details, see Judd et al., 2009).
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software to avoid the problem caused by spiking activity
from the same neuron being recorded by two or more ad-
jacent probes (for details, see Kaneko et al., 1999, 2007;
Tamura et al., 2014). The recording sites in V1 were lo-
cated on the surface of the occipital cortex, well behind
the lunate sulcus. Those in V4 were located between the
superior temporal sulcus and the lunate sulcus. Those
in the IT cortex were located between the superior tem-
poral sulcus and the anterior middle temporal sulcus,
and anterior to the posterior middle temporal sulcus.
After each recording session, the monkeys received an-
algesics and antibiotics. Each recording session lasted
up to 7 h, and the monkeys had at least a week’s rest
between recording sessions.
The stimulus set used by Tamura et al. (2016) consisted

of 64 images of eight types of natural objects (Fig. 2):
stones (St; n=8, #1–8), tree barks (Ba; n=8, #9–16),
leaves (Le; n=8, #17–24), flowers (Fl; n=8, #25–32), fruits
and vegetables (FV; n=8, #33–40), butterfly wings (BW;
n=8, #41–48), feathers (Fe; n=8, #49–56), and skins and
furs (SF; n=8, #57–64). The stimuli (6° � 6° in visual
angle) were displayed on a liquid crystal display monitor
(CG275W, Eizo) that was calibrated via an internal calibra-
tor and checked using a spectrometer (Minolta CS-1000).

The luminance values of the white and black areas were
125 and 1.3 cd/m2, respectively. Each stimulus was pre-
sented once monocularly for 200ms against a homogene-
ous gray background to the eye contralateral to the
recording hemisphere, and a homogeneous gray blank
screen was presented for intervals of 200ms between
each presentation. This stimulus-presentation procedure
was repeated for 25 or 30 blocks during each recording
session, with the stimulus order pseudorandomized in
each block.
The magnitude of a visually evoked response to a given

stimulus was computed based on the firing rate recorded
during the 200-ms stimulus-presentation period. To com-
pensate for response latency, the beginning of the 200-
ms window of stimulus presentation was shifted to 80ms
after stimulus onset for V1, V4, and IT neurons. The re-
sponsiveness of each neuron was qualitatively evaluated
by comparing the firing rates recorded during the stimu-
lus-presentation period across stimuli (Kruskal–Wallis
test, p, 0.01).
The responses of 691 V1 neurons (from two monkeys),

494 V4 neurons (from two monkeys), and 294 IT neurons
(from three monkeys) to the 64 images were recorded. In
the present study, we compared these responses from

Figure 2. Stimuli consisting of natural object surfaces used for recording neuronal responses in V1, V4, and IT from M. fuscata by
Tamura et al. (2016). A stimulus set in that physiological study consisted of 64 images of eight types of natural objects: stones (St;
n=8, #1–8), tree barks (Ba; n=8, #9–16), leaves (Le; n=8, #17–24), flowers (Fl; n=8, #25–32), fruits and vegetables (FV; n=8, #33–
40), butterfly wings (BW; n=8, #41–48), feathers (Fe; n=8, #49–56), and skins and furs (SF; n=8, #57–64). In that study, the
responses of V1, V4, and IT neurons to these images were recorded to investigate how the surface visual features derived from nat-
ural objects are presented in these visual cortices. Additionally, these images were provided to the DCNN saliency map model (Pan
et al., 2016) to analyze the characteristics of the responses of model neurons.
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V1, V4, and IT neurons with responses in each layer of a
DCNN saliency map model. In the experiments con-
ducted by Tamura et al. (2016), the monkeys were analge-
sized and paralyzed because some of the sessions
required .1 h of stable recording. We cannot rule out the
possibility that this procedure affected the neuronal re-
sponses. However, in previous works, the stimulus selec-
tivity of V1 and IT neurons recorded from anesthetized/
paralyzed monkeys was shown to be similar to that of
awake-behaving monkeys (Wurtz, 1969; Tamura and
Tanaka, 2001), which indicates that any effect of such
preparation was likely to be immaterial, if it existed.

DCNNmodel for the generation of a saliency map
To understand the mechanism of attentional selection

for computer vision and the visual system, we used the
DCNN saliency map model proposed by Pan et al. (2016),
which uses simple feedforward networks, such as
AlexNet (Krizhevsky et al., 2012) and VGG16 (Simonyan
and Zisserman, 2014). The relatively simple network might
be biologically suitable for understanding the mechanism of
the bottom-up saliency map and attentional selection. By
contrast, to achieve significantly accurate gaze prediction,
other DCNN saliency map models (Kümmerer et al., 2014,
2017; Pan et al., 2017; Liu and Han, 2018) have been devel-
oped with complicated architectures. Additionally, in some
models, the trained networks of AlexNet and VGG16 for ob-
ject classification have been used to extract visual features.
We speculate that the complicated CNN architectures of
these models are distinct from the neural system involved in
attentional selection.
Figure 1A shows the CNN architecture of the saliency

map model proposed by Pan et al. (2016). This DCNN
consists of nine convolutional, two max pooling, and one
deconvolutional layers. “Conv (7� 7, 96)” in layer 1 indi-
cates that this layer has 96 convolutional filters with the
spatial size (width � height) of 7� 7 pixels. Because the
input images consist of the three-color maps of RGB,
the filters are actually represented as three-dimensional
(3D) arrays with 7� 7 � 3 elements. The application of
such a 3D filter to an input image with 320� 240� 3 ele-
ments generates a 2D array, called a “feature map,” with
320� 240 elements; in this study, we refer to each ele-
ment as a “model neuron.” Note that 96 feature maps are
generated in total as the output of the first convolutional
layer in the DCNN proposed by Pan et al. (2016) because
one corresponding feature map is generated from each
filter, which indicates that the first convolution produces the
3D array F with 320� 240� 96 elements. Each feature map
comprising the 3D array F is referred to as a “channel” of
this layer. The c-th channel F p; p; cð Þ represents the exis-
tence of a specific visual feature extracted by the c-th con-
volutional filter (Krizhevsky et al., 2012; Zeiler and Fergus,
2013). The element F x; y; cð Þ represents the responses of a
model neuron placed at the spatial location x; yð Þ for such a
visual feature. Note that the characteristics and selectivity of
each filter used for extracting a feature are autonomously
determined via error backpropagation learning. Other con-
volutional layers represented by “Conv (W�H, C)” generate
C feature maps based on C9 maps in the previous layer,

where C9 corresponds to the number of channels in the pre-
vious layer. As shown in the first layer, the convolutional fil-
ters actually form 3D arrays with W�H � C9 elements. The
convolutional operation using the c-th filter mc (with
W�H � C9 elements) in a specific convolutional layer is
defined as follows:

F x; y; cð Þ ¼
XC9

k¼1

Xw

i¼�w

Xh

j¼�h

mc i; j; kð ÞF9 x1 i; y1 j; kð Þ;

(1)

where F9 represents a 3D array that includes the C9 fea-
ture maps in the previous layer. If the current layer is allo-
cated after the input layer, then the RGB image array
corresponds to F9. w and h denote W

2 and H
2, respectively,

where b�c represents the flooring function. Note that the
number of channels is fixed after the max pooling and nor-
malization of the layers in the DCNN. Additionally, the
spatial size of the feature maps is fixed after the process
in the convolutional layers because the zero-padding ap-
proach is applied to the network. In this network, model
neurons in each convolutional layer are activated by a rec-
tified linear unit (ReLU; Nair and Hinton, 2010; Krizhevsky
et al., 2012) nonlinearity. The first two convolutional layers
are followed by pooling layers, which decrease the width
and height of the feature maps in the intermediate layers
by a factor of four. After the final convolutional layer (Fig.
1A, layer 9), a deconvolution layer is used to generate a
saliency map that corresponds to the width and height of
the input images.
In this study, the filters of the DCNN used for generating

the saliency map are randomly initialized. A variety of nat-
ural images with an intensity value ranging from zero to
one (RGB color images, 320� 240 pixels) are provided to
the input layer of the network. In the original study (Pan et
al., 2016), human behavioral data obtained by recording
mouse tracking (Jiang et al., 2015) were provided to the
DCNN for learning attentional characteristics. However,
to train the DCNN, we apply human-fixation data to the
network as the ground truth images with an intensity
value ranging from zero to one (eight-bit gray-scale im-
ages, 320� 240 pixels; Fig. 1B). We use various saliency
datasets, including natural images and human-fixation
data, as the training data (Judd et al., 2009; Borji and Itti,
2015; Bylinskii et al., 2015). To increase the number of
training data, we also use mirror images with respect to
the vertical midline. In total, we prepare 11,580 natural im-
ages and human-fixation data to train the network and
produce the saliency map model as the output of the
network.
We train the network using adaptive moment estimation

(Kingma and Ba, 2014) with Euclidean loss between the
output images of the network and the ground truth images
(Fig. 1B). To apply this optimizer to the network, we set
the learning rate parameter, a, to 5.0� 10�5. Moreover,
we set the batch size to 20 images per 250 epochs.
Network training using ZOTAC GeForce GTX 1080 Ti
GPU running the Chainer framework (version 1.23.0) re-
quires ;170 h (Tokui et al., 2015). We repeat the training
of the network for 10 trials and obtain 10 distinct trained
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DCNN saliency map models to validate our analyses. We
refer to the DCNN saliency map model based on the train-
ing of 250 epochs as the trained model. The code for a
saliency map model based on DCNN is available as
Extended Data 1.
We perform simulations of the trained DCNN model via

the 64 images (Fig. 2) used in Tamura et al. (2016). To
apply the stimulus set to the trained DCNN model, we
physically place these images with the original dimen-
sions (256� 256 pixels) with RGB values in front of a gray
background image (320� 240 pixels; intensity value of
0.5), that is, we remove regions of eight pixels from the
top and bottom of the images of natural object surfaces.
We record the activities of all model neurons in each layer
of the trained DCNN model with respect to each of the
natural object surface images, which we use for compar-
ing the characteristics of the neural representation on vis-
ual cortices.

Data analysis
Representational dissimilarity matrices (RDMs)
Kriegeskorte et al. (2008) demonstrated that RDMs

allow the direct comparison of neural representations be-
tween a monkey IT and human IT, although they used rad-
ically different measurement modalities for these two
species (single-cell recording for monkeys and functional
resonance imaging for humans). We used RDMs to com-
pare the characteristics of the responses in the DCNN sa-
liency map model with those of the neural representation
in V1, V4, and IT.
We computed the representational dissimilarity (RD) be-

tween all pairs of natural object surfaces (Kriegeskorte et
al., 2008; Hiramatsu et al., 2011; Goda et al., 2014) based
on the firing rates of V1, V4, and IT neurons recorded by
Tamura et al. (2016). To compute the RDMs, we standar-
dized the mean firing rates based on the Gaussian distri-
bution with a mean of zero and a variance of one with
respect to each neuron in the visual cortices. We com-
puted the representational dissimilarity RDv between two
natural object surfaces (#i and j) with respect to the rates
of V1, V4, and IT neurons based on the correlation dis-
tance as follows:

RDvði; jÞ ¼ 1�

X
n

fvn;i � fvi
� �

fvn;j � fvj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n
fvn;i � fvi

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n
fvn;j � fvj

� �2
r ;

(2)

where v represents the visual cortices (V1, V4, or IT); i and j
represent the natural object surface number (1 � i; j � 64); n
is the identity of the neuron; fvn;i represents the firing rates of
the neuron n in the visual cortex vwhen the object surface #i
is presented; and fvi represents the mean rates of the neural
population of v to the object surface #i. We computed the
representational dissimilarity RDv(i, j) across the population
of biological neurons in the monkeys (Kiani et al., 2007;
Haxby et al., 2011). The RDv(i, j) exhibited an intensity value
ranging from zero to two. If the neuronal response patterns
for natural object surfaces i and jwere identical, the intensity

of the RDv(i, j) became zero. By contrast, the RDv(i, j) in-
creased as the level of representational dissimilarity
between response patterns for two stimuli increased.
We computed the RDv(i, j) with respect to all 2016 pairs
of natural object surfaces, which were summarized
and represented as percentiles for each element of the
RDMs (Kriegeskorte et al., 2008). Each element of the
RDMs represented the comparison of the response
patterns across neurons induced by two stimuli. Note
that each RDM was symmetric, with a diagonal of
zeros.
In the same manner, we computed the representational

dissimilarity RDl between all input image pairs based on
the activities of model neurons in the layer of the DCNN
saliency map model as follows:

RDlði; jÞ ¼ 1�

X
n
al
n;i � al

i

� �
al
n;j � al

j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n
al
n;i � al

i

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n
al
n;j � al

j

� �2
r ;

(3)

where l represents the layers in the DCNN saliency map
model (Fig. 1A); aln;i represents the activities of model neu-
ron n in layer l of the DCNN model with respect to the ob-
ject surface i; and ali represents the mean activities of the
model neuron population of layer l to the object surface i.
Note that we used all model neurons from all channels of
each layer in the DCNN model to compute RDl(i, j). We
summarized RDv(i, j) as shown in Equation 2.
We used Pearson’s correlation coefficient to quantify

the correspondence between the RDMs for the monkey
V1, V4, and IT and those for each layer of the DCNN sali-
ency map model. The correspondence rvl between visual
cortices and the DCNN saliency map model is defined as
follows:

rvl ¼

X63

i¼1

X64

j¼i11
RDvði; jÞ � RDv

� �
RDlði; jÞ � RDl

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX63

i¼1

X64

j¼i11
RDvði; jÞ � RDv

� �2s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX63

i¼1

X64

j¼i11
RDlði; jÞ � RDl

� �2s
; (4)

where v and l represent the visual cortex (V1, V4, or IT)
and the layer in the DCNN saliency map model (Fig. 1A),
respectively. We computed rvl using 2016 RDM elements
representing response patterns with respect to distinct
pairs of natural object surfaces. RD represents the mean
intensity of these 2016 RDM elements. Because the inten-
sity of the diagonal elements of the RDM [RD(i, i)] became
zero, we removed these diagonal elements from our
analysis.

Partial correlation analyses between monkey visual areas
and the DCNN saliency map model
To understand the characteristics of the responses in

the DCNN saliency map model in greater detail, we com-
puted the partial correlation of RDMs between the specific

Research Article: New Research 6 of 19

January/February 2020, 8(1) ENEURO.0200-20.2020 eNeuro.org

https://doi.org/10.1523/ENEURO.0200-20.2020.ed1


visual cortex and each layer of the DCNN saliency map
model, which removed the effects of other visual cortices.
The partial correlation is defined as follows:

rlx�y ¼ rlx � rxy � rlyffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2xy

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2ly

q ; (5)

where rlx·y is the magnitude of the partial correlation be-
tween the activities of model neurons from the specific
l-th DCNN layer (layer l) and the neuronal firing rates of
visual cortex x required for removing the effect of visual
cortex y; and rlx, rxy, and rly are the correlation of RDMs
between the activities of DCNN model neurons in layer l
and the rates of visual cortex x, between visual cortices x
and y, and between model neurons in layer l and visual
cortex y, respectively.

Results
We first investigated whether the trained DCNN models

reproduced the characteristics of human attentional se-
lection for natural images. Examples of data from the
Toronto dataset (Bruce and Tsotsos, 2009), associated
eye-fixation maps, and a saliency map calculated using
the trained DCNN (Pan et al., 2016), Itti (Itti and Koch,
2000), Russell (Russell et al., 2014), and Wagatsuma
models (Wagatsuma, 2019) are shown in Figure 3A. The
responses of the DCNN saliency map model were
sparsely distributed and qualitatively similar to the
characteristics of the human eye-fixation maps. To vali-
date the mechanism underlying the trained DCNN
model, we obtained 10 DCNN saliency map models that
we trained independently with distinct initialization
states, with the order of the image batches randomized.
The prediction accuracy indices based on a receiver
operating characteristic (ROC) curve analysis (Green
and Swets, 1966) of the 10 trained models on the
Toronto dataset are shown in Figure 3B. We computed
the mean score of the area under the curve (AUC) for
the ROC curve with respect to all 120 images in the
dataset (see also Wagatsuma, 2019). There was no sig-
nificant difference in the AUC scores among the 10
trained models (ANOVA, p = 0.997). The AUC score of
the 10 trained models was significantly higher than that
of the Itti model (t test, p, 0.01), Russell model (t test,
p, 0.01), and Wagatsuma model (t test, p, 0.01). Note
that the gaze prediction accuracy including the AUC
score of recent DCNN saliency map models (Kümmerer
et al., 2017; Pan et al., 2017; Liu and Han, 2018) was
better than that of Pan et al.’s (2016) model (also see
Pan et al., 2017, their Table 5). However, the architec-
tures of these state-of-the-art DCNN models are com-
plicated and distinct from biological visual systems for
the bottom-up saliency map and attentional selection.

Correspondence based on RDMs betweenmonkey
visual cortices and layers of the DCNN saliency map
model
Figure 4A,B show RDMs based on the neural represen-

tation of monkey visual areas and activities in model

neurons in the layers of the trained DCNN saliency map
model, respectively. Each element of a given RDM com-
pares the response patterns induced by two natural ob-
ject surfaces (Fig. 2; Tamura et al., 2016; see also
Materials and Methods).
We computed the correlation coefficient rvl between

RDMs for the neuronal firing rates in V1, V4, and IT (Fig.
4A) and that for the activities in model neurons of each
layer of the DCNN saliency map model (Fig. 4B). The cor-
respondence rvl is defined in Equation 4. We hypothesize
that the RDMs for the visual cortex are markedly corre-
lated with that of the layer of the DCNN saliency map
model if the characteristics of the responses in the model
layer are similar to the neural representation in the mon-
key visual cortex. Figure 5A summarizes the magnitude of
the correspondence rvl between the three visual cortices
and each layer of the DCNN saliency map model aver-
aged over the 10 trained models. The blue, red, and green
lines represent the correspondence for V1, V4, and IT, re-
spectively. For almost all levels of the DCNN layer (from
layer 1 to 7), the magnitudes of the correspondence rV1
based on the rates of V1 (Fig. 5A, blue line) were consis-
tently higher than those based on the rates of other corti-
ces, which implies that the characteristics of responses
in the DCNN saliency map model are in agreement with
that of the neural representation in V1. By contrast, the
correspondence based on V4 (rV4, red line) indicates
similar magnitudes and modulation patterns to that
based on IT (rIT, green line). Regardless of the type of
visual cortex, we found two marked peaks of corre-
spondence rvl at early (layers 1 and 2) and higher-inter-
mediate (layers 5 and 6) layers of the saliency map
model based on the DCNN. These results suggest that
the neural representations in V1 play an important role
in computing the visual saliency that mediates atten-
tional selection and in determining human gaze
location.
Additionally, recent physiological studies have reported

figure–ground modulation in V1 neurons (Poort et al.,
2012, 2016). Our results suggest a possible mechanism in
which model neurons in early layers prefer the boundaries
and contours of the presented images, whereas model
neurons in higher-intermediate layers selectively respond
to figural regions. This possibility will be discussed further
in Discussion.
Recent physiological studies have reported that the vis-

ual response latency in V1 is ;40–60ms after stimulus
onset (Poort et al., 2016; Yan et al., 2018). In our study, re-
gardless of the level of visual cortex, the neuronal re-
sponses were compensated for by considering the
response latency of 80ms (see also Materials and
Methods), which was longer than that reported by the
aforementioned studies. We computed the correlation co-
efficient rV1 between RDMs for the neuronal firing rates in
V1 with a response latency of 40ms and that for the activ-
ities in model neurons of each layer of the DCNN saliency
map model averaged over the 10 trained models. The re-
sults for the correspondence for V1 with a latency of
40ms (Extended Data Fig. 5-1) exhibited characteristics
similar to that with a latency of 80ms (Fig. 5A, blue line).
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Figure 3. Responses of the trained DCNN saliency map models proposed by Pan et al. (2016) and previous models based on biologi-
cally plausible mechanisms (Itti and Koch, 2000; Russell et al., 2014; Wagatsuma, 2019). A, Example images from the Toronto dataset
(first column; Bruce and Tsotsos, 2009), associated eye-fixation maps (second column), and saliency maps calculated using the trained
DCNN model (third column), Itti model (fourth column), Russell model (fifth column), and Wagatsuma model (sixth column). B, Mean AUC
scores of trained DCNN models and previously proposed models with respect to the Toronto dataset (120 natural images). In this work,
we obtained 10 DCNN saliency map models that were independently trained with distinct initialization states and using a random order
of image batches. There was no significant difference in the AUC scores among these 10 trained models (ANOVA, p=0.997). Error bars
represent SEM. Asterisks indicate a significant difference in AUC scores between models (**p, 0.01 by t test).
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Our results were not dependent on the window for neuro-
nal response analysis.
We randomly initialized these DCNN saliency map mod-

els to obtain 10 distinct network models. The magnitude
of correspondence rvl between the three monkey visual
cortices and 10 distinct trained DCNN saliency map mod-
els are summarized in Extended Data Figure 5-2. As

shown in Figure 5A, from layer 1 to layer 7, the character-
istics of responses in the 10 models were more coincident
to V1 than the other two visual cortices. However, these
correspondence magnitudes were different among the 10
models. These results imply that the random initialization
of the network induced DCNN saliency map models with
distinct structures but similar mechanisms, although we

Figure 4. RDMs (Kriegeskorte et al., 2008; Hiramatsu et al., 2011; Goda et al., 2014) based on the responses to natural object
surfaces (see also Fig. 2). Each element of an RDM represents the comparison of the response patterns induced by two natu-
ral object surfaces. We normalized the intensities of RDM elements ranging between zero and one. The intensity of the RDM
element increased with the increase in the level of the representational dissimilarity between two response patterns (see also
Eq. 2). A, RDMs based on the responses of monkey visual cortices, V1, V4, and IT. We computed the representational dis-
similarity between all pairs of stimulus images based on the firing rates of V1, V4, and IT neurons (Tamura et al., 2016). B,
Mean RDMs based on the activities of model neurons from the DCNN saliency map models, which are shown from the activ-
ities of 10 trained models. To compute the RDMs, we used the activities of all model neurons in all channels of each layer of
the DCNN model as the neural population activities.
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applied the same training data to Pan et al.’s (2016)
network.
From intermediate to deep layers, Pan et al.’s (2016)

network consists of convolutional layers that are activated
by the ReLU function. In the intermediate and higher-in-
termediate layers (layers 3, 4, and 5), the ReLU activation
function markedly increases the magnitude of the

correspondence rvl between the activities of model neu-
rons and the rates of physiological neurons, regardless of
the level of visual cortices. This modulation through the
ReLU activation function is significantly observed in the
case of V1. The possible mechanisms and roles of
the ReLU activation function in the intermediate and high-
er-intermediate layers will be discussed in Discussion.

Figure 5. Correspondence rvl between the responses of DCNN models and the neural representation in the three visual cortices
(V1, V4, and IT). A, Magnitude of the correspondence rvl between the three visual cortices (V1, V4, and IT) and each layer of the
DCNN saliency map model averaged over the 10 models. To examine the correspondence between the DCNN saliency map model
and monkey visual cortices for representations of natural object surfaces, we computed the correlation coefficient rvl between the
RDMs for the responses in each layer of the DCNN saliency map model and that for the neural representation in visual cortices V1,
V4, and IT. We obtained the models via the training of 250 epochs (trained model). The x-axis indicates the layer of the DCNN sali-
ency map model (see also Fig. 1A). The blue, red, and green lines indicate the correspondence for V1 (rV1), V4 (rV4), and IT (rIT), re-
spectively. Shaded areas represent SEM for 10 trained models. Asterisks indicate a significant difference in the magnitudes of
correspondence rvl between two visual cortices (t test: **p, 0.01, *p, 0.05, -p, 0.1). The correspondence for V1 with a latency of
40ms (Extended Data Fig. 5-1) exhibited characteristics similar to that with a latency of 80ms (blue line). Correspondences between
the three visual cortices and 10 distinct trained DCNN saliency map models are summarized in Extended Data Figure 5-2. B,
Magnitude of the correspondence rvl between each layer of the trained VGG16 model provided by MATLAB (MathWorks) and the
three visual cortices. The conventions were the same as those used in A. We observed similar patterns via the analysis of the
trained VGG16 model provided by the Chainer framework (version 1.23.0; Extended Data Fig. 5-3).
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Correspondence based on RDMs betweenmonkey
visual cortices and layers of the trained VGG16model
for object classification
Our analyses of the DCNN saliency map model imply

that the neural representations in V1 have an important
role in determining visual saliency. To investigate whether
the mechanism of the DCNN saliency map model is dis-
tinct from that of other DCNN models, such as object
classification, we applied our methods to the VGG16
model (Simonyan and Zisserman, 2014) and computed
the correspondence rvl between activities of the VGG16
model and the responses of monkey visual cortices for
representations of natural object surfaces. We used the
trained VGG16 model provided by MATLAB (MathWorks).
The correspondence rvl between visual cortices and

each layer of the trained VGG16 model is summarized in
Figure 5B, with the same conventions as those used in
Figure 5A. The magnitudes of correlations based on V1
(rV1, blue line) decreased as the level of VGG16 layers in-
creased. By contrast, the magnitudes of correspondence
based on V4 (rV4, red line) increased from layer 1–1 to con-
volutional layer 4–1. From layer 4 to layer 7 after ReLU ac-
tivation, the characteristics of responses on the VGG16
model were more coincident to V4 responses (rV4) than
those of other visual cortices. Additionally, from layer 5,
the magnitude of the correspondence between IT neurons
and the trained VGG16 model (rIT, green line) was higher
than that based on V1 (rV1). The fluctuations in the corre-
spondence based on IT (rIT) were smaller than those ob-
served for other visual cortices. We observed similar
results in the analysis of the trained VGG16 model pro-
vided by the Chainer framework (version 1.23.0; Extended
Data Fig. 5-3). These results suggest that the characteris-
tics of the activities in early layers of the VGG16 model
trained for object classification were in agreement with
that of the neural representation in V1, whereas the re-
sponses of model neurons from intermediate to deep
layers of the VGG16 exhibited characteristics similar to
the neural representation in V4, which implies that the
mechanism of the trained DCNN saliency map model
might be distinct from that of VGG16 model object
classification.

Partial correlation betweenmonkey visual cortices
and layers in the DCNN saliency mapmodel
A partial correlation represents a correlation between

two variables that results from the removal of the ef-
fects of other related variables (see also Materials and
Methods; Eq. 5). The partial correlations between the
DCNN saliency map model layers and monkey visual
cortices are shown in Figure 6, in which the magnitudes
of the partial correlation between the responses in each
layer of the DCNN model and that in V1 that result from
the removal of the effect of V4 and IT are represented
by the blue solid and cyan dashed lines, respectively.
From DCNN layer 1 to layer 6, the magnitudes of
the partial correlation with V1 were markedly higher
than those of the other visual cortices, as indicated
by the remaining four lines. This suggests that the

characteristics of the activities from early to higher-in-
termediate layers in the DCNN saliency map model are
similar to that of the neural representation in V1.
Additionally, from layer 5 of the DCNN model, the mag-
nitudes of the V1 partial correlation resulting from the
removal of the effect of V4 (blue solid line) were mark-
edly smaller than that of IT (cyan dashed line). This re-
sult implies that, from the intermediate to deep layers of
the trained model, the effect of the activities of V4 on
the correspondence based on V1 responses was more
significant than that of IT.
In Figure 6, the red solid and pink dashed lines repre-

sent the magnitudes of the partial correlation between
each layer of the DCNN model and V4 resulting from the
removal of the effect of V1 and IT, respectively. Similarly,
the green solid and yellow-green dashed lines represent
the magnitudes of the IT partial correlation that results
from the removal of the effect of V1 and V4, respectively.
From the DCNN layer 1 to layer 7, the magnitudes indi-
cated by the red solid line were consistently smaller than
those indicated by the pink dashed line. Additionally, the
removal of the effects of V1 led to markedly smaller mag-
nitudes of the partial correlation based on V4 (red solid
line) than that based on IT (solid green line) from layer 1 to
layer 4. These results imply that, among the early and in-
termediate layers of the DCNN saliency map model, the
neural representation in V1 had more marked effects on
the correspondence for V4 than IT.

Responses of a single channel in each layer of the
trainedmodel for determining visual saliency
In our previous analyses, the activities in all model neu-

rons from all channels of each layer of the trained model
were used for examining the correspondence between
the DCNN saliency map model and monkey visual corti-
ces for the representation of natural object surfaces. To
investigate the mechanism used by the DCNN model for
computing visual saliency in greater detail, we quantita-
tively analyzed the activities in model neurons from a sin-
gle channel of each layer of the DCNN model regarding
the response to natural object surfaces. In this analysis,
we computed the Pearson’s correlation coefficient be-
tween RDMs of the three monkey visual cortices and that
of each channel of the DCNN saliency map model.
The frequency histogram of the magnitudes of corre-

spondence between each channel of the DCNN saliency
map model and visual cortices is summarized in Figure 7.
Regardless of the monkey visual cortex and DCNN model
layer, the correspondence magnitudes displayed by most
of the channels were ,0.2. The distributions of the fre-
quency histogram for convolutional layers (Fig. 7, Conv)
represented a single peak. By contrast, activation via the
ReLU function tended not only to induce distributions
with two peaks but also consistently shifted the location
of the median (Fig. 7, white triangles) toward the left,
which is a pattern that was in contrast to the effects of the
ReLU function identified by analyses based on the activ-
ities in all model neurons from all channels of the layer
(Fig. 5A). These results imply that the ReLU function
played a critical role in eliciting the selectivity of model
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neurons in DCNN saliency map model layers. This possi-
bility will be discussed further in Discussion.

Effects of the training epochs on the responses of the
saliency mapmodel based on the DCNN for the
representation of natural object surfaces
Our analyses using RDMs implied that the responses of

the trained model regarding visual saliency exhibited simi-
lar characteristics to the neural representation in V1.
However, it is possible that the characteristics of the re-
sponses of the DCNN saliency map model depended on
the number of training epochs. To investigate the effects
of the number of training epochs on the mechanism
underlying the DCNN saliency map model, we applied im-
ages of natural object surfaces to the DCNN model ob-
tained using 10 training epochs (partially trained model)
and compared the characteristics of the responses in
each of its layers with those of the neural representation in
V1, V4, and IT.
Figure 8A summarizes the magnitude of the correspon-

dence rvl between the responses in the three visual corti-
ces and those in each layer of the partially trained model
averaged over the 10 models. As shown in Figure 5A for
the case of the trained model, the blue line represents the
correspondence rV1 between the partially trained model
and V1. From layer 1 to layer 3, the magnitudes of the cor-
respondence rV1 between V1 and the partially trained
model (Fig. 8A, blue line) increased to levels that were
similar to those of the trained model (see also Fig. 5A). In
particular, from layer 2 after ReLU activation to convolu-
tional layer 3, the magnitudes of the correspondence rV1
displayed by the partially trained model were markedly
higher than those of the trained model. By contrast, from

layer 5 after ReLU activation to layer 7 after ReLU activa-
tion, the magnitudes of the correspondence rV1 of the
partially trained model were markedly lower than those of
the trained model. These results suggest that early layers
in the DCNN saliency map model obtained a V1-like rep-
resentation for natural object surfaces at early training
epochs. By contrast, late training epochs might play a
critical role in the development of characteristics from in-
termediate to deep layers in the DCNN saliency map
model.
Figure 8A, red line, indicates the correspondence rV4

between the partially trained model and V4. In contrast to
the case of the correspondence rV1, there were no marked
differences in the magnitude of the correspondence rV4
between the partially trained (Fig. 8A) and trained (Fig. 5A)
models. Additionally, from convolutional layer 6 to layer 9,
the correspondence rV4 for the partially trained model
(Fig. 8A, red line) exhibited a magnitude that was similar
to that of rV1 for the partially trained model (Fig. 8A, blue
line). The correspondence rIT between IT and the partially
trained model is indicated in Figure 8A, green line. The
fluctuations in the magnitudes of correspondence rIT were
smaller than those observed for the other visual cortices.
Additionally, in higher-intermediate layers (from layer 6
ReLU to layer 7 ReLU), the magnitudes of the correspon-
dence rIT of the partially trained models were markedly
smaller than those of the trained models (Fig. 5, green
line); this finding was consistent with the characteristics
of the correspondence observed for V1 (Figs. 5A, 8A, blue
lines).
From layer 3 to layer 5 of the trained models, we found

a marked increase in the magnitude of the correspon-
dence after ReLU activation in all these cortical areas (Fig.
5A). However, in the partially trained models, the ReLU

Figure 6. Partial correlations between each layer of the DCNN saliency map model and monkey visual cortices V1, V4, and IT. We
used trained models to compute the partial correlation. We obtained data from the responses of 10 models. Shaded areas represent
SEM for 10 models. The blue solid and cyan dashed lines indicate the magnitudes of the partial correlation between each layer of
the DCNN saliency map models and V1 resulting from the removal of the effect of V4 and IT, respectively. The red solid and pink
dashed lines indicate the partial correlation for V4 resulting from the removal of the effect of V1 and IT, respectively. Similarly, the
partial correlations for IT resulting from the removal of the effect of V1 and V4 are denoted by the green solid and yellow-green
dashed lines, respectively.
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function did not markedly modulate the magnitudes of the
correspondence to visual cortices, with the exception of
layer 4 (Fig. 8A). The increase in the correspondence ob-
served after ReLU activation in intermediate layers was a
specific characteristic of the trained DCNN saliency map
model.
Finally, similar to the case of the trained model, we

computed the partial correlations between the responses
in each layer of the partially trained models and that in a
specific visual cortex via the removal of the effect of the

other visual cortices (Fig. 8B). Figure 8B, blue solid and
cyan dashed lines, shows the partial correlations between
the partially trained model and V1 after the removal of the
effect of V4 and IT, respectively. These partial correlations
with V1 observed from layer 1 to layer 2 indicate magni-
tude levels larger than 0.3. This result suggests that the
characteristics of the responses in early layers of the par-
tially trained models corresponded to that of the neural
representation in V1. Additionally, the magnitudes of par-
tial correlations between V1 and the partially trained

Figure 7. Distributions of the correspondence magnitudes between each single channel of the trained model and V1 (left col-
umn), V4 (middle column), and IT (right column). We normalized the frequency histograms of the correspondence magnitudes
to the total number of channels in each layer of the 10 trained models. The triangles indicate the median values for these
distributions.
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model decreased as the level of DCNN layers increased.
From layer 5, there were similar levels of magnitude of the
partial correlations among the three visual cortices, which
implied that the characteristics of the responses in high-
er-intermediate and deep layers of the partially trained
models might be distinct from those of the responses in
V1, V4, and IT. These results suggest that the characteris-
tics of the responses in intermediate layers of the DCNN
saliency map model develop during late training epochs.

Discussion
To understand the interconnections between the mech-

anism of the saliency map model based on DCNNs and
the neural system for determining gaze location and at-
tentional selection, we investigated the correspondence
between the DCNN saliency map model (Pan et al., 2016;
Fig. 1A) and monkey visual cortices V1, V4, and IT
(Tamura et al., 2016) for representations of natural object
surfaces (Fig. 2). From layer 1 to layer 7, the magnitudes

Figure 8. Correspondence rvl between the responses in each layer of the partially trained model (trained for 10 epochs) and the neu-
ral representation in the three visual cortices (V1, V4, and IT). We obtained the data from the responses of 10 partially trained mod-
els. The shaded areas represent SEM of 10 partially trained models. A, Mean magnitudes of the correspondence rvl between the
three visual cortices and each layer of the partially trained model. The conventions were the same as those of Figure 5A. The re-
sponses of the partially trained model in early layers seemed to be similar to the neural representations in V1. By contrast, regarding
the responses in V1, the magnitudes of the correspondence rvl from layer 5 ReLU to layer 7 ReLU for the partially trained models
were markedly lower than those of the trained model (also see Fig. 5A). Asterisks indicate a significant difference in the magnitudes
of correspondence rvl between two visual cortices (t test: **p, 0.01, *p, 0.05, -p, 0.1). B, Partial correlations between each layer
of the partially trained model and three monkey visual cortices, using the conventions described in Figure 6. The magnitudes of the
partial correlations in V1 decreased as the level of DCNN layers increased. There was a marked peak in the magnitudes of the parti-
al correlations for V4 around intermediate and higher-intermediate layers. By contrast, the magnitudes of the partial correlation for
IT tended to be independent of the level of the DCNN layers.
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of the correspondence between the activities in model neu-
rons of trained DCNN saliency map models and the re-
sponses in V1 neurons were consistently higher than those
observed for the remaining two visual cortices (Fig. 5A),
which seemed to be distinct from the characteristics on the
mechanism of the trained VGG16 model (Simonyan and
Zisserman, 2014) for object classification (Fig. 5B). This re-
sult suggests that the activities in the trained DCNN saliency
map model had similar characteristics regarding the re-
sponses to the neural representation in V1. Furthermore, our
analyses implied that early layers of the DCNN saliency map
model obtained a V1-like representation at early training
epochs, whereas late training epochs might play critical
roles in the development of the characteristics of intermedi-
ate, higher-intermediate, and deep layers (Fig. 8). These re-
sults not only provide important insight into the mechanism
of the trained DCNN saliency map model, but also support
the V1 saliency hypothesis (Li, 1999a, 2002; Koene and
Zhaoping, 2007; Jingling and Zhaoping, 2008; Zhang et al.,
2012; Zhaoping, 2014; Zhaoping and Zhe, 2015) that the
neural representations in V1 play an important role in the
computation of the visual saliency that mediates attentional
selection.

Comparison of physiological data during passive
viewing with the DCNN saliency mapmodel based on
human-fixation data
We used the neural data from V1, V4, and IT recorded

during passive viewing of natural object surfaces (Fig. 2;
Tamura et al., 2016) with a presentation duration of
200ms. These neural responses appeared to be distinct
from the neural representation of a significant salient loca-
tion. Additionally, in this physiological study, the eye
movement of monkeys during recording was prevented
using muscle relaxant (see Materials and Methods).
However, the DCNN saliency map model trained based
on human-fixation data indicated characteristics similar
to the neural responses of V1 in a passive viewing task.
These results provided evidence that neural responses in
V1 play an important role for determining the salient loca-
tion. This possible mechanism supports the V1 saliency
hypothesis, which suggests that the neural activities in V1
underlie the neural representations for a saliency map of
the visual field to exogenously guide attentional selection.

Possible mechanisms based on the representation in
V1 for determining visual saliency
The majority of neurons in V1 respond strongly to a bar

stimulus presented in the receptive field of a neuron if the
bar stimulus is aligned with the preferred orientation of
the neuron (orientation selectivity; Hubel and Wiesel,
1968). Interestingly, early layers of the AlexNet model for
object classification seem to obtain a similar profile to that
of Gabor filters, which are used for modeling neurons with
orientation selectivity (Itti et al., 1998; Lee et al., 1999;
Deco and Lee, 2004; Sakai et al., 2012; Krizhevsky et al.,
2012; Zeiler and Fergus, 2013). Additionally, the detection
of the orientation from the input image is the first, and
necessary, process of saliency map models based on bio-
logically plausible mechanisms (Itti et al., 1998; Li, 1998,

1999c; Itti and Koch, 2000; Russell et al., 2014;
Wagatsuma, 2019). Model neurons with orientation selec-
tivity in early vision may play a critical role in understand-
ing the visual scene and in computing the visual saliency
that mediates attentional selection. These results imply
that orientation selectivity is developed in model neurons
in early layers of the DCNN saliency map model (Pan et
al., 2016) for the representation of the most salient loca-
tion in the visual images.
The conclusion that the neural representations in V1

play an important role in computing the salient location
that mediates attentional selection and in determining
human gaze is plausible based on our analyses of the
DCNN saliency map model. This possible mechanism
agrees with the V1 saliency hypothesis. In this hypothesis,
intracortical interactions within V1 induce the contextual
modulation (Allman et al., 1985; Knierim and van Essen,
1992; Li and Li, 1994; Jones et al., 2001, 2002; Ozeki et
al., 2009) that is necessary for emphasizing the neural
representation of the unique feature in the retinal image
and for homogeneously suppressing other features that
represent the background (iso-feature suppression;
Zhaoping and Zhe, 2015), which plays an essential role in
the generation of the neural representation of the sali-
ency map. It is possible that the connections between
early and intermediate layers in the trained DCNN sali-
ency map model (Pan et al., 2016) occur via a mecha-
nism that is similar to the intracortical interactions within
V1 that promote iso-feature suppression.
Physiologic studies have reported that the responses of

neurons in V1 and V2 underlie figure–ground segregation
(Zhou et al., 2000; Qiu et al., 2007; Poort et al., 2012,
2016; Martin and von der Heydt, 2015). The segregation
of images into figure and background is a fundamental
process in visual perception. Poort et al. (2012, 2016) per-
formed neurophysiological experiments that indicated
that the neural responses in V1 for representing the figure
occurred according to the process of edge detection.
Furthermore, biologically plausible saliency map models
have implied that the neural mechanism of figure–ground
segregation plays an important role in predicting the loca-
tions of attentional selection and in improving the predic-
tion accuracy of the human gaze (Li, 1999a; Zhaoping,
2003, 2014; Russell et al., 2014; Wagatsuma, 2019;
Uejima et al., 2020). Our analyses demonstrated that the
responses of intermediate and higher-intermediate layers
(layer 4 ReLU, layer 5 ReLU, and layer 6; see Fig. 5A) of
the trained DCNN saliency map model exhibited charac-
teristics similar to the neural representations in V1. The
selective response of model neurons in these layers to the
figural regions before the computation of the salient loca-
tion in the input image is a possible mechanism of the
DCNN saliency map model. Further analyses based on
the neuronal responses to figure–ground segregation are
necessary to understand the detailed mechanism under-
lying the DCNN saliency map model.
In contrast to the mechanisms discussed above, it is pos-

sible that only the higher-intermediate layers (from layer 5 to
layer 6) of the trained DCNN saliency map model might re-
flect the V1 responses. A circular symmetric receptive field
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with a mutually antagonistic center and surround is charac-
teristic of retinal ganglion cells and neurons in the lateral ge-
niculate nucleus (LGN; Rolls and Deco, 2002), which
generate the inputs to biological V1 neurons and are mod-
eled using the difference of Gaussian (Russell et al., 2014). It
is plausible that model neurons in early layers of the DCNN
saliency map model may include characteristics similar to
retinal ganglion cells and LGN neurons to allow them to pro-
duce V1-like model neurons in higher-intermediate layers.
Neural responses in the retina and LGNmight be informative
for further understanding the mechanism of the DCNN sali-
ency mapmodel.
In our analyses, responses in deep layers (from layer 8

to output layer of the DCNN model (Sal)) of the trained
DCNN saliency map models indicated distinct character-
istics from the neural representations in the three visual
cortices (Fig. 5A). Particularly, in the Sal layer correspond-
ing to the output of the DCNN saliency map model, the
magnitude of the correspondence rV1 based on the neural
responses of V1 was the lowest among the three visual
cortices. These results implied that, whereas the neural
representations in V1 play an important role in computing
salient locations, the neural representation of visual sali-
ency might be represented in the brain area involved in
eye movement or the visual cortex except for V1, V4, and
IT. A previous study implied that the superior colliculus re-
ceives V1 responses, which plays a critical role in guiding
saccades (Zhaoping, 2014). A possible mechanism sug-
gested by our analyses is that the Sal layer exhibits similar
characteristics to the neural representation in the superior
colliculus. Additionally, it is possible that the most acti-
vated model neurons in early and higher-intermediate
layers correspond to the activities in the Sal layer. Further
analyses of correspondences between DCNN layers are
necessary to understand the detailed mechanism of the
neural representation of visual saliency.

Effects of training epochs on the development of the
DCNN saliency mapmodel and on the computation of
the visual saliency that mediates attentional selection
Our results showed that the characteristics of V1-like

representations in early layers of the DCNN saliency map
model were obtained during early training epochs, where-
as the late training epochs seemed to play an important
role in the development of the mechanisms from interme-
diate layers of the DCNN saliency map model (Fig. 8). If
model neurons in intermediate and higher-intermediate
layers are selective to the figural region for computing vis-
ual saliency as discussed in the previous section, the se-
lectivity of figure–ground segregation in these layers
might develop after the early layers obtain orientation se-
lectivity and the function of edge detection, similar to V1
neurons. These results suggest that feedforward process-
ing based on edge detection in early vision underlies the
selectivity of figure–ground segregation in intermediate-
level visual areas, and that rapid feedback signals from
higher-level visual areas play crucial roles in the neural
representation of the figural region, which might corre-
spond to suggestions from the computational models for
understanding the neural mechanism underlying figure–

ground segregation (Li, 1999a; Zhaoping, 2003, 2014;
Sakai and Nishimura, 2006; Craft et al., 2007; Mihalas et
al., 2011; Sakai et al., 2012; Wagatsuma et al., 2016; Hu
and Niebur, 2017).

Roles of the ReLU activation function in the DCNN
saliency mapmodel
Our analysis showed that the ReLU activation function

markedly increased the magnitude of the correspondence
between model neurons in the intermediate layers of the
trained DCNN saliency map model (layers 3, 4, and 5) and
monkey visual cortices (Fig. 5A). The facilitation of the se-
lectivity and sparseness of model neurons in specific
layers of the DCNN model by the ReLU function is a pos-
sible mechanism for increasing this correspondence. The
ReLU function is a nonlinear activation function that se-
lects the maximum value between zero and the response
of the model neuron (Nair and Hinton, 2010; Krizhevsky et
al., 2012), which might function in the selection of model
neurons and in the facilitation of the sparseness within the
channel for representing informative characteristics of at-
tentional selection. Previous studies aimed at under-
standing the neural mechanisms of sensory processing
have implied that biological neurons encode sensory in-
formation based on a small number of active neurons at
any given point in time (sparse coding; Olshausen and
Field, 1996, 2004). If activation via the ReLU function
plays an important role in the selection of a small number
of active model neurons for computing visual saliency,
sparse coding in the DCNN saliency map model may be
reproduced by the ReLU activation function.
The responses of biological neurons in visual cortices

are suppressed when stimuli with their preferred feature
(iso-feature) are provided around their receptive field
(Allman et al., 1985; Knierim and van Essen, 1992; Li and
Li, 1994; Jones et al., 2001, 2002; Ozeki et al., 2009).
Another possible role of ReLU activation in the DCNN sali-
ency map model is the implementation of iso-feature
suppression, as reported in visual cortices. In V1, inter-re-
ceptive field suppression is mainly mediated by long-dis-
tance horizontal connections from excitatory to inhibitory
neurons (Adesnik et al., 2012; Chen et al., 2017). In the
DCNN saliency map model, model neurons with activity
greater than zero are selected via ReLU activation, which
implies that the ReLU activation function selects model
neurons with similar characteristics to biological excita-
tory neurons. If iso-feature suppression in visual cortices
is implemented via the long-horizontal connections aris-
ing from excitatory neurons, the ReLU activation function
might play an important role in implementing iso-feature
suppression in the DCNN saliency map model. Additionally,
the V1 saliency hypothesis implies the critical role of iso-fea-
ture suppression in the determination of the saliency of the
location to guide attentional selection (Li, 2002; Jingling and
Zhaoping, 2008; Zhang et al., 2012; Zhaoping and Zhe,
2015). If iso-feature suppression in the DCNN saliency map
model is implemented based on the ReLU function, activa-
tion through the ReLU function might play a key role in the
reproduction of the neural mechanism underlying attentional
selection.

Research Article: New Research 16 of 19

January/February 2020, 8(1) ENEURO.0200-20.2020 eNeuro.org



Our analyses using the population activities of all model
neurons from all channels of each layer indicated that the
ReLU activation function markedly increased the magni-
tude of the correspondence between monkey visual corti-
ces and intermediate layers of the DCNN saliency map
model (layers 3, 4, and 5; Fig. 5A). By contrast, regardless
of the level of the DCNN layer, the ReLU activation func-
tion decreased the correspondence magnitudes between
the RDMs of each single channel and that of the neural re-
sponses, which were demonstrated by the shift of the
peak location in the distribution of the correspondence
magnitude toward the left (Fig. 7). The effects of the ReLU
function on the correspondence magnitude for the popu-
lation activity using all model neurons in each layer were
markedly distinct from those for the responses of model
neurons in each single channel. The physiological V1, V4,
and IT neuronal populations recorded by Tamura et al.
(2016) might include various neurons with a distinct
preference and selectivity. Additionally, in this work,
we used the responses of all physiological neurons to
compute the RDMs (see Materials and Methods).
Assuming that each channel in a layer of the DCNN sa-
liency map model expresses a preference for a specific
visual feature or selectivity to specific visual informa-
tion, in Figure 7, we compare the characteristics of the
neural population activities with various levels of se-
lectivity to those of model neurons with a preference
for a specific visual feature. A future study using a neu-
ronal population with selectivity to a specific visual
feature is necessary to understand the mechanism of
the DCNN models in greater detail.

Further understanding of the mechanisms for various
saliency mapmodels by applying them to themethods
andmetric used in this study
In this study, we used RDMs (Kriegeskorte et al., 2008)

to compare the characteristics of the responses of the
DCNN saliency map model with those of the neural repre-
sentation in visual cortices. Our analysis methods and
metrics used in this study are applicable to various other
saliency map models (Itti and Koch, 2000; Kümmerer et
al., 2014, 2017; Russell et al., 2014; Pan et al., 2017; Liu
and Han, 2018; Wagatsuma, 2019; Uejima et al., 2020).
Our analysis results and the V1 saliency hypothesis im-
plied that the activities of model neurons with similar char-
acteristics to V1 responses were the basis for better gaze
prediction accuracy for the saliency map models. Current
analysis methods and metrics might be available for esti-
mating and evaluating the performance of various sali-
ency map models.
In conclusion, we quantitatively analyzed the DCNN sali-

ency map model. The responses of the trained DCNN sali-
ency map model were in agreement with the characteristics
of the neural representation in V1, which seemed to be con-
sistent with the V1 saliency hypothesis based on physiologi-
cal, psychophysical, and computational studies (Li, 1999b,
2002; Jingling and Zhaoping, 2008; Zhang et al., 2012;
Zhaoping, 2014; Zhaoping and Zhe, 2015). Our results not
only provided important insight into the mechanism of the
trained DCNN saliency map model but also suggest the

critical role of the neural representation in V1 for computing
the visual saliency that mediates attentional selection and
for determining human gaze location.
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