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Abstract: Kombucha, also known as the Manchurian mushroom, is a symbiotic culture of bacteria
and yeast, the so-called SCOBY. This paper presents a comprehensive evaluation of the ferments
obtained from green coffee beans after different fermentation times with kombucha. Results for
the ferments were compared to the green coffee extract that was not fermented. In this study,
the antioxidant potential of obtained ferments was analyzed by assessing the scavenging of external
and intracellular free radicals and the assessment of superoxide dismutase activity. Cytotoxicity of
ferments on keratinocyte and fibroblast cell lines was assessed as well as anti-aging properties by
determining their ability to inhibit the activity of collagenase and elastase enzymes. In addition,
the composition of the obtained ferments and the extract was determined, as well as their influence on
skin hydration and transepidermal water loss (TEWL) after application of samples on the skin. It has
been shown that the fermentation time has a positive effect on the content of bioactive compounds
and antioxidant properties. The highest values were recorded for the tested samples after 28 days
of fermentation. After 14 days of the fermentation process, it was observed that the analyzed
ferments were characterized by low cytotoxicity to keratinocytes and fibroblasts. On the other hand,
the short fermentation time of 7 days had a negative effect on the properties of the analyzed ferments.
The obtained results indicate that both green coffee extracts and ferments can be an innovative
ingredient of cosmetic products.

Keywords: kombucha; green coffee; ferment; antioxidant activity; matrix metallopeptidases

1. Introduction

Scientists around the world are looking for new compounds of natural origin that show a beneficial
effect on human health. Due to the fact that it has been known for a long time that various biochemical
transformations of plant raw materials can increase their health value, various methods of obtaining new
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substances with desired properties are sought. Fermentation is one of the methods of processing plant
raw materials, causing many changes that lead to obtaining valuable bioproducts with high nutritional
value. Thanks to its application, it is possible to enrich the obtained products by improving their
bioavailability, degradation of toxic ingredients and anti-nutritional factors, improving sensory quality
as well as giving them additional medical and therapeutic properties [1]. Fermentation is a bioprocess
widely used for the production of biologically active compounds, primarily in the food industry,
but recently, it is increasingly used in cosmetics to improve the quality of active phytochemicals and to
facilitate the absorption of these substances by the human system [2]. Extracts obtained during food and
beverages’ fermentation are a rich source of various compounds with antioxidant properties, vitamins,
minerals, proteins, as well as fibers and probiotics, hence the interest in this type of bioproducts is
constantly increasing. Therefore, research is currently underway to assess the possibilities of their
use in the cosmetics industry as products with strong antioxidant, anti-inflammatory, anti-wrinkle,
whitening and anti-aging properties [2,3]. Interest in ferments in the design of cosmetic formulation is
increasing due to their documented ability to inhibit matrix metalloproteinases, stimulate collagen
production, enhance skin hydration, which is important in skin aging processes, and to inhibit
tyrosinase activity, which protects against formation of various hyperpigmentation changes [2–6].

One of the “health trends” that have recently gained great popularity are ferments obtained using
the symbiotic culture of bacteria and yeast, called SCOBY. Ferments obtained using this microbiological
consortium of several bacteria and yeast, called kombucha, quickly found a wide range of consumers
due to their unusual properties. Fermentation products are obtained thanks to symbiotic cooperation
of the community of acetic acid bacteria (Acetobacteraceae) and osmophilic yeast [7,8]. Although the
“kombucha” refers mainly to ferments made from various types of tea, currently, attempts are being
made to obtain bioferments using SCOBY also from other plant materials such as, for example,
mint, lemon balm, jasmine, spinach, fermented fruit juices, banana peels, milk or even bee-collected
pollen [7,9,10]. Scientific research on kombucha properties has shown that it exhibits antioxidant,
antibacterial, anti-inflammatory and antidiabetic properties. Consumption of kombucha can also
contribute to lowering cholesterol, stimulating liver detoxification processes and also supporting
the proper functioning of the immune system. Moreover, kombucha is also a rich source of various
vitamins, phenolic compounds, minerals, amino acids and many other compounds with a broad
spectrum of biological activity [8–13].

In addition to tea, one of the most popular beverages consumed around the world is coffee,
including green coffee. The biological active substances contained in coffee extracts include two
groups of compounds. The first are substances with antioxidant activity, such as polyphenols,
which allow to neutralize various forms of superoxide free radicals. For this reason, they are
particularly valuable in protecting the DNA of skin cells. The second group are purine alkaloids,
of which caffeine and trigonelline are the most important. These compounds improve cell oxygenation
and microcirculation and stimulate metabolism. Many literature reports indicate its extraordinary
properties, which contribute to the fact that extracts obtained from this plant have been widely used
for many years [14–16]. Due to the fact that the preparation of infusions from green coffee is similar
to the preparation of tea, perhaps fermentation using SCOBY will contribute to obtaining beverages
with extremely valuable properties. Unfortunately, to date, there are few popular science reports
indicating the beneficial effects of coffee bioferments [17], while there is a lack of scientific reports on
green coffee ferments.

Therefore, the purpose of this work is to evaluate the properties of ferments obtained from green
coffee beans after fermentation using cooperation in complex multi-species systems and investigate
the impact of fermentation time on the biological activity of the obtained products. For this purpose,
the composition of prepared ferments was determined using a chromatographic method and a
spectrophotometric evaluation of flavonoids and phenols content was carried out. The antioxidant
properties of prepared ferments were also estimated by evaluating the scavenging of extrinsic and
intracellular free radicals, as well as the assessment of superoxide dismutase activity. In order to
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assess anti-aging properties, the possibility of inhibiting the activity of matrix metalloproteinases,
collagenase and elastase, which play an important role in skin aging processes, was evaluated.
Cytotoxicity tests (Alamar Blue, Neutral Red and lactic dehydrogenase (LDH)) were also carried out
on skin cells, keratinocytes and fibroblasts, which allowed assessment of the cytotoxicity of prepared
ferments. In the final stage, the influence of the obtained ferments on skin moisture and transdermal
water loss was also evaluated.

2. Results and Discussion

2.1. Determination of Bioactive Compounds

Polyphenols and flavonoids are the basic active ingredients of plant extracts. They are responsible
for their antioxidant activity by neutralizing free radicals that may generate oxidative stress. Green coffee
is a rich source of polyphenols and flavonoids. Depending on the origin, green coffee beans contain
about 6–10% of polyphenols. The main polyphenol compounds in green coffee beans are chlorogenic
acids. They may be present in concentrations up to 90% of the total phenolic content. Green coffee also
contains a high concentration of caffeine derivatives, which can range from 1% to 5% [18,19].

The content of phenolic compounds present in kombucha ferments and green coffee extracts was
spectrophotometrically and chromatographically determined using the Folin–Ciocalteu assay and
HPLC-UV-ESI-MS, respectively. In spite of the accepted un-specificity of the Folin–Ciocalteu assay to
determine phenolic compounds, it is the most commonly used method to estimate phenolic contents.
The phenolic contents in the obtained kombucha ferments (F7, F14, F28) and green coffee beans’ extract
are presented in Table 1.

Table 1. Total phenolic (TPC) and flavonoids (TFC) content in green coffee extract and green coffee
ferments (DW—dry weight of ferments or extract, GAE—gallic acid, QE—quercetin).

TPC (mg GAE/g DW) TFC (mg QE/g DW)

GC 630.05 ± 5.20 a 156.84 ± 4.11 a

F7 106.76 ± 3.72 b 17.02 ± 2.33 b

F14 243.14 ± 3.22 c 51.10 ± 2.84 c

F28 392.56 ± 1.22 d 66.53 ± 3.84 d

a,b,c,d: Different letters on the charts indicate significant differences between groups (p < 0.05).

Fermentation of green coffee extract reduces the content of polyphenols and flavonoids in relation
to the content of these compounds in the unfermented extract. The lowest content of these components
was observed for 7-day ferment (total phenolic content (TPC) 106.76 ± 3.72 mg GAE/g DW and
total flavonoids content (TFC) 17.02 ± 2.33 mg QE/g DW). With the increase of fermentation time,
TPC and TFC increased. After 14 days of fermentation, the content of the analyzed compounds
increased more than twice (TPC 243.14 ± 3.22 mg GAE/g DW and TFC 51.1 ± 2.84 mg QE/g DW).
The highest content of polyphenols and flavonoids was observed after 28 days of fermentation. TPC was
392.56 ± 1.22 mg GAE/g and TFC increased to 66.53 ± 3.84 mg QE/g DW. However, these values were
lower than determined for the green coffee extract (TPC 630.05 ± 5.20 mg GAE/g DW and TFC
156.84 ± 4.11 mg QE/g DW).

Chu and Chen [20] have shown that change in the content of polyphenols and flavonoids during
the fermentation process may result from the polymerization of these compounds that occur at the
beginning of the fermentation. Polymerized compounds with high molecular weight reduce the
detected polyphenol content. The increase in the concentration of polyphenolic compounds with
longer fermentation time may be caused by depolymerization of the polymerized active compounds.
This thesis can be confirmed by organoleptic observation of changes occurring during the fermentation
process. Initially, the clear ferment becomes cloudy after about 7 days. This could have been due to
the appearance of polymerized compounds with high molecular weight and limited water solubility.
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After about 14 days, the cloudy ferment becomes opalescent and clear in the following days. This could
have been caused by depolymerization and the appearance of compounds with higher solubility.

Simultaneously, a chromatographic method was developed to deepen the chemical structures of
the active compounds and, in addition, accurately determine their content.

The identification of active compounds was performed using the combined data of elution order
on reverse phase, co-chromatography with standards, characteristics of diode-array detector (DAD),
as compared to standards analyzed under the same conditions. The compounds, for which there were
no commercial standards available, were identified based on the elution order on reverse phase [21–23]
and ESI-MS analysis. Table 2 includes active compounds detected using HPLC-UV-ESI-MS.

The most important bioactive compounds of coffee include phenolic compounds (such as
chlorogenic acids and derivatives), alkaloid from methylxanthine group (caffeine), nicotinic acid
(vitamin B3) and its precursor trigonelline, magnesium and potassium [24]. The main groups of
phenolic compounds in coffee bean extracts are chlorogenic acids (CGA), which are esters of quinic acid
and trans-hydroxy cinnamic acid. Various chlorogenic acid derivatives arise from isomers in the quinic
acid part and substitutions in the cinnamic acid moiety. The obtained results of HPLC-UV-ESI-MS for
kombucha ferments (F7, F14, F28) and green coffee beans’ extracts revealed the presence of caffeine and
trigonelline in positive-ion mode and phenolic compounds in negative-ion mode. Phenolic compounds
having appropriate molecular ion were assigned as caffeic acid (m/z 178), quinic acid (m/z 191)
with two isomers, 5-coumaroylquinic acid (m/z 337), caffeoylquinic acids (m/z 353) with 3 isomers
(3-,4- and 5-CQA), feruloylquinic acids (m/z 367) with 3 isomers (3-,4- and 5-FQA), dicaffeoylquinic
acids (m/z 515) with 3 isomers (3,4-diCQA; 3,5-diCQA; 4,5-diCQA) and 3-Caffeoy-l,5-feruloylquinic
acid (529 m/z). In this paper, International Union of Pure and Applied Chemistry (IUPAC) nomenclature
and recommended numbering systems were used for CGAs. The extracted ion chromatograms obtained
in negative-ion mode for coffee beans’ extract and kombucha ferments are presented in Figure 1.

CGAs, caffeine and trigonelline were quantified from the HPLC-UV chromatographic peak areas.
All quantitative analyses were performed in triplicate and the results were expressed in mg/100 g of
dry weight. The method showed good precision with relative standard deviation (SD) values below
5% for all the determined CGAs. The obtained results are presented in Table 3.

Total quantified CGAs contents was 6677 mg/100 g of dry weight of green coffee beans, while the
individual components were CQAs 5905, diCQAs 206 and FQAs 565 mg/100 g of dry weight,
which correspond to data presented by Farah and Donangelo [25]. The average total CGAs in
kombucha ferments F7, F14 and F28 were 3850, 4229 and 4161 mg/100 g of dry weight, respectively.
The sum of all quantified active compounds was 9839, 6176, 6304 and 6350 mg/100 g of dry coffee for
GC, F7, F14 and F28, respectively.

The total caffeine, trigonelline and phenolic content determined chromatographically varied
among the analyzed extracts. As indicated, green coffee beans’ extract showed the highest caffeine,
trigonelline and phenolic content. The lowest active compound content was determined for F7.
This was in agreement with the trend observed using the Folin–Ciocalteu assay.

In summary, caffeine, trigonelline, phenolic compounds and their derivatives have been identified
in green coffee beans’ extract and kombucha ferments using HPLC-UV-ESI-MS. Green coffee beans’
extract showed higher polyphenol, caffeine and trigonelline contents than kombucha ferments.
Green coffee beans’ extract represents an important source of polyphenols and alkaloids, with high
antioxidant capacity.
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Table 2. Polyphenols detected using HPLC-UV-ESI-MS.

No. Retention Time
(min) Molecular Formula Molar Mass (Da) Precursor Ion

[M–H]− m/z
Main Productions MS2 m/z Identification

Negative-Ion Mode

1 1.8 C9H8O4 180.2 179 [M–H]− 135 [M-COOH]−, 107 [M-C3H5O2]−,
71 [M-C6H5O2]−, 59 [M-C7H5O2]− Caffeic acid

2 2.0/2.8 C7H12O6 192.2 191 [M–H]− 127 [M-H-H2O-HCOOH]−,
85 [M-C3H7O4]−, 59 [M-C5H9O4]− Quinic acid

3 4.1 C16H18O9 354.3 353 [M–H]−
191 [M-3H2O-C6H5O2]−,

179 [M-3H2O-C6H4-COOH]−,
135 [M-3H2O-C6H4-C2HO4]−

3-Caffeoylquinic acid

4 5.2 C16H18O9 354.3 353 [M–H]− 191 [M-3H2O-C6H5O2]−,
179 [M-3H2O-C6H4-COOH]− 5-Caffeoylquinic acid

5 6.0 C16H18O9 354.3 353 [M–H]−
173 [M-C6H3-2OH-C2H2-COOH]−,

191 [M-3H2O-C6H5O2]−,
179 [M-3H2O-C6H4-COOH]−,
135 [M-3H2O-C6H4-C2HO4]−

4-Caffeoylquinic acid

6 7.2 C16H18O8 338.3 337 [M–H]− 191 [M-C9H7O11]−, 173 [M-C9H9O3]−,
163 [M-C7H11O5]− 5-p-Coumaroylquinic acid

7 7.6 C17H20O9 368.3 367 [M–H]− 191 [M-C10H9O3]−, 133 [M-C13H15O4]−,
173 [M-C10H11O4]− 3-Feruloylquinic acid

8 8.4 C17H20O9 368.3 367 [M–H]− 191 [M-C10H9O3]−, 173 [M-C10H11O4]− 5-Feruloylquinic acid

9 10.9 C25H24O12 516.4 515 [M–H]− 353 [M-C9H7O3]−, 335 [M-C9H9O4]−,
179 [M-C16H17O8]− 3,4-Dicaffeoylquinic acid

10 11.5 C25H24O12 516.4 515 [M–H]− 353 [M-C9H7O3]− 3,5-Dicaffeoylquinic acid

11 12.5 C25H24O12 516.4 515 [M–H]− 353 [M-C9H7O3]−, 179 [M-C16H17O8]− 4,5-Dicaffeoylquinicacid

12 13.2 C26H26O12 530.5 529 [M–H]− 353 [M-C10H9O3]−, 367 [M-C9H7O3]−,
191 [M-C16H19O8]− 3-Caffeoyl,5-feruloylquinic acid

Positive-Ion Mode

13 1.8 C7H7NO2 137.1 138 [M + H]+ 92 [M-H-H-CO2]+, 94 [M-CO2]+,
78 [M-H- H-CO2-CH3]+ Trigonelline

14 5.2 C8H10N4O2 194.2 195 [M + H]+ 138 [M-CO-N-CH3]+,
110 [M-CO-N-CH3-CO]+ Caffeine
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Figure 1. Extracted ion chromatograms (XIC) obtained for (a) GC, (b) F7, (c) F14 and (d) F28 extracts.
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Table 3. Quantification results obtained for GC, F7, F14 and F28 extracts. Values are means ± standard
deviation (SD) of triplicate. LOD—limit of detection.

Compound Content (mg/100g of Dry Weight of Green Coffee Beans)

GC F7 F14 F28

5-CQA 4944.9 ± 229.9 2486.7 ± 32.3 3198.4 ± 15.3 2649.0 ± 34.7

4-CQA 562.9 ± 14.7 483.7 ± 3.8 426.2 ± 6.9 531.1 ± 5.5

3-CQA 397.9 ± 13.0 390.7 ± 13.0 275.5 ± 0.3 429.1 ± 1.8

3.5-diCQA 61.2 ± 0.7 49.9 ± 4.5 <LOD 71.2 ± 2.5

4.5-diCQA 101.2 ± 2.0 41.5 ± 3.6 <LOD 61.5 ± 2.3

3.4-diCQA 44.0 ± 0.6 33.7 ± 2.2 <LOD 50.1 ± 1.9

3-FQA 20.7 ± 0.5 17.7 ± 2.7 9.2 ± 2.4 19.0 ± 0.3

4-FQA <LOD <LOD <LOD <LOD

5-FQA 544.1 ± 1.3 345.8 ± 5.9 319.3 ± 4.6 350.4 ± 2.7

Sum of quantified
phenolic compounds 6677.0 3849.7 4228.6 4161.3

Caffeine 1956.1 ± 29.0 1403.4 ± 1.2 1165.3 ± 4.1 1349.4 ± 1.0

Trigonelline 1205.5 ± 22.1 922.3 ± 1.2 910.4 ± 1.4 839.8 ± 1.0

Sum of quantified
compounds 9838.6 6175.5 6304.4 6350.6

2.2. 1,1-diphenyl-2-picrylhydrazyl (DPPH) Radical Scavenging Assay

Reactive oxygen species (ROS), their sources, functions and influence on the skin are the subject
of numerous studies. The balance between the rate of free radical production and the concentration of
antioxidants, as well as the activity of protective enzymes neutralizing ROS, determines the level of
reactive oxygen forming in the body and the speed of their reaction with cell components. Free radicals
are essential for the proper conduct of many life processes. They play an important role in the regulation
of gene expression, protein phosphorylation processes and the activation of proteins that control cell
division. However, the excess of free radicals leads to the destruction of structural and functional
elements of cells, disturbances in homeostasis and death through apoptosis or necrosis [22,26,27].
That is why it is so important to search for substances being an effective source of antioxidants. Plant raw
materials play a very important role here, as they are a valuable source of metabolite derivatives.

The green coffee extract can be regarded as such raw materials [22,27]. In the first stage of the
research, the antioxidant potential of the analyzed green coffee extract and kombucha ferments was
assessed. It was shown that the tested material exhibits a significant antioxidant potential, and the
fermentation process significantly influences the percentage of free radicals scavenged by the analyzed
extracts. In the case of all analyzed extracts, an increase in the antioxidant potential in time was
observed. Green coffee extract showed the highest antioxidant potential. However, green coffee extract
subjected to a 28-day fermentation process was also characterized by strong antioxidant properties,
as after 30 min of measurement, it had only 14% lower antioxidant potential compared to the results
obtained for the green coffee extract. The biggest difference was observed between the green coffee
extract and the extract subjected to a 7-day fermentation process. The green coffee extract showed 120%
higher potential than the ferments obtained after 7 days. A dependence between the content of active
ingredients such as phenols and flavonoids and the antioxidant potential has also been demonstrated
(Figure 2).
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An increase in the antioxidant potential with an increase in fermentation time was also observed in
the case of tea fermentation [12,27–39]. The conducted research shows that enzymes released by bacteria
and yeasts during long-term fermentation of kombucha may result in better efficiency in scavenging
nitrogen and superoxide radicals and poor efficiency in scavenging hydroxyl radicals [20,30,31].

2.3. Detection of Intracellular Levels of Reactive Oxygen Species (ROS)

In order to comprehensively assess the antioxidant potential, the ability of the tested ferments
to generate intracellular production of reactive oxygen forms on keratinocytes (HaCaT) and
fibroblast (BJ) cell lines was evaluated. These analyses were performed with the fluorogenic
2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA) dye, which is oxidized in the presence of reactive
oxygen forms and converted into highly fluorescent 2′,7′-dichlorofluorescein (DCF). The performed
analysis showed that the potential of the tested ferments was dependent on both the concentration
used and the analyzed cell line.

The analysis showed that the concentration of 1000 µg/mL for both keratinocytes and fibroblasts
increased the production of ROS. The result for keratinocytes was much higher, both for the extract
itself and for all samples subjected to different extraction times. In the case of a concentration of
1000 µg/mL, the level of ROS in each tested case was much higher compared to the control, and the
difference was increasing with time. In the case of fibroblasts, up to the 7th day, the ROS level was
slightly higher compared to the control, while from the 14th day, a significant increase in the ROS level
was observed. In the case of keratinocytes from the beginning of the experiment, a noticeably higher
level of ROS was found, while from the 14th day, the difference was even greater.

At a concentration of 100 µg/mL, since the beginning of the experiment until the 14th day, the level
of ROS for fibroblasts was slightly below the control level, while for keratinocytes, it was at the level of
control. The situation changed in the case of extracts subjected to 28-day fermentation, where the level
for fibroblasts increased to the control value, while for keratinocytes, it was slightly above the control
level (Figures 3–6).

Based on the analysis, it can be concluded that lower concentrations of ferments and coffee extract
influence on a reduction of the level of oxidative stress. On the other hand, the long-term fermentation
time (28 days) adversely affects the production of ROS. These data correspond with the thesis that
too-long fermentation may not be beneficial due to the fact it may contribute to the accumulation of
harmful products, e.g., organic acids, which might reach harmful levels for direct consumption [20,32].
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2.4. Determination of Superoxide Dismutase (SOD) Activity

Prevention of threats caused by reactive oxygen species can take place at many levels, but the
first line of defense is the action of ROS neutralizing enzymes. These enzymes include superoxide
dismutase (SOD), which catalyzes the dismutation reaction of the superoxide radical anion to hydrogen
peroxide and molecular oxygen. This reaction occurs due to the interaction of the radical anion with
metal ions present in the catalytic center of the enzyme. SOD constitutes a very important antioxidant
protection of the organism against oxidative stress, and their incorrect operation can lead to many
pathologies. SOD is a natural enzyme present in cells and is responsible for the neutralization of
harmful free radicals in order to protect DNA during intense environmental stress, being considered as
an anti-aging enzyme [33–35]. Therefore, in order to comprehensively assess the antioxidant potential
of the analyzed extracts, the level of superoxide dismutase in the tested samples was determined.
As a result of the analysis, it was shown that the tested 14-day ferments at the concentration of 500 and
1000 µg/mL show a higher activity of the superoxide dismutase enzyme compared to the green coffee
extract. In the case of the lowest analyzed concentration of 100 µg/mL, the green coffee extract showed
the highest values. On the other hand, the ferments obtained after 7 and 28 days of fermentation were
characterized by much lower values compared to the coffee extract and ferment obtained after 14 days
of fermentation (Figure 7).
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2.5. Cell Viability Assay

In the next stage of our research, we wanted to investigate how fermentation time affects the
viability of skin cells; therefore, the cytotoxicity of kombucha ferments obtained from green coffee beans
against fibroblasts and keratinocytes was evaluated in vitro using three types of assays (Alamar Blue
test, Neutral Red uptake assay and LDH cytotoxicity test). The Alamar Blue assay is a commonly used
cytotoxicity test with many biomedical applications [39]. This test contains the nonfluorescent resazurin
as a primary constituent, which is reduced to the fluorescent resorufin by different oxidoreductases that
use nitrate reductases (NAD(P)H) as a primary electron donor. Resazurin, as a redox indicator, is used
in assays for cell proliferation, cell viability and mitochondrial respiratory activity [37,38]. Neutral Red
uptake assay has already been used for several years to evaluate the cytotoxicity of various kinds
of products, such as cosmetics, pharmaceuticals, industrial chemicals and household products [39].
This assay relies on the ability of living cells to incorporate and bind neutral red dye in lysosomes.
This cationic dye can penetrate cell membranes by nonionic passive diffusion and bind by electrostatic
hydrophobic bonds to anionic and phosphate groups of the lysosomal matrix. The uptake of this dye
depends on the cells’ capacity to maintain pH gradients, which is closely related to the production of
adenosine triphosphate (ATP) [40,41].

The analysis carried out to assess the cytotoxic properties of the kombucha ferments obtained
from green coffee beans at tested concentrations (10–1000 µg/mL) have shown that these ferments
have different effects on the tested skin cell lines. Our analysis has shown that kombucha ferments are
similar in cytotoxicity, both for keratinocytes and fibroblasts (Figures 8 and 9). The conducted analysis
clearly indicates that the effect exerted by the tested ferment is strictly dependent on the fermentation
time. The highest increase in both keratinocytes’ and fibroblasts’ proliferation was observed for
ferments after 14 days of fermentation, and at the concentration of 250 and 500 µg/mL, the increase
even reaches 115%. Moreover, by carrying out fermentation for a long time, it has been shown that
kombucha ferments have no beneficial effect at any of the concentrations used. It is noticeable that all
tested ferments after 28 days of fermentation slightly reduced the proliferation and viability of skin
cells, even up to 25% for keratinocytes in the Neutral Red test, which indicates their cytotoxic effect
associated with the reduction of cellular metabolism.Molecules 2020, 25, x FOR PEER REVIEW 12 of 27 
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Figure 8. The reduction of resazurin after 24 h exposure to the ferments obtained from green coffee
beans (1–1000 µg/mL) in cultured (A) fibroblasts (BJ) and (B) keratinocytes (HaCaT). Data are the mean
± SD of three independent experiments, each of which consists of three replicates per treatment group.
For BJ, **** p < 0.0001, *** p < 0.0007 versus the control (100%). For HaCaT, **** p < 0.0001 *** p < 0.0008,
** p < 0.003, * p < 0.04 versus the control (100%).
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Figure 9. The effect of increasing concentrations of the ferments obtained from green coffee beans
(1–1000 µg/mL) on Neutral Red Dye uptake in cultured (A) fibroblasts (BJ) and (B) keratinocytes
(HaCaT) after 24 h of exposure. Data are the mean ± SD of three independent experiments, each of
which consists of four replicates per treatment group. For BJ, **** p < 0.0001, *** p < 0.0003, ** p < 0.03,
* p < 0.01 versus the control (100%). For HaCaT, **** p < 0.0001 ** p < 0.009, * p < 0.02 versus the
control (100%).

The cytotoxic effect of the obtained ferments was also assessed using the lactate dehydrogenase
(LDH) cytotoxicity assay. The assay quantitatively measures a stable cytosolic enzyme, LDH, which is
released upon cell lysis. The released LDH is measured with a coupled enzymatic reaction that results in
the conversion of a tetrazolium salt (INT) into a red color formazan. The method requires monitoring of
the increase in UV absorbance due to the reduction of NAD+ [42,43]. The cytotoxicity analysis carried
out indicates that the effect exerted by the tested ferments also closely depends on the fermentation time.
The cell viability results indicate that kombucha ferments are not toxic to fibroblasts and keratinocytes
after 14 days of fermentation and there were no changes in extracellular LDH levels after exposure to
ferments compared to the control culture (Figure 10). After 28 days of fermentation, membrane damage
(LDH release) was observed (107% for keratinocytes at the concentration of 500 µg/mL). A correlation
between extract concentration and LDH release was observed in both analyzed skin cells.

Cytotoxicity studies were compared to green coffee extract. Many studies indicate that green
coffee has beneficial effects on skin cells [16,44]. In addition, green coffee extract could increase
wound contraction and accelerate wound healing [44,45]. Due to the small amount of research on
the fermentation of green coffee beans with kombucha, we wanted to check the effect of the obtained
ferments on skin cells. Despite the many proven health benefits of SCOBY [46,47], there is still little
research into the effects of kombucha on skin cells. Fontana et al. [48] have shown that the tea fungus
can be used for medical purposes in skin therapy. The cellulosic pellicle formed mainly by Acetobacter
xylinum during the fermentation of tea has been used as a temporary skin substitute on burns and in
other skin injuries [48]. Our research has shown that green coffee is not as good a raw material for
fermentation with kombucha as green or black tea.
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Figure 10. The effect of increasing concentrations of the ferments obtained from green coffee beans
(1–1000 µg/mL) on LDH uptake in cultured (A) fibroblasts (BJ) and (B) keratinocytes (HaCaT) after
24 h of exposure. Data are the mean ± SD of three independent experiments, each of which consists of
four replicates per treatment group. For BJ, **** p < 0.0001, *** p < 0.0003, ** p < 0.03 versus the control
(100%). For HaCaT, **** p < 0.0001, *** p < 0.009, * p < 0.02 versus the control (100%).

2.6. Assessment of Matrix Metallopeptidases Inhibition

Collagen and elastin are basic skin building proteins. They are responsible for the skin’s
elasticity and hydration. Age and many internal and external factors, such as ultraviolet radiation,
can significantly accelerate the collagen and elastin degradation process in the skin. Protein degradation
processes are stimulated by collagenase and elastase enzymes. Increases in their activity is observed
as a result of action of free radicals or the mentioned UV radiation. Many plants and plant extracts
have the ability to inhibit collagenase and elastase activity. This property affects, among others,
the acceleration of skin regeneration processes, the healing of wounds and scars and the slowing down
of skin aging processes. External use of cosmetic and pharmaceutical products containing ingredients
capable of collagenase and elastase activity can contribute to slowing down of the degradation of
collagen and elastin contained in the skin and stimulate their synthesis [49,50]. The ability to inhibit
collagenase and elastase was determined for green coffee extract and its ferments. The results are
shown in Figures 11 and 12.

Green coffee extract showed the ability to inhibit both collagenase and elastase. Stronger properties
were noted in relation to the first of them. In addition, it has been shown that the ability to inhibit
enzymatic activity depends on the extract concentration. At an extract concentration of 100 µg/mL,
collagenase inhibition was about 10%, while at a concentration of 1000 µg/mL, collagenase inhibition
was about 55%. Lower values were obtained for elastase inhibition. At a concentration of 1000 µg/mL,
green coffee extract showed an ability of elastase activity inhibition at a level of about 25%. As a result
of research, it has been shown that green coffee ferments also have enzyme inhibition properties, but at
a significantly lower level than unfermented extract. The effect of fermentation time on the ability to
inhibit enzymatic activity was noted. The most favorable properties were observed for the ferment
obtained in a 14-day fermentation process, for which at a concentration of 1000 µg/mL the ability for
collagenase activity inhibition was determined at a level of about 30%. For other ferments, collagenase
inhibition did not exceed 10–15%. In the case of the ferment obtained after 14 days, the elastase
inhibition capacity was comparable to that of the green coffee extract. Other green coffee ferments
were characterized by a low ability to inhibit elastase at the level of 1–5%.
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Ability for metallopeptidases inhibition may be shown by active ingredients of plants. Green coffee
beans are a rich source of polyphenols and flavonoids, which have strong antioxidant activity and
are able to inhibit the activity of collagenase and elastase. The same properties are shown by main
active ingredients of green coffee like caffeine and its derivatives, trigonelline and chlorogenic acid.
Lee et al. showed that caffeine at a concentration of 500–1000 µg/mL inhibits collagenase and elastase
activity at a level of 30–40% [51]. The obtained results of the metallopeptidases inhibition confirm
that the concentration of active ingredients in the green coffee extract and ferments (polyphenols,
flavonoids, caffeine) exerts a significant influence on their ability of collagenase and elastase activity
inhibition. The highest concentration of active ingredients was shown by the green coffee extract and
it also showed the highest inhibitory properties. Along with the increase in the fermentation time
of coffee beans, an increase in the concentration of active ingredients was noted, as well as a greater
ability to inhibit the activity of the analyzed enzymes.

2.7. Transepidermal Water Loss (TEWL) and Skin Moisture

For several years, plant ferments have gained increasing interest in the cosmetics industry.
They are a source of many active ingredients with a wide spectrum of effective action. Due to the
content of simple chemicals with low molecular weight, plant ferments are a source of bioavailable
active substances that are characterized by a high degree of penetration into the deeper layers of the
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skin [52–56]. As part of this work, the effect of green coffee ferments on basic skin parameters such as
skin hydration and TEWL was determined. Results are presented in Figures 13 and 14.

Molecules 2020, 25, x FOR PEER REVIEW 15 of 27 

 

days, the elastase inhibition capacity was comparable to that of the green coffee extract. Other green 
coffee ferments were characterized by a low ability to inhibit elastase at the level of 1–5%. 

Ability for metallopeptidases inhibition may be shown by active ingredients of plants. Green 
coffee beans are a rich source of polyphenols and flavonoids, which have strong antioxidant activity 
and are able to inhibit the activity of collagenase and elastase. The same properties are shown by 
main active ingredients of green coffee like caffeine and its derivatives, trigonelline and chlorogenic 
acid. Lee et al. showed that caffeine at a concentration of 500–1000 µg/mL inhibits collagenase and 
elastase activity at a level of 30–40% [51]. The obtained results of the metallopeptidases inhibition 
confirm that the concentration of active ingredients in the green coffee extract and ferments 
(polyphenols, flavonoids, caffeine) exerts a significant influence on their ability of collagenase and 
elastase activity inhibition. The highest concentration of active ingredients was shown by the green 
coffee extract and it also showed the highest inhibitory properties. Along with the increase in the 
fermentation time of coffee beans, an increase in the concentration of active ingredients was noted, 
as well as a greater ability to inhibit the activity of the analyzed enzymes. 

2.7. Transepidermal Water Loss (TEWL) and Skin Moisture 

For several years, plant ferments have gained increasing interest in the cosmetics industry. They 
are a source of many active ingredients with a wide spectrum of effective action. Due to the content 
of simple chemicals with low molecular weight, plant ferments are a source of bioavailable active 
substances that are characterized by a high degree of penetration into the deeper layers of the skin 
[52-56]. As part of this work, the effect of green coffee ferments on basic skin parameters such as skin 
hydration and TEWL was determined. Results are presented in Figures 13 and 14. 

 
Figure 13. Influence of coffee beans’ and kombucha ferments’ extracts on transepidermal water loss 
(TEWL). Data are the mean ± SD of five independent measurements. *** p < 0.0003, **** p < 0.0001. 

Figure 13. Influence of coffee beans’ and kombucha ferments’ extracts on transepidermal water loss
(TEWL). Data are the mean ± SD of five independent measurements. *** p < 0.0003, **** p < 0.0001.Molecules 2020, 25, x FOR PEER REVIEW 16 of 27 

 

 
Figure 14. Influence of coffee beans and kombucha ferments on skin hydration. Data are the mean ± 
SD of five independent measurements. **** p < 0.0001, *** p < 0.0003, ** p < 0.03. 

Application of the green coffee ferments on the skin improves both skin hydration and TEWL 
level. After application of the analyzed substances on the skin, a significant decrease in TEWL in 
relation to the control field was noted. The ability of ferments to reduce TEWL was characterized by 
long-term effects. However, no significant effect of fermentation time on the obtained results was 
observed. After 1 h of the ferments’ application on the skin, a decrease in TEWL of about 7% for the 
7-day ferment and about 15% for the 28-day ferment was noted. After 6 h, the decrease in TEWL 
remained at a high level and was lower by about 25–30% in relation to the control field. Obtained 
results were slightly different from results observed after application of green coffee extract on the 
skin. Green coffee ferments also significantly improve the skin hydration. The moisturizing effect, 
similarly, to lowering of TEWL, was long-lasting and showed an increasing tendency with time after 
the application of the analyzed samples on the forearm skin. Fermentation time of coffee beans has a 
little effect on the moisturizing effect of the obtained ferments. The most favorable properties were 
observed for the 14-day ferment. On the other hand, the 7-day ferment was characterized by the 
lowest moisturizing properties. For the 28-day ferment, obtained results were slightly lower than for 
the ferment obtained as a result of the 14-day fermentation process. The moisturizing effect increased 
significantly over time after application of the analyzed ferments on the skin. After 6 h of the 
ferments’ application on the skin, the hydration level was about 30% higher for the 7- and 28-day 
ferments and about 40% higher for the 14-day ferment. For this ferment, significantly higher skin 
hydration properties were observed than for the unfermented green coffee extract. 

As was mentioned earlier, the main advantage of plant ferments is a profile of active ingredients 
that they contain. The most important include simple sugars, amino acids, vitamins, as well as 
substances from the group of polyphenols and flavonoids. As indicated by numerous literature data, 
as a result of fermentation processes, complex organic compounds (e.g., sugars and proteins) are 
broken down into simple substances such as glucose, fructose or amino acids [7,11,20,28]. These 
substances are characterized by a lower molecular weight and smaller particle sizes, which may affect 
their higher ability to penetrate into deeper layers of the epidermis than in the case of complex 
substances that act mainly on the skin surface. Active ingredients contained in coffee ferments have 
a nourishing and soothing effect, and due to the content of hydroxyl groups in their molecules, they 
are valuable moisturizing substances (humectants). These substances guarantee the high ability of 
ferments to provide a long-lasting and strong skin hydration and TEWL reduction. Due to their 
ability to reduce TEWL, they can also be a component of cosmetic or pharmaceutical products 
limiting the risk of irritations, e.g., after using cleansing cosmetics. Surfactants contained in their 
formulations show properties to increase TEWL and to disturb the hydrolipid barrier of the skin. 

Figure 14. Influence of coffee beans and kombucha ferments on skin hydration. Data are the mean
± SD of five independent measurements. **** p < 0.0001, *** p < 0.0003, ** p < 0.03.

Application of the green coffee ferments on the skin improves both skin hydration and TEWL level.
After application of the analyzed substances on the skin, a significant decrease in TEWL in relation to
the control field was noted. The ability of ferments to reduce TEWL was characterized by long-term
effects. However, no significant effect of fermentation time on the obtained results was observed.
After 1 h of the ferments’ application on the skin, a decrease in TEWL of about 7% for the 7-day ferment
and about 15% for the 28-day ferment was noted. After 6 h, the decrease in TEWL remained at a high
level and was lower by about 25–30% in relation to the control field. Obtained results were slightly
different from results observed after application of green coffee extract on the skin. Green coffee
ferments also significantly improve the skin hydration. The moisturizing effect, similarly, to lowering
of TEWL, was long-lasting and showed an increasing tendency with time after the application of the
analyzed samples on the forearm skin. Fermentation time of coffee beans has a little effect on the
moisturizing effect of the obtained ferments. The most favorable properties were observed for the
14-day ferment. On the other hand, the 7-day ferment was characterized by the lowest moisturizing
properties. For the 28-day ferment, obtained results were slightly lower than for the ferment obtained
as a result of the 14-day fermentation process. The moisturizing effect increased significantly over time
after application of the analyzed ferments on the skin. After 6 h of the ferments’ application on the
skin, the hydration level was about 30% higher for the 7- and 28-day ferments and about 40% higher
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for the 14-day ferment. For this ferment, significantly higher skin hydration properties were observed
than for the unfermented green coffee extract.

As was mentioned earlier, the main advantage of plant ferments is a profile of active ingredients
that they contain. The most important include simple sugars, amino acids, vitamins, as well as
substances from the group of polyphenols and flavonoids. As indicated by numerous literature data,
as a result of fermentation processes, complex organic compounds (e.g., sugars and proteins) are broken
down into simple substances such as glucose, fructose or amino acids [7,11,20,28]. These substances
are characterized by a lower molecular weight and smaller particle sizes, which may affect their higher
ability to penetrate into deeper layers of the epidermis than in the case of complex substances that
act mainly on the skin surface. Active ingredients contained in coffee ferments have a nourishing
and soothing effect, and due to the content of hydroxyl groups in their molecules, they are valuable
moisturizing substances (humectants). These substances guarantee the high ability of ferments to
provide a long-lasting and strong skin hydration and TEWL reduction. Due to their ability to reduce
TEWL, they can also be a component of cosmetic or pharmaceutical products limiting the risk of
irritations, e.g., after using cleansing cosmetics. Surfactants contained in their formulations show
properties to increase TEWL and to disturb the hydrolipid barrier of the skin. Plant ferments can
therefore be ingredients that decrease the ability of irritant factors that cause negative effects on the
skin [52].

2.8. Determination of Sun Protection Factor (In Vitro)

As mentioned, the main advantage of plant ferments is the profile of the ingredients they contain.
Due to the numerous data indicating the ability of green coffee to protect against UV radiation,
the sun protection factor (SPF) value of green coffee ferments has been determined. The results are
shown in Table 4.

Table 4. Ability of green coffee to protect against UV radiation.

Sample GC F7 F14 F28

SPF 3.15 ± 0.22 0.73 ± 0.09 2.14 ± 0.12 2.57 ± 0.13

According to literature data [53–62], the SPF of green coffee is from about SPF = 1–3 for extracts
to about SPF = 3–4 for coffee seed oil. Green coffee products also have the ability to act as a booster
for chemical UV filters, increasing their efficiency [62]. Green coffee ferments have slightly lower
SPF values than green coffee extract. Fermentation time has a significant impact on their ability to
protect against UV radiation. As the time of fermentation process increased, the SPF of green coffee
ferments increased. The lowest SPF value was observed for the ferment after 7 days (SPF = 0.73),
while the highest for the ferment obtained after 28 days of fermentation (SPF = 2.57). Plants are a
source of substances considered to be natural sunscreens. The richest in this type of substance are
cocoa and sea buckthorn fruits, walnuts, tea leaves, as well as marigold flowers and raspberry and
strawberry seeds. The active ingredients of plants that give them the properties of natural sunscreens
are mainly substances from a group of flavonoids, polyphenols, anthocyanins, as well as proteins and
amino acids and vitamins. As indicated, coffee ferments are a rich source of these types of compounds
that give them the ability to absorb UV radiation. The increase in the SPF value with the increase in
fermentation time is most likely caused by the polymerization and depolymerization of the active
substances contained in green coffee, which occur during the fermentation process [53].

3. Materials and Methods

3.1. Plant Material and Fermentation Procedure

The analyses were conducted using natural Arabica green coffee beans obtained from a local
store. Beans were collected on controlled and ecological plantations. After purchase, the grains were



Molecules 2020, 25, 5394 17 of 26

ground using an electric mill. Kombucha starter cultures were purchased from a commercial source
from Poland. Before starting the fermentation process, kombucha starter culture was stored under
aseptic conditions in a refrigerator (4 ◦C) and consisted of acid broth and cellulose layer. Kombucha is
composed primarily of acetic acid bacteria and osmophilic yeast. The most common bacteria are
Acetobacteraceae, Gluconobacter and Komagataeibacter (Komagataeibacter xylinus, Komagataeibacter interactus,
Komagataeibacter rhaeticus, Komagataeibacter saccharivorans and Komagataeibacter kombuchae). The yeast
species included in this symbiotic consortium are those of the genera Zygosaccharomyces, Candida,
Torulaspora, Pichia, Brettanomyces, Schizosaccharomyces and Saccharomyces. Initially, an infusion of green
coffee was prepared in a sterile beaker by mixing 15 g of ground green coffee with humidity of 8%
(3% w/w), 50 g of sucrose (final concentration 10.0% m/v) and 500 mL of hot distilled water (95 ◦C).
The mixture prepared in this way was stirred every few minutes with a glass rod until the solution
cooled down (about 25 ◦C, cooling bath, cooling time 30–40 min). The resulting green coffee decoction
was then filtered twice through membrane filters into sterile glass beakers (1000 mL, 18 cm height and 8
cm diameter). Then, kombucha (3 g) was added to the filtrate and fermentation was carried out for 7, 14
and 28 days (in separate beakers) at room temperature (about 25 ◦C). After fermentation, the obtained
kombucha was filtered and evaporated under reduced pressure at 40 ◦C. Ferments obtained after
7 days were signed as F7, after 14 days as F14 and after 28 days as F28. Green coffee decoction without
kombucha was marked as GC.

3.2. Determination of Biologically Active Compounds

3.2.1. The Determination of the Total Phenolic Content (TPC)

The concentration of total phenolic compounds in obtained kombucha ferments (F7, F14, F28) and
green coffee beans’ extract was determined spectrophotometrically using the Folin–Ciocalteu method
described by Singleton et al. [58] with some modifications. Gallic acid (GA) was used as standard. Briefly,
300 µL of aqueous solutions of dry ferments or green coffee beans extract at various concentrations
was mixed with 1500 µL of Folin–Ciocalteu reagent (diluted 1:10). After 6 min of incubation, 1200 µL
of a 7.5% sodium carbonate solution was added to the analyzed samples. Samples were mixed and
incubated in the dark at room temperature (about 22 ◦C) for 2 h. Absorbance of the samples was read at
λ = 740 nm on an AquamateHelion spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).
To calculate the total concentration of phenols in F7, F14, F28 and GC, a gallic acid (GA) calibration
curve (in the 10–100 mg/mL concentration range) was used. The measurements were made in triplicate
and the results obtained were averaged. The TPC results are presented as mg of GA equivalents (GAE)
per g of dry weight.

3.2.2. The Determination of the Total Flavonoids Content (TFC)

The concentration of flavonoids in the analyzed samples (F7, F14, F28 and GC) was assessed
spectrophotometrically using aluminum nitrate nonahydrate. For this purpose, the method described
by Matejić et al. [59] with modifications was used. Initially, 2400 µL of the previously prepared reaction
mixture consisting of 80% C2H5OH, 10% Al(NO3)3 × 9H2O and 1M C2H3KO2 were mixed with 600 µL
of the tested samples at various concentrations. After 40 min incubation at room temperature (about
22 ◦C) in the dark, the absorbance of the prepared mixtures was measured. Measurements were made
at a wavelength λ = 415 nm using a FilterMax F5 AquamateHelion spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). The total flavonoid concentration in the samples was calculated
from the calibration curve for quercetin (Qu) hydrate (in the concentration range of 10–100 mg/mL).
Measurements were made in triplicate for each sample. The TFC results are presented as mg of Q
equivalents (QE) per g of dry weight.
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3.2.3. Determination of Bioactive Compounds by HPLC–UV-ESI–MS

The polyphenolic content was additionally quantified by high-performance liquid chromatography
(HPLC). Two alkaloids’ content characteristic for green coffee beans: caffeine and trigonelline,
was also determined.

The obtained kombucha ferments (F7, F14, F28) and green coffee beans’ extracts were analyzed to
determine their main bioactive compounds using a HPLC (DionexUltiMate 3000 RS, Thermo Fisher
Scientific, Waltham, MA, USA), coupled to both an ultraviolet-visible detector (DAD) and mass
spectrometer (4000 QTRAP, Sciex, Framingham, MA, USA), equipped with an electrospray ionization
source (ESI) and a triple quadrupole-ion trap mass analyzer.

Chromatographic separation was achieved with a gradient reverse-phase system. A 100 × 4.6 mm
chromatographic column Kinetex 3.5 µm XB-C18 100 Å with iso-butyl side chains and with
trimethylchlorosilane (TMS) end-capping stationary phase employed similar composition guard
column was purchased from Phenomenex and maintained at 30 ◦C.

A binary solvent system comprising 0.1% (v/v) aqueous formic acid as solvent A and methanol as
solvent B was used under gradient mode during 40 min of the run time. The elution conditions applied
were as follow: 0.0–30.0 min 25–100% B, 30.0–35.0 min 100% B, 35.0–35.1 min 100–25% B, 35.1–40.0 min
25% B. Caffeine and trigonelline were monitored and quantified at 272 nm, and chlorogenic acids and
derivatives, at 325 nm. The flow rate of the mobile phase was 0.6 cm3/min and injection volume was
3–50 µL.

Mass spectral (MS) data were collected in the negative and positive ionization mode with an
electrospray source. The MS parameters were set as follows: curtain gas at 20 psi and nebulizer gas
at 10 psi. Nitrogen was used as curtain and collision gas. Negative ionization mode source voltage
−4500 V was applied for determination of phenolic compounds and positive ionization mode source
voltage 5000 V for caffeine and trigonelline detection. Nitrogen was used as curtain and collision gas.
The mass spectra were acquired with scans ranging from m/z 50 to m/z 1000. MS2 fragmentation was
used to confirm the structure of detected compounds.

Chromatographic and spectral data were processed by using the instrument software Chromeleon
6.80 (Thermo Fisher Scientific, Waltham, MA, USA) and Analyst 1.5.1 (Sciex, Framingham, MA,
USA), respectively.

Analytical standards of caffeoylquinic acids (CQA, two isomers: 3- and 5-CQA), caffeine and
trigonelline were purchased from Sigma-Aldrich, Fluka, Chromadex. All standards used were of
analytical grade (≥99% purity).

The identification of CQA isomers (3- and 5-CQA), caffeine and trigonelline was carried out by
comparing the retention times obtained during the chromatographic separation of analytes in the
GC, F7, F14 and F28 with the retention times of the individual compounds in respective standards
and characterized by UV and mass spectra. Quantification of the above-mentioned substances were
calculated on the basis of calibration curves, i.e., by using the external standard method. Quantification
was performed using five-point analytical curves prepared in triplicate for caffeine (14.0–69.9 mg/L),
trigonelline (8.2–41.2 mg/L), 3-CQA (1.2–12.3 mg/L) and 5-CQA (11.4–113.8 mg/L). For calculation
of 4-CQA content, a 3-CQA calibration curve was used. The results were expressed in mg/100 g of
dry weight of green coffee beans. The other chlorogenic acids and polyphenolic compounds were
identified based on the elution order and MS spectra by molecular mass and ion fragmentation of each
individual compound.

The identities of 14 compounds were determined.
From above, dicaffeoylquinic (diCQA) and feruloylquinic (FQA) acids as major compounds next

to CQAs, were chosen for showing the phenolic profile more precisely. For that reason, quantification of
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diCQAs and FQAs was performed using the area of 5-CQA standard and molar extinction coefficients
according to Reference [22], using the below equation:

c =
RF × ∈1 ×MR2 × A

∈2 ×MR1
(1)

where:

• c is the concentration of interesting isomer in g/L,
• RF is the response factor of the 5-CQA standard in gmAV−1 min−1,
• ∈1 is the molar extinction coefficient of 5-CQA in M−1 cm−1,
• ∈2 is the molar extinction coefficient of interesting analogue or positional isomer in M−1 cm−1,
• MR1 is a molecular weight of 5-CQA in g/mol,
• MR2 is a relative molecular weight of interesting isomer in g/mol,
• A is an area of peak of the interesting isomer in mAV min.

Molar extinction coefficients (×104) were as shown in Table 5.

Table 5. Molar extinction coefficients.

Compound Molar Extinction Coefficient (×104) (M−1 cm−1) λmax (nm)

5-CQA 1.95

330

4-CQA 1.80
3-CQA 1.84

3,4-diCQA 3.18
3,5-diCQA 3.16
4,5-diCQA 3.32

5-FQA 1.93
3254-FQA 1.95

3-FQA 1.90

3.3. Assessment of Antioxidant Activity

3.3.1. DPPH Radical Scavenging Assay

The ability of the obtained kombucha and green coffee extract to scavenge free radicals was
determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The method described by
Brand-Williams et al. [47] has been used. Initially, 33 µL of aqueous solutions of F7, F14 and F28 dry
ferments and dry GC extract at concentrations of 100 µg/mL were mixed with 167 µL methanol solution
of DPPH (4 mM) and transferred to a 96-well plate. The analyzed samples were thoroughly mixed by
shaking. In the next step, the absorbance of the samples at 517 nm was measured. Measurements were
made every 5 min for 30 min on a UV-VIS Filter Max λ = 5 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). Three independent replicates were performed for each concentration (for both
kombucha and green coffee extract). Water with a DPPH solution was used as a control. The antioxidant
capacity was expressed as a percentage of DPPH inhibition using the equation:

% DPPH scavenging =
Abs control − Abs sample

Abs control
× 100 (2)

where:

• Abs control is the absorbance of the control sample (containing DPPH and water),
• Abs sample is the absorbance of the test sample (containing DPPH and test sample).
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3.3.2. Detection of Intracellular Levels of Reactive Oxygen Species (ROS)

In the next step, the intracellular level of free radicals was evaluated in the tested cell lines treated
with the analyzed samples. In order to determine the ability of the analyzed kombucha and green coffee
extract to generate or inhibit the intracellular production of ROS in HaCaT and BJ cells, a fluorogenic
H2DCFDA dye was applied. After passive diffusion of H2DCFDA into the cells, it was deacetylated to
a non-fluorescent compound. In the presence of ROS, it was oxidized and transformed into fluorescent
2′,7′-dichlorofluorescein (DCF).

To determine the intracellular level of ROS in HaCaTs and BJ cells, cells were seeded in 96-well
plates at a density of 1 × 104 cells per well. In the next step, cells were maintained in an incubator for
24 h. After that, DMEM was removed and replaced with 10 µM H2DCFDA (Sigma Aldrich, Saint Louis,
MO, USA) dissolved in serum free DMEM medium. HaCAT and BJ cells were incubated in H2DCFDA
for 45 min. Subsequently, the cells were incubated with various concentrations of kombucha and green
coffee bean extract. Cells treated with 1 mM hydrogen peroxide (H2O2) were used as a positive control.
DCF fluorescence was measured every 30 min for 90 min using a FilterMax F5 microplate reader
(Thermo Fisher Scientific, Waltham, MA, USA). Measurements were made at a maximum excitation of
λ = 485 nm and emission spectra of λ = 530 nm. All tested samples were made in 4 replicates.

3.3.3. Determination of Superoxide Dismutase (SOD) Activity

To determine the effect of kombucha and green coffee extract on the activity of the enzyme that plays
an important role in defense against reactive oxygen species, a kit for assessing the activity of superoxide
dismutase (ab65354, Abcam, Cambrige, UK) was used. F7, F14, F28 and GC in concentrations of 100,
500 and 1000 µg/mL were used for the analysis. Recombinant human SOD 1 protein (ab112193, Abcam,
Cambrige, UK) was used to prepare the standard curve. Samples were prepared in 96-well plates
(clear bottoms) and the analysis was performed according to the manufacturer’s instructions. Briefly,
200 µL of 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfo-phenyl)-2H-tetrazolium, monosodium salt
(WST) working solution was added to each well. Then, test samples were prepared by adding 20 µL
Enzyme Working Solution (EWS) and 20 µL of analyzed samples (with a final concentration of 100,
250 and 1000 µg/mL) to these wells. Three different blank samples were also prepared as recommended.
Blank 1 was prepared by adding 20 µL EWS and 20 µL ddH2O to the wells. To blank 2, 20 µL Dilution
Buffer (DB) and 20 µL F7, F14, F28 or GC (with a final concentration of 100, 250 and 1000 µg/mL) was
added. 20 µL of DB and 20 µL ddH2O were added to blank 3. All prepared samples were mixed
thoroughly by shaking and incubated at 37 ◦C for 20 min. Subsequently, the absorbance of the analyzed
samples was measured at λ = 450 nm using a microplate reader (FilterMax F5, Thermo Fisher, Waltham,
MA, USA). All samples were prepared in duplicate according to the manufacturer’s instructions.
The ability to inhibit SOD activity was calculated from the equation:

% SOD Activity =
(Ablank1− Ablank3) − (Asample − Ablank2)

(Ablank1 − Ablank3)
× 100 (3)

3.4. Cell Culture

As part of this work, two cell lines located in different layers of the skin were used. HaCaT cells
(normal human keratinocytes) were obtained from CLS Cell Lines Service (CLS Cell Lines Service
GmbH, Eppelheim, Germany). Fibroblasts (BJ) cells (ATCC®CRL-2522™, ATCC, Manassas, VA, USA)
were purchased from the American Type Culture Collection (Manassas, VA 20108, MA, USA). Both cell
lines were grown in DMEM (Dulbecco’s Modification of Eagle’s Medium, Biological Industries)
with L-glutamine, 4.5 g/L glucose and sodium pyruvate. The medium was supplemented with
10% FBS (Fetal Bovine Serum, Gibco, Waltham, MA, USA) and 1% antibiotics (100 U/mL penicillin
and 1000 µg/mL streptomycin, Gibco). Cells were maintained in an incubator at 37 ◦C in a humid
atmosphere of 95% air and 5% carbon dioxide (CO2).
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3.5. Cell Viability Assay

To perform cytotoxicity tests on the tested cell lines, the medium was aspirated, and the cells
attached to the bottom were washed twice with sterile PBS (phosphate buffered saline, Gibco). Then,
the cell layer was trypsinized using Trypsin/tetraacetylethylenediamne (EDTA) (Gibco) and the
detached cells were centrifuged and resuspended in fresh DMEM medium. In the next step, the cells
were plated in 96-well plates. After the cells were attached to the bottom, they were incubated with
various concentrations (10, 100, 250, 500 and 1000 µg/mL) of kombucha ferments and green coffee
bean extract. Then, the cells were inserted into the incubator and incubated for 24 h with the analyzed
samples. The control was cells (separately HaCaT and BJ) cultured in DMEM without the addition
of extracts.

3.5.1. Neutral Red Uptake Assay

The neutral red uptake test (Sigma Aldrich) was applied in this work to evaluate the viability
of skin cells treated with the analyzed samples (F7, F14, F28 and GC). The tests were carried out in
accordance with the procedure previously described by us based on the methodology proposed by
Borenfreund and Puerner [60]. The average optical density of the control cells (not incubated with
analyzed samples) was set to 100% viability and was used to calculate the percentage of viable cells
in the experimental samples. The experiments were repeated three times using four wells for each
analyzed concentration.

3.5.2. Alamar Blue Assay

To assess the cytotoxicity of the tested samples and evaluate their effect on cell viability, the Alamar
Blue (AB) test (Sigma, R7017) was applied. After 24 h exposure of HaCaT cells and fibroblasts to
F7, F14, F28 and GC in a concentration range of 10–1000 µg/mL, a solution of resazurin with a final
concentration of 60 µM was added to the wells. The plates were then incubated for 2 h at 37 ◦C
in the dark in an incubator. After incubation, fluorescence of individual wells was measured at
λ = 570 nm using a microplate reader (FilterMax F5, Thermo Fisher Scientific, Waltham, MA, USA).
Three independent experiments were performed to assess cytotoxicity using the AB assay. Results are
expressed in graphs as a percentage of cell viability compared to controls (100%).

3.5.3. Lactate Dehydrogenase (LDH) Cytotoxicity Assay

The cytotoxicity of kombucha (F7, F14 and F28) and green coffee extract were also assessed
using a kit from G-Biosciences (LDH Cytoscan™ Cytotoxicity Test). The principle of this assay was
based on the conversion of lactate to pyruvate in the presence of lactate dehydrogenase. The test was
carried out according to the manufacturer’s instructions. Analysis was performed on 96-well plates
with seeded HaCaT and BJ cells in DMEM medium. After attachment to the bottom, the cells were
treated with kombucha and green coffee bean extract in the concentration range of 10–1000 µg/mL.
To prepare Spontaneous LDH Activity Control of LDH activity, no compound was added to the wells.
After incubation with tested compounds, the medium was removed and then the culture supernatant
was collected and incubated with 50 µL of reaction mixture for 30 min at 25 ◦C. The reaction was then
stopped by adding 50 µL Stop Solution. To determine lactate dehydrogenase activity, absorbance at
λ = 490 nm and λ = 680 nm was measured using a FilterMax F5 microplate reader (Thermo Fisher
Scientific, Waltham, MA, USA). Cytotoxicity of the analyzed samples was calculated using the equation:

% Cytotoxicity =
Compound Treated− Spontaneous LDH Activity

Maximum LDH release− Spontaneous LDH Activity
× 100 (4)
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3.6. Assessment of Matrix Metallopeptidases Inhibition

3.6.1. Determination of Anti-Collagenase Activity

To assess the ability of the obtained kombucha ferments (F7, F14 and F28) and the green coffee bean
extract to inhibit collagenase activity, a fluorometric kit (Abcam, ab211108) was applied. Analysis was
carried out for all kinds of kombucha ferments and green coffee extract in concentrations of 100, 500
and 1000 µg/mL. Analysis was performed on a 96-well plate with a transparent flat bottom. Initially,
collagenase (COL) was dissolved in a collagenase analysis buffer (CAB). Test samples were prepared by
adding the analyzed samples to COL and CAB. Inhibitor control samples were prepared by mixing the
collagenase inhibitor (1,10-phenanthroline (80 mM)) with collagenase and CAB buffer. Enzyme control
wells were prepared by mixing diluted COL with CAB. The CAB buffer was used as a background
control. The prepared samples were incubated for 15 min at room temperature. In addition, a reaction
mixture was prepared by mixing the collagenase substrate with CAB. The reaction mixture prepared
in this way was added to all analyzed samples and mixed thoroughly. In the next step, fluorescence
was measured at excitation wavelength λ = 490 nm and emission λ = 520 nm using a microplate reader
(FilterMax F5, Thermo Fisher Scientific, Waltham, MA, USA). The measurement was made in kinetic
mode for 60 min at 37 ◦C. All samples were prepared in duplicate according to the manufacturer’s
instructions. The ability to inhibit COL activity by F7, F14, F28 and GC was calculated by the equation:

% relative COL inhibition =
enzyme control− sample

enzyme control
× 100 (5)

3.6.2. Determination of Anti-Elastase Activity

To determine the possibility of inhibiting another matrix metalloproteinase, neutrophil elastase
(NE), a fluorometric kit (Abcam, ab118971) was applied. The analysis used analogous concentrations
of the tested samples as in the case of the test described above evaluating the possibility of
collagenase inhibition. Analysis was performed in 96-well black plates (transparent bottoms). The test
procedure was based on the instructions provided by the manufacturer. Initially, NE enzyme
solutions, NE substrate and inhibitor control (SPCK) were prepared according to the instructions.
Then, diluted NE solution was added to all wells. Test samples, inhibitor control and enzyme control
(Assay Buffer) were added to subsequent wells. All samples were prepared in duplicate. After all
reagents were added, the samples were mixed. The plate was then incubated at 37 ◦C for 5 min.
In the meantime, a reaction mixture was prepared by mixing the Assay Buffer and NE substrate.
The mixture was added to each well and mixed thoroughly. Fluorescence was measured immediately
at excitation wavelength λ = 400 nm and emission λ = 505 nm using a microplate reader (FilterMax F5,
Thermo Fisher Scientific, Waltham, MA, USA). The kinetic mode was used (30 min at 37 ◦C). The ability
to inhibit NE activity by the analyzed samples (F7, F14, F28 and GC) was calculated from the equation:

% relative NE activity =
∆RFU test inhibitor

∆ RFU Enzyme control
× 100 (6)

3.7. Transepidermal Water Loss (TEWL) and Skin Hydration Measurements

TEWL and skin hydration measurements were conducted using TEWAmeter TM 300 probe
and Corneometer CM 825 probe connected to a MPA adapter (Courage + Khazaka Electronic, Köln,
Germany). The study was conducted on 15 volunteers. Five areas (2 × 2 cm in size) were marked
on the forearm skin. 0.2 mL of 100 µg/mL solution of F7, F14, F28 and GC (aqueous solutions of dry
ferments and extract) was applied to 5 fields. One field (control field) was not treated with any sample.
Sample solutions were gently spread over every skin fragment, and then rinsed with distilled water
and dried with a paper towel. After 60, 180 and 360 min, the hydration and TEWL measurements were
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taken. The final result was the arithmetic mean (from each volunteer) of 5 independent measurements
(skin hydration) and 20 measurements (TEWL).

3.8. Determination of Sun Protection Factor (In Vitro)

Sun protection factor (SPF) of green coffee extract and fermented green coffee was determined
according to the method described by the Mansur Equation. SPF was determined by measuring the
absorbance of aqueous solution (50 µg/mL) of the dried extract or the ferment within the wavelength
range from 290 to 320 nm at 5 nm intervals. SPF was calculated from the Mansur Equation [61]:

SPF = CF ×
320∑
290

[ EE (λ) × I(λ) ×ABS (λ) ] (7)

where:

• EE (λ)—erythemal effect spectrum,
• I (λ)—solar intensity spectrum,
• Abs (λ)—absorbance of sunscreen product,
• CF—correction factor (= 10),
• E (λ) × I(λ)—values determined by Sayre were used [62].

3.9. Statistical Analysis

Values of different parameters were expressed as the mean± standard deviation (SD). The two-way
analysis of variance (ANOVA) and Bonferroni post-test between groups were performed at the p-value
level of <0.05 to evaluate the significance of differences between values. Statistical analysis was
performed using GraphPad Prism 8.4.3 (GraphPad Software, Inc., San Diego, CA, USA).

4. Conclusions

The results of the performed analysis show that the investigated green coffee extracts and
ferments with kombucha are characterized by a significant content of biologically active compounds,
which values correlate with their antioxidant potential. Green coffee extracts and ferments subjected to
a 28-day fermentation process were characterized by the highest antioxidant capacity. Coffee extracts
and ferments obtained after 14 days of fermentation were characterized by a high ability to inhibit
collagenase and elastase. In addition, these ferments can have a positive effect on skin hydration
and reduce transepidermal water loss. The analyzed samples showed no cytotoxicity to skin cells,
both keratinocytes and fibroblasts.

The conducted research shows that both the analyzed green coffee bean extracts and the ferments
obtained with kombucha may be a valuable source of bioactive substances and can be used in cosmetic
and dermatological products.
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