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Hyperlipidemia is a risk factor for cardiac damage and cardiovascular disease. Increasing evidence has shown that dyslipidemia-
related cardiac damage is associated with lipid accumulation, oxidative stress, and inflammation. Thymoquinone (TQ) is the
major constituent of Nigella sativa, commonly known as black seed or black cumin, and is globally used in folk (herbal)
medicine for treating and preventing a number of diseases and conditions. Several studies have shown that TQ can protect
against cardiac damage. This study is aimed at investigating the possible protective effects of TQ on hyperlipidemia-induced
cardiac damage in low-density lipoprotein receptor-deficient (LDL-R-/-) mice. Eight-week-old male LDL-R-/- mice were
randomly divided into normal diet (ND), high-fat diet (HFD), and HFD and TQ (HFD+TQ) groups and were fed the different
diets for eight weeks. Blood samples were obtained from the inferior vena cava in serum tubes and stored at -80°C until use.
Some cardiac tissues were fixed in 10% formalin and then embedded in paraffin for histological evaluation. The remainder of
the cardiac tissues was snap-frozen in liquid nitrogen for mRNA preparation or immunoblotting. The levels of metabolism-
related factors, such as total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-c), and high-sensitivity C-reactive
protein (hs-CRP), were decreased in the HFD+TQ group compared with those in the HFD group. Periodic acid-Schiff staining
demonstrated that lipid deposition was lower in the HFD+TQ group than in the HFD group. The expression of pyroptosis
indicators (NOD-like receptor 3 (NLRP3), interleukin- (IL-) 1β, IL-18, and caspase-1), proinflammatory factors (IL-6 and
tumor necrosis factor alpha (TNF-α)), and macrophage markers (cluster of differentiation (CD) 68) was significantly
downregulated in the HFD+TQ group compared with that in the HFD group. Our results indicate that TQ may serve as a
potential therapeutic agent for hyperlipidemia-induced cardiac damage.

1. Introduction

Cardiovascular disease (CVD) is a major cause of mortality
and morbidity worldwide [1, 2]. Among the causes of cardio-
vascular disease, hyperlipidemia is a critical damage-
inducing factor [3]; individuals with hyperlipidemia have a
higher risk for CVD than those with normal cholesterol levels
[4]. Hyperlipidemia is characterized by an increase in triglyc-
eride (TG), total cholesterol (TC), and low-density

lipoprotein-cholesterol (LDL-c) and/or a decrease in high-
density lipoprotein-cholesterol (HDL-C) [5]. Increasing evi-
dence has shown that this abnormality in lipid metabolism
causes lipid accumulation, oxidative stress, and inflamma-
tion, leading to cardiac damage [6, 7]. Several researchers
have investigated various drugs for the treatment of hyperlip-
idemia, such as statins; however, as these drugs are related to
the development of cell resistance and are associated with
adverse effects, new methods for treating hyperlipidemia
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are needed. Therefore, the use of natural hypolipidemic
drugs may constitute a promising strategy for the prevention
and treatment of hyperlipidemia [8].

Thymoquinone (TQ) is the major constituent of Nigella
sativa [9], commonly known as black seed or black cumin,
and is globally used in folk (herbal) medicine for treating
and preventing a number of diseases and conditions [10].
Previous studies have reported that TQ suppresses chronic
cardiac inflammation [11] and regulates the expression of
factors, such as vascular endothelial growth factor and
nuclear factor-erythroid-2-related factor 2, thereby improv-
ing the antioxidant potential of the cardiac muscle. In addi-
tion, TQ alleviates diabetes-associated oxidative stress in
cardiac tissues [12]. Furthermore, several studies have shown
that the protective effect of TQ against cardiac damage, such
as in cases of ischemic damage [13] and acute abdominal
aortic ischemia-reperfusion injury [14], is mediated via the
pyroptosis pathway [15]. Recently, pyroptosis, an inflamma-
tory form of programmed cell death [16], has been gaining
increasing attention, especially in relation to hyperlipidemia
[17, 18]; however, the pathophysiological mechanisms
underlying the relationship between hyperlipidemia and
cardiac damage are not yet fully understood.

Therefore, in this study, we investigated the role of TQ in
hyperlipidemia-induced cardiac damage in a low-density
lipoprotein receptor-deficient (LDL-R-/-) mouse model and
the possible underlying mechanisms.

2. Material and Methods

2.1. Animal Model. LDL-R-/- mice were purchased from
Beijing Vital River Lab Animal Technology Co., Ltd. (Beijing,
China; No. 2019001103468). All mice were bred in a room
with a 12/12 h light-dark cycle at a controlled temperature
(24–26°C). Male LDL-R-/- mice (8-week-old) were randomly
divided into the following three groups: the normal diet (ND,
n = 8), high-fat diet (HFD, n = 8), and high-cholesterol diet
+50mg/kg/day of TQ (HFD+TQ, n = 8) groups [19]. Thy-
moquinone was dissolved in corn oil solution [20]. The
HFD contained 1.2% cholesterol and 21% fat. The experi-
mental diet was purchased from Shanghai Slac Laboratory
Animal Co., Ltd. (Shanghai, China). Mice in all groups were
fed the appropriate diet for eight weeks. Blood samples were
acquired from the inferior vena cava in serum tubes and
stored at -80°C until use. Cardiac tissues were fixed in 10%
formalin and embedded in paraffin for histological evalua-
tion. The remaining cardiac tissues were snap-frozen in liq-
uid nitrogen for mRNA isolation and immunoblotting
analyses. All experimental procedures were approved by the
National Laboratory Animal Management Regulations and
the Beijing Hospital Laboratory Animal Management
Regulations.

2.2. Biochemical Measurements. Sera were separated from the
collected blood samples using centrifugation at 3000 rpm for
15min. The levels of TC, low-density lipoprotein-cholesterol
(LDL-c), and high-sensitivity C-reactive protein (hs-CRP) in
the serum were detected using the total cholesterol, low-
density lipoprotein-cholesterol, and high-sensitivity C-

reactive protein assay kit, according to the manufacturer’s
instructions. The serum IL-6 and TNF-α levels were deter-
mined using an ELISA kit according to the manufacturer’s
instructions.

2.3. Hematoxylin and Eosin Staining. The cardiac tissues
were fixed with 10% buffered formalin for 30min and then
dehydrated in 75% ethanol overnight, followed by paraffin
embedding. Serial sections (4μm) were stained with hema-
toxylin and eosin for pathological analysis.

2.4. Periodic Acid-Schiff (PAS) Staining. Cardiac tissues from
each group were stored in 10% formalin, dehydrated in an
ascending alcohol series (75, 85, 90, and 100% alcohol,
5min each), and then embedded in paraffin wax. Paraffin
sections (4μm thick), sliced from these paraffin-embedded
tissue blocks, were then deparaffinized via immersion in
xylene (three times, 5min each) and rehydrated using a

Table 1: Primer oligonucleotide sequences.

Gene Primers

TNF-α (ID: Y00467.1)

F: 5′-TCTCATGCACCACCATCAA
GGACT-3′

R: 5′-ACCACTCTCCCTTTGCAGA
ACTCA-3′

IL-6 (ID: XM_
032905335.1)

F: 5′-TACCAGTTGCCTTCTTGGG
ACTGA-3′

R: 5′-TAAGCCTCCGACTTGTGAA
GTGGT-3′

NLRP3 (ID: XM_
021213477.2)

F: 5′-CTGCGGACTGTCCCAT
CAAT-3′

R: 5′-AGGTTGCAGAGCAGGT
GCTT-3′

IL-1β (ID: NM_008361.4)

F: 5′-TGCCACCTTTTGACAG
TGAT-3′

R: 5′-TGTGCTGCTGCGAGAT
TTGA-3′

IL-18 (ID: AC140070.3)

F: 5′-ATGGCTGCTGAACCAGTAG
AAG-3′

R: 5′-CAGCCATACCTCTAGG
CTGGC-3′

Caspase-1 (ID: XM_
032898880.1)

F: 5′-AACCAGGAGAATGTTTCCA
ACCT-3′

R: 5′-AAACACCAGGCCAAGC
TTCTT-3′

β-Actin (ID: XM_
032887061.1)

F: 5′-CGATGCCCTGAGGG
TCTTT-3′

R: 5′-TGGATGCCACAGGATT
CCAT-3′

Abbreviations: TNF-α: tumor necrosis factor-α; IL-6: interleukin-6; NLRP3:
nucleotide-binding and oligomerization domain-like receptor 3; IL-18:
interleukin-18; IL-1β: interleukin-1β.
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descending alcohol series (100, 90, 85, and 75% alcohol,
5min each). Samples were stained with PAS stain to investi-
gate the changes in cardiac morphology. Red staining indi-
cates lipid deposition.

2.5. Immunohistochemistry. Immunohistochemistry was per-
formed according to the manufacturer’s instructions using
antibodies against cluster of differentiation (CD) 68 and
CD36. The results were visualized using an Olympus micro-
scope (Olympus, Tokyo, Japan). The NIH ImageJ software
was used for positive cell quantification. Furthermore, statis-
tical analysis of the differences between samples was
performed.

2.6. Western Blotting. The protein samples obtained from
cardiac tissues were separated using 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
then transferred to polyvinylidene fluoride membranes. The
membranes were blocked in Tris-buffered saline with 0.1%
Tween-20 (TBS-T) containing 5% skimmed milk and then
incubated overnight with gentle shaking at 4°C in a diluent
containing primary antibodies against NLRP3, IL-18, IL-1β,
caspase-1, P-ERK, NF-κB, p-38, and anti-β-actin. The mem-
branes were then incubated with a secondary antibody for
1 h. This analysis was performed independently three times.
Protein levels were expressed as protein/β-actin ratios to
minimize the loading differences. The relative signal intensity
was quantified using the NIH ImageJ software.

2.7. RNA Isolation and Real-Time PCR (qPCR). Total RNA
was isolated from cardiac tissues, and complementary DNA
(cDNA) was synthesized using the TransScript One-Step
gDNA Removal and cDNA Synthesis SuperMix kit accord-
ing to the manufacturer’s protocol. Gene expression was
quantitatively analyzed using qPCR and the TransStart Top
Green qPCR SuperMix kit. β-Actin was amplified and quan-
titated in each reaction to normalize the relative amounts of
the target genes. Primer sequences are listed in Table 1.

2.8. Statistical Analysis. The normality of the data was tested.
All data are presented as the mean ± standard error of mean
ðSEMÞ. Statistical analysis was performed using the SPSS
software version 23.0 (SPSS Inc., Chicago, IL, USA). Inter-
group variation was measured using one-way analysis of var-
iance followed by Tukey’s test. The threshold for statistical
significance was set at P < 0:05.

2.9. Materials and Reagents. The materials and reagents were
the following: total cholesterol, low-density lipoprotein-cho-
lesterol, and high-sensitivity C-reactive protein assay kit
(Nanjing Jiancheng Bioengineering Institute, Nanjing,
China); IL-6 and TNF-α ELISA kit (Proteintech, Wuhan,
China); immunohistochemistry staining kit (Zsbio, Beijing,
China); primary antibodies against CD68 (rabbit anti-CD68
antibody, 1 : 200; Proteintech, Wuhan, China); CD36 (rabbit
anti-CD36 antibody, 1 : 200; Proteintech); polyvinylidene
fluoride membranes (Immobilon, Millipore, Billerica, MA,
USA); diluent (P0023A; Beyotime); NOD-like receptor 3
(NLRP3; rabbit anti-NLRP3 antibody, 1 : 1000; Boster,
Wuhan, China); interleukin- (IL-) 18 (rabbit anti-IL-18 anti-
body, 1 : 1000; Proteintech); IL-1β (rabbit anti-IL-1β anti-
body, 1 : 1000; Arigo, Hamburg, Germany); caspase-1
(rabbit anti-caspase-1 antibody, 1 : 1000; Proteintech);
phosphoextracellular signal-related kinase (P-ERK; rabbit
anti-P-ERK, 1 : 1000; Proteintech); NF-κB (NF-κB; rabbit
anti-NF-κB, 1 : 1000; Proteintech); p-38 (p-38; rabbit anti-
p-38, 1 : 1000; Proteintech); anti-β-actin (1 : 1000; Protein-
tech); secondary antibody (anti-rabbit Ig-G, 1 : 1000; Cell
Signaling Technology); cDNA Synthesis SuperMix kit
(Transgen, Beijing, China); qPCR; and the TransStart Top
Green qPCR SuperMix kit (Transgen).

3. Results

3.1. Metabolic Characterization.At the end of the experiment,
all mice survived. The metabolic characteristics of LDL-R-/-

mice after eight weeks of different treatments are summarized
in Table 2. The heart/body weight ratio did not change in the
three groups. The TC, LDL-c, hs-CRP, IL-6, and TNF-α levels
were markedly increased in the HFD group but significantly
decreased in the HFD+TQ group.

3.2. TQ Reduced the HFD-Induced Cardiac Damage. To eval-
uate inflammatory cell infiltration into cardiac tissue, hema-
toxylin and eosin staining was performed (Figure 1). The
HFD+TQ group showed markedly reduced inflammatory
cell infiltration into cardiac tissue compared with the HFD
group, indicating that TQ reduced HFD-induced cardiac
damage. To evaluate lipid accumulation in cardiac tissue,
we evaluated the PAS staining and the expression of CD36
and CD68 (Figure 2). Increased lipid retention was detected
in the cardiac tissues of HFD-fed mice. Interestingly, the

Table 2: Metabolic data from the four groups after 8 weeks of dietary treatment.

LDL-R-/- ND LDL-R-/- HFD LDL-R-/- HFD+TQ

Heart/BW (mg/g) 4:175 ± 0:1966 3:814 ± 0:3045 4:483 ± 0:08
TC (mmol/L) 8:5 ± 1:207∗ 34:01 ± 2:318 14:08 ± 0:7108∗

LDL-c (mmol/L) 3:938 ± 0:1281∗ 23:88 ± 1:651 6:783 ± 0:6817∗

hs-CRP (ng/dL) 58:5 ± 4:252∗ 221:2 ± 13:43 111:7 ± 10:19∗#

IL-6 (pg/mL) 18:1 ± 1:9266∗ 79:956 ± 4:0109 43:33 ± 6:9251∗#

TNF-α (pg/mL) 19:156 ± 4:7569∗ 88:708 ± 3:6499 45:262 ± 4:0316∗#

Abbreviations: BW: body weight; TC: total cholesterol; LDL-c: low-density lipoprotein-cholesterol; IL-6: interleukin-6; TNF-α: tumor necrosis factor-α. Data
are means ± SEM; n = 5-6 per group. ∗P < 0:05 vs. LDL-R-/- HFD; #P < 0:05 vs. LDL-R-/- ND.

3BioMed Research International



HFD+TQ group showed markedly reduced lipid deposition
in the cardiac tissue compared with the HFD group.

3.3. TQ Reduced the HFD-Induced Expression of
Proinflammatory Cytokines in Mouse Cardiac Tissues. To
examine the involvement of proinflammatory cytokines in
the cardiac tissues of the three mouse groups, the mRNA
and protein expression levels of IL-6 and tumor necrosis fac-
tor alpha (TNF-α) were measured using qPCR and western
blotting (Figure 3). Although IL-6 and TNF-α mRNA and
protein were upregulated in the HFD group, upregulation
was attenuated in the HFD+TQ group.

3.4. TQ Reduced the HFD-Induced Pyroptosis in Mouse
Cardiac Tissues. To evaluate pyroptosis in cardiac tissues,
we examined the mRNA and protein expression of the pyr-
optosis indicators NLRP3, caspase-1, IL-1β, and IL-18
(Figure 4). The mRNA levels of NLRP3, caspase-1, IL-1β,
and IL-18 were significantly downregulated in the HFD
+TQ group compared with those in the HFD group
(Figure 4(a)). Western blotting (Figure 4(b)) demonstrated
that the protein levels of NLRP3, caspase-1, IL-1β, and IL-
18 were markedly reduced in cardiac tissues of the HFD
+TQ group compared with those in the HFD group
(Figures 4(b) and 4(c)). These results indicate that TQ

ND

HE

HFD HFD+TQ

Figure 1: Effect of TQ on hyperlipidemia-induced histopathological changes in the cardiac tissues. HE staining in cardiac tissues of three
groups with different treatments. Magnification 40x. The arrows indicate damage. n = 3 per group.
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Figure 2: Effect of TQ on hyperlipidemia-induced lipid accumulation in the cardiac tissues. PAS, CD36, and CD68 staining in cardiac tissues
of three groups with different treatments. Magnification 40x. The arrows indicate damage. n = 3 per group. Bar graph showing PAS-, CD36-,
and CD68-positive cells. ∗P < 0:05.

4 BioMed Research International



reduced the HFD-induced upregulation of NLRP3, caspase-
1, IL-1β, and IL-18 expression.

3.5. TQ Reduced the HFD-Induced Increase in P-ERK, NF-κB,
and p-38 Levels in Mouse Cardiac Tissues. To investigate the
effect of TQ on the regulation of the ERK, NF-κB, and p-38
signaling pathways, we analyzed the P-ERK, NF-κB, and p-
38 levels in the respective treatment groups using western
blotting (Figure 5). P-ERK, NF-κB, and p-38 levels were
higher in the HFD group than in the ND group, and the
HFD+TQ group exhibited significantly lower P-ERK, NF-
κB, and p-38 levels than the HFD group.

4. Discussion

The present study demonstrates that TQ has a protective
effect on hyperlipidemia-induced progressive lipid deposi-
tion, proinflammatory cytokine expression, and pyroptosis.

The specific mechanism underlying this effect is shown in
Figure 6.

The results of metabolic characterization indicated that
the TC and LDL-c levels were increased in the HFD group
compared to those in the ND group. These results are consis-
tent with those obtained by Kolbus et al. [21]. Interestingly,
the TC and LDL-c levels in the HFD+TQ group were signif-
icantly lower than those in the HFD group. Several clinical
studies have indicated that hs-CRP can serve as a biomarker
in cardiovascular event risk prediction [22, 23]. Our results
show that the HFD+TQ group had markedly reduced serum
hs-CRP levels than those in the HFD group, indicating that
TQ influences cholesterol metabolism and hs-CRP levels.

Hyperlipidemia promotes macrophage accumulation
and lipid deposition in cardiac tissues [24]. Cellular lipid
homeostasis involves the regulation of the influx, synthesis,
catabolism, and efflux of lipids. An imbalance in these pro-
cesses can result in the conversion of macrophages into foam
cells [25]. The CD68 marker identifies a population of
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Figure 3: Proinflammatory gene and protein expression in the cardiac tissue. (a) Relative mRNA expression of IL-6 and TNF-α in cardiac
tissue of three groups with different treatments. (b) Immunoblotting for IL-6 and TNF-α protein expression in cardiac tissues. (c) Bar
graph showing quantification of IL-6 and TNF-α protein expression. Data are given as the means ± SEM; n = 5-6 in each group. ∗P < 0:05;
∗∗P < 0:01.
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macrophages; CD68-positive cells are often observed in infil-
trating cardiac tissues [25]. In addition, studies have shown
that oxLDL can stimulate the expression of scavenger recep-
tors (CD36, low-density lipoprotein receptor 1, and scaven-
ger receptor A) in monocyte-derived macrophages, thereby
inducing macrophages to form foam cells [26, 27]. Huang
and his colleagues demonstrated that inhibiting the expres-
sion of scavenger receptors, such as CD36, inhibits the for-
mation of foam cells [28]. The results of our lipid
deposition assays showed that CD68 and CD36 expression
and PAS staining were significantly increased in the LDL-R-

/- HFD group compared with those in the LDL-R-/- ND
group; however, this damage was significantly inhibited in
the HFD+TQ group, indicating that TQ inhibits the cardiac
damage caused by hyperlipidemia by inhibiting lipid deposi-
tion and the conversion of macrophages to foam cells.

High expression of proinflammatory cytokines, known to
contribute to cardiac damage, has been reported in hyperlip-
idemia [29, 30]. Our study showed that the expression of IL-6

and TNF-α was reduced in the HFD+TQ group compared
with that in the HFD group, indicating that TQ downregu-
lated the HFD-induced expression of IL-6 and TNF-α. As
early as 1997, Mutabagani and El-Mahdy confirmed the
anti-inflammatory activity of TQ in rats [31]. This study
showed that hyperlipidemia can cause cardiac damage by
increasing the expression of proinflammatory cytokines and
that TQ can inhibit this damage through its anti-
inflammatory effects.

Pyroptosis is a novel programmed cell death mechanism.
Recent studies have reported that pyroptosis contributes to
the development of hyperlipidemia. Pyroptosis induction is
closely associated with the activation of the NLRP3 inflam-
masome, which has been linked to key cardiovascular risk
factors, including hyperlipidemia [32, 33]. A significant
decrease in atherosclerotic lesion size was also observed in
the aortic sinus of HFD-fed LDL-R-/- mice reconstituted with
NLRP3 knockout bone marrow cells [32]. In addition, previ-
ous studies have shown that NLRP3 recruits caspase-1,
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Figure 4: Pyroptosis expression in the cardiac tissues. (a) Relative mRNA expression of NLRP3, caspase-1, IL-1β, and IL-18 in cardiac tissue
of three groups with different treatments. (b) Immunoblotting for NLRP3, caspase-1, IL-1β, and IL-18 protein expression in cardiac tissues.
(c) Bar graph showing quantification of NLRP3, caspase-1, IL-1β, and IL-18 protein expression. Data are given as themeans ± SEM; n = 5-6 in
each group. ∗P < 0:05.
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leading to the activation of caspase-1, maturation and secre-
tion of IL-1β and IL-18, and initiation of pyroptosis [34–37].
Our results showed that the cardiac tissues in the HFD+TQ
group expressed markedly reduced levels of NLRP3, cas-
pase-1, IL-1β, and IL-18 compared with those in the HFD
group, indicating that TQ downregulated HFD-induced
pyroptosis.

Oxidative stress and inflammation are important causes
of cardiovascular disease [38, 39]. Studies have shown that
hyperlipidemia causes cardiac damage by increasing oxida-

tive stress and that reactive oxygen species (ROS) play an
important role in this damage [40]. Furthermore, it has been
confirmed that excessive accumulation of ROS can transmit
the signal to downstream ROS-sensitive signaling pathways,
such as NF-κB, ERK1/2, p38 MAPK, and autophagy-related
signaling to induce pathological cardiac hypertrophy [41–
44]. Therefore, in our study, we analyzed the protein levels
of NF-κB, p-38, and P-ERK in the respective treatment
groups using western blotting. The results showed that the
NF-κB, p-38, and P-ERK levels were higher in the HFD
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Figure 5: Phospho-ERK, NF-κB, and p-38 expression in the cardiac tissues. (a) Immunoblotting for phospho-ERK, NF-κB, and p-38 levels in
cardiac tissues. (b) Bar graph shows the quantification of phospho-ERK, NF-κB, and p-38 levels. Data are given as themeans ± SEM; n = 3 in
each group. ∗P < 0:05.
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Figure 6: The effect of TQ on the cardiac damage caused by hyperlipidemia.
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group than in the ND group and that the HFD+TQ group
exhibited significantly lower NF-κB, p-38, and P-ERK levels
than the HFD group. These results indicate that hyperlipid-
emia causes cardiac damage via ROS-sensitive signaling path-
ways (NF-κB, p-38, and P-ERK) and that TQ can reduce the
cardiac damage caused by hyperlipidemia by inhibiting these
pathways. Zhang et al. confirmed that hydrogen (H2) inhibits
isoproterenol-induced cardiac hypertrophy via the NF-κB, p-
38, and P-ERK pathways [45]. In addition, Xu et al. showed
that TQ reduces cardiac damage via the phospho-ERK path-
way [19], whereas Tabeshpour et al. showed that TQ inhibits
the expression of the p-38 pathway [46].

5. Conclusions

The reduced lipid deposition and pyroptosis and downregu-
lated proinflammatory cytokine expression found in mice fed
TQ in our study establish that TQ contributes to themitigation
of hyperlipidemia-induced cardiac damage. These findings
provide new insights into the role of TQ in hyperlipidemia-
induced cardiac damage and introduce the possibility of a
novel therapeutic intervention for treating CVDs.
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