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Abstract: The major drawback of oxide-based sensors is the lack of selectivity. In this context,
SnxTi1−xO2/graphene oxide (GO)-based materials were synthesized via a simple hydrothermal route,
varying the titanium content in the tin dioxide matrix. Then, toluene and acetone gas sensing
performances of the as-prepared sensors were systematically investigated. Specifically, by using 32:1
SnO2/GO and 32:1 TiO2/GO, a greater selectivity towards acetone analyte, also at room temperature,
was obtained even at ppb level. However, solid solutions possessing a higher content of tin relative
to titanium (as 32:1 Sn0.55Ti0.45O2/GO) exhibited higher selectivity towards bigger and non-polar
molecules (such as toluene) at 350 ◦C, rather than acetone. A deep experimental investigation of
structural (XRPD and Raman), morphological (SEM, TEM, BET surface area and pores volume) and
surface (XPS analyses) properties allowed us to give a feasible explanation of the different selectivity.
Moreover, by exploiting the UV light, the lowest operating temperature to obtain a significant and
reliable signal was 250 ◦C, keeping the greater selectivity to the toluene analyte. Hence, the feasibility
of tuning the chemical selectivity by engineering the relative amount of SnO2 and TiO2 is a promising
feature that may guide the future development of miniaturized chemoresistors.

Keywords: metal oxide solid solutions; graphene oxide; chemoresistor; volatile organic compounds;
sensitivity; selectivity; room temperature sensing

1. Introduction

A perhaps endless list of compounds falls under the acronym VOCs, which stands for Volatile
Organic Compounds; these share a common feature: they are volatile at ambient temperature. Their
molecular nature varies (alcohols, ketones, hydrocarbons and so on) as well as their origin, e.g.,
emissions from industrial facilities [1,2], commercial products [3], plants [2], animals and human
beings as well [4,5]. Thus, with the increasing of environmental concerns [6,7], taking into account the
correlations between a specific VOCs and human diseases [8–10], the monitoring of these compounds
has become mandatory. In particular, it has been recently demonstrated that abnormal concentrations
of toluene in the human’s breath could be a potential symptom for lung cancer disease [11]. The exhaled
toluene level in lung cancer patients is known to be approximately of hundreds of ppb, which is more
than three times greater its concentration in healthy people’s breath (around 20–30 ppb) [12].

Nanomaterials 2020, 10, 761; doi:10.3390/nano10040761 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0003-4385-7461
https://orcid.org/0000-0003-4550-175X
https://orcid.org/0000-0002-0014-3576
https://orcid.org/0000-0001-8536-1398
https://orcid.org/0000-0002-1260-2979
http://www.mdpi.com/2079-4991/10/4/761?type=check_update&version=1
http://dx.doi.org/10.3390/nano10040761
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2020, 10, 761 2 of 16

Metal oxide semiconductors (MOS) such as ZnO [13,14], SnO2 [15,16] and TiO2 [17,18] exhibit
remarkable sensitivity towards a wide range of both reducing and oxidizing gases. However, their
major drawback is their lack of selectivity in the presence of several interfering species. Indeed, most
MOS-based gas sensors and, especially those based on the conductivity change upon interaction with
gases, are non-specific and, above all, they are usually active at temperatures above 200 ◦C [19,20].
For instance, small polar molecules are better detected than volatile hydrocarbons, and similar VOCs
still give identical responses [21,22]. However, the latter issue can be partially solved by adopting
different approaches, such as (i) the synthesis of 3-dimensional hierarchical, mesoporous or hollow
networks with enhanced surface activity [23–25]; (ii) the engineering of nano-heterojunctions that
prompt significant changes in the potential barrier height upon exposure to different analytes [26–28];
(iii) the doping or decoration with noble metal nanoparticles having a diverse catalytic effect towards
a specific VOC molecule; and (iv) the statistical elaboration of data obtained by multiple sensor
arrays [29,30]. Hence, in this context, scientific research is focusing attention on the preparation of
novel materials able to sense VOCs at room temperature, thus reducing the energy consumption,
reaching high sensitivity (of ppb concentration) and a good selectivity [31–33]. For instance, Quan
et al. [23] have recently pointed out the hierarchical flower-like Pt-doped 3D porous SnO2 possesses
excellent selectivity for acetone molecules, showing a good response down to 50 ppb at a relatively
high temperature of 153 ◦C. Besides, 3D hierarchical hollow SnO2/ZnO hetero-nanofibers have been
described as potential acetone selective sensors thanks to the occurrence of an n-n type junction at the
interface between ZnO and SnO2, thus resulting in an enhanced electronic transport [26]. Nevertheless,
also in this case, the operating temperature with the highest response is 350 ◦C [26]. Moreover, Kim
et al. [34] reported exceptional toluene sensing properties of novel SnO2/ZnO core–shell nanowires,
functionalized with Pt nanoparticles, showing an excellent Rair/Ranalyte intensity response to 100 ppb at
300 ◦C. Remarkably, as sticks out, the majority of the most promising reported sensor materials achieve
the best performances only at high operating temperatures, especially above 250–300 ◦C [26,34].

In this context and with our promising results already reported on the synergistic effect between
p-type MOS and n-type graphene oxide (GO), especially in reducing the operating temperature [27,35],
we believe that the SnxTi1−xO2/GO solid solution system may be an efficient active material with even
improved selectivity. Indeed, there are already several papers [36–40] dealing with both synthesis and
successful application of SnO2-TiO2 mixed oxides as either photocatalysts or sensing materials. Tricoli
et al. [37] reported the preparation of a SnO2–TiO2 solid solution with limited cross-sensitivity towards
humidity, thanks to the replacement of some tin cations by titanium ones. Chung et al. [41] suggested
that the enhancement of their gas sensing performances relies on the Schottky barrier formation at the
grain boundaries of well-formed SnO2 particles embedded in a finely dispersed TiO2 matrix.

Hence, starting from these previous studies, novel composite materials, based on a combination
of SnO2, TiO2 and GO, are presented herein. Notably, the effect of the substitution of tin by titanium
cations has been fully elucidated on structural, surface, morphological and optical points of view.
Finally, toluene (i.e., big and non-polar molecule) sensing has been deeply investigated as a function
of titanium content in the solid solutions, both at 350 ◦C and at lower operating temperatures, in the
latter case by simultaneously exploiting the UV light. Thus, we found that toluene concentrations
of 100 ppb can be detected. Then, the best-performing samples were tested also towards acetone
molecules, evidencing that SnO2/GO and TiO2/GO are more selective towards smaller and polar
molecules. Conversely, the solid solutions SnxTi1−xO2/GO can detect, to a greater extent, bigger
and lower polar analytes, such as toluene species. Moreover, they can be exploited down to 250 ◦C,
while 32:1 SnO2/GO and TiO2/GO also proved to be very promising at room temperature. Finally,
we demonstrated that these optimal nanocomposite structures provide excellent chemical responses,
showcasing their applicability as selective room-temperature VOC chemoresistors.
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2. Materials and Methods

All the chemicals were of reagent-grade purity and were used without further purification. Doubly
distilled water passed through a MilliQ apparatus was utilized.

2.1. Synthesis of Both Pristine and Hybrid GO-Based Compounds

Graphene oxide (GO) was prepared by adopting a modified Hummers’ method, already
reported elsewhere [27,35]. For the solid solution SnxTi1−xO2/GO materials, different tin(IV) chloride
pentahydrate (SnCl4 × 5H2O, by Sigma-Adrich, Darmstadt, Germany, 98%) contents were dissolved in
3.0 g L−1 of a 2-propanol-based (by Sigma-Aldrich, ≥95.5%) GO suspension to produce both Sn/(Sn + Ti)
precursor molar ratios equal to 0.21, 0.35, 0.44, 0.55 and 0.71, and Sn + Ti salt precursors-to-GO weight
ratios always of 32:1. The mixture was stirred (at 300 rpm) for 1.5 h at 50 ◦C and, then, the required
amount of titanium (IV) isopropoxide (Ti(OCH(CH3)2)4, TTIP, by Sigma-Aldrich, 97%) was added
to the previous mixture, accordingly. Then, the system was left under stirring for another 1.5 h.
Subsequently, 2 M sodium hydroxide (NaOH, by Sigma-Aldrich, ACS reagent) was added dropwise
into the flask in a stoichiometric amount, related to the sum of tin- and titanium-precursors moles, and
the mixture was continuously stirred for other 3 h. The resulting product was centrifuged (at 8000 rpm)
several times with MilliQ water, until the pH became neutral. Afterwards, it was dried in an oven at
60 ◦C. Finally, a calcination step at 400 ◦C, under oxygen flux (6 h, 9 NL h−1) was carried out to form
a whitish precipitate.

Notably, the chemical composition of the system was varied over a full range from 100 mol%
of SnO2 (namely, 32:1 SnO2/GO) to 100 mol% of TiO2 (namely, 32:1 TiO2/GO). These oxide-based
composites were labelled as: 32:1 SnxTi1−xO2/GO, where x = 0.21, 0.35, 0.44, 0.55 and 0.71.

For the sake of comparison, pure SnO2 and TiO2 powders were prepared through the same
synthetic route and bare rutile TiO2 (purchased from Sigma-Aldrich, 99.5% trace metals basis) was also
taken into account.

2.2. Powders Physico-Chemical Characterizations

X-Ray Powder Diffraction (XRPD) analyses were performed on a Philips PW 3710 Bragg-Brentano
goniometer equipped with a scintillation counter, 1◦ divergence slit, 0.2 mm receiving slit and 0.04◦

Soller slit systems. We used graphite-monochromated Cu Kα radiation (Cu Kα1 λ = 1.54056 Å, Kα2 λ
= 1.54433 Å) at 40 kV × 40 mA nominal X-rays power. Diffraction patterns were collected between 10◦

and 70◦ with a step size of 0.1◦. A microcrystalline Si-powder sample was employed as a reference to
correct instrumental line broadening effects.

Raman spectra were recorded on pure samples using a Bruker Vertex 70 spectrometer (Billerica,
MA, USA), equipped with the RAMII accessory and Ge detector, by exciting samples with Nd:YAG
laser source (1064 nm), with resolution of 4 cm−1.

Specific surface area and porosity distribution were determined from N2 adsorption/desorption
isotherms at 77 K using a Micromeritics Tristar II 3020 (Norcross, GA, USA) apparatus and the instrumental
software (Version 1.03) by applying Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda analyses,
respectively. Before measurements, sample powders were pretreated at T = 150 ◦C (4 h under N2 flux) to
remove adsorbed species.

Scanning Electron Microscopy (SEM)/Energy Dispersive X-ray spectroscopy (EDX) were carried
out using a SEM Hitachi TM-1000 coupled with Hitachi ED3000 spectrophotometer (Krefeld, Germany).

Transmission Electron Microscope (TEM) analyses were performed on a JEOL JEM 3010UHR
microscope operating at 300 kV and equipped with a LaB6 single crystal filament and an energy
dispersive X-ray (EDX) detector (Oxford INCA Energy TEM 200, Oxford, UK). Sample powders were
dry deposited on 200 mesh Cu “holey” carbon grids before the analyses.

ATR-FTIR spectra were recorded using a Nicolet 380 spectrophotometer (Thermo Electron
Corporation, Waltham, MA, USA) between 4000 and 1400 cm−1.
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X-ray Photoelectron Spectroscopy (XPS) (Thermo Scientific, Waltham, MA, USA) analysis was
carried out by means of an M-probe apparatus (Surface Science Instrument), using a monochromatic
Al Kα radiation source (1486.6 eV). The XPS binding energy scale was charge corrected using the
standard calibration, fixing the C 1s peak at 284.6 eV.

To evaluate powders’ optical band gaps by Kubelka-Munk elaboration, Diffuse Reflectance Spectra
(DRS) were measured on a UV/Vis spectrophotometer Shimadzu UV-2600 spectrophotometer (Kyoto,
Japan) equipped with an integrating sphere; a “total white” BaSO4 powder was used as reference.

2.3. Deposition on Au-Interdigitated Electrodes (Au-IDEs) and VOCs Sensing Tests

Powders were deposited on glass substrates topped with interdigitated Au electrodes (Au-IDEs)
by a simple hot-spray method reported in our previous works [27,35]. Therefore, the tested IDEs were
prepared by adopting both pristine and solid solution metal oxides.

Acetone and toluene species were chosen as target analytes for the VOCs sensing measurements.
The tests were performed using a homemade stainless-steel cell. The IDE-coated sensors were placed
above a hotplate connected to a PID temperature controller. The upper part of the cell was closed
with a quartz window for UV/Vis irradiation of the investigated sensors. The tests were made under
flowing 20 vol.%O2/N2 gas mixture (0.5 L min−1 flow rate; AlphagazTM Air Liquid, 99.999 mol%
purity, humidity traces) regulated by mass flow controllers (Bronkhorst, The Netherlands). The desired
amount of target gases up to 4 ppm in 20 vol.%O2/N2 (0.5 L min−1 flow rate) was introduced into
the cell by means of a four-way switching valve. The analyte concentration was varied by dilution
of a proper flow of a starting 500 ppm acetone or toluene in N2 gas mixture (Sapio S.r.l., relative
uncertainty 2.0%, humidity traces) keeping constant the total flow rate of 0.5 L min−1. The sensing tests
under UV light irradiation were made at operating temperature equal or below 250 ◦C using an iron
halide mercury arc lamp (Jelosil HG500, 500 W) as an irradiation source, emitting in the 350–450 nm
range with an incident power density of 30 mW cm−2. For the gas sensing tests, two gold probes were
separately placed on top of the powders covered IDEs, and the dynamic response was recorded by an
electrochemical workstation (Autolab PGStat30, Ecochemie The Netherlands, potentiostat/galvanostat
controlled by NOVA 2.0 software), applying a bias of +1.0 V. The sensor response is reported as:
(Rair/Ranalyte) − 1, where Rair is the film resistance in air and Ranalyte is the film resistance at a given
concentration of the target gas [42]. As reported in our previous works [27,35], both sensors’ response
and recovery times have been evaluated considering the 90% of the final response.

3. Results and Discussion

3.1. Nanostructured SnxTi1−xO2/GO Solid Solutions: Composition and Physico-Chemical Properties

Nanostructured SnxTi1−xO2/GO solid solutions were finely investigated to deeply understand the
correlation between their physico-chemical properties and the sensing performances.

Wide-angle XRPD analyses were performed to determine the crystal structure and to corroborate
the formation of Sn/Ti solid solutions. Figure 1a reports the XRPD patterns of the as-synthesized
nanostructured metal oxides with a controlled Sn/Ti ratio. Notably no GO traces, whose 100% intensity
peak is located at 2θ= 12◦ [43], were observable in all the diffraction patterns. Moreover, the crystallinity
degree of 32:1 SnxTi1−xO2/GO composites seems to slightly increase with increased titanium content
(i.e., sharper peaks starting from 32:1 Sn0.35Ti0.65O2/GO sample), having estimated grain sizes from
about 6 to 10 nm. Conversely, a drop in crystallinity was observed passing from bare SnO2 (ca. 20 nm)
to 32:1 SnO2/GO (8 nm) and 32:1 Sn0.71Ti0.29O2/GO, until x = 0.44 (6 nm), above which a smooth
rise was noticed again. Besides, as clearly visible in Figure 1b, all the 32:1 SnxTi1−xO2/GO exhibit
no phase segregation: the main cassiterite SnO2 peak (1 1 0; JCPDS 14-1445 [40]) slightly shifts from
26.6◦ (of pure SnO2 and 32:1 SnO2/GO) to 27.4◦ typical of rutile TiO2 (JCPDS n. 21-1276 [40]), as the Ti
content increases. Interestingly, in the investigated solid solutions, the anatase polymorph (JCPDS
n. 21-1272 [40]) was not observed, except in 32:1 TiO2/GO sample, being cassiterite and rutile-TiO2
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isostructural phases (tetragonal cell [44]). These results show that Ti atoms could substitute Sn ones,
maintaining the structural configuration more similar to cassiterite (rutile-type) polymorph, without
drastic cell distortions.
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Figure 1. (a) Comparison of X-ray diffraction lines relative to pure cassiterite SnO2, rutile TiO2, 32:1
SnO2/GO, 32:1 TiO2/GO and all the SnxTi1−xO2/GO solid solutions by increasing the titanium content.
(b) Magnification of the X-Ray Powder Diffraction (XRPD) patterns to investigate the shift of the more
intense peak from 26.6◦ of pure cassiterite SnO2 [40,45] to 27.4◦ of pure rutile TiO2 [40]. (c) FTIR spectra
of the tested samples, (d) Raman data of pure GO, 32:1 SnO2/GO, 32:1 TiO2/GO, 32:1 Sn0.55Ti0.45O2/GO,
32:1 Sn0.35Ti0.65O2/GO samples (A = anatase, R = rutile and C = cassiterite). * = Traces of SnO2 cassiterite.
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Furthermore, the effect of Ti-content was also investigated by FTIR and Raman spectroscopies
(Figure 1c,d). Notably, Figure 1c reports the non-linear, very rapid transition from SnO2 (~500 cm−1,
ascribable to Sn–O stretching [46]) to TiO2 (~470 cm−1, ascribable to O–Ti–O stretching [38]) infrared
modes, which is already almost accomplished in the 32:1 Sn0.71Ti0.29O2/GO sample. According to
Tricoli et al. [37], even 9% of Ti-doping into SnO2 matrix can affect the ionic transport in the crystal,
the molecular bond length and, thus, the surface adsorption properties/sensing performances. Raman
analyses corroborate the previous XRPD and FTIR results. Going into detail, the main transition from
the anatase polymorph, typical of 32:1 TiO2/GO, to the rutile one, present in the solid solution oxides,
occurs by decreasing the Ti content (Figure 1d). Specifically, in the case of 32:1 TiO2/GO the four Raman
modes peculiar of anatase TiO2 are evident: the Eg at 641 cm−1, the A1g and B1g at 524 cm−1 and the
B1g at 398 cm−1 [37]. Contrarily, as the titanium content decreases, the Eg and A1g rutile peaks of TiO2

become evident at 612 and 445 cm−1, respectively [37]. This abrupt transition from anatase to rutile is
consistent with XRPD results (Figure 1a,b). Moreover, a further reduction of the Ti amount gradually
shifts the TiO2 rutile Raman modes to the SnO2 cassiterite ones, clearly visible in the 32:1 SnO2/GO
spectrum (see Figure 1d, A1g at 624 cm−1, A2u at 640 cm−1 and B2g at 766 cm−1).

The specific surface area (SBET) of the investigated samples rises with the increasing of the Ti
content (Table 1), from 60 m2 g−1 of 32:1 SnO2/GO up to of 177 m2 g−1 of 32:1 Sn0.44Ti0.56O2/GO,
followed by a drastic decrease at higher titanium amounts.

Table 1. Surface area (SBET) and total pore volume (Vtot. pores) by BET-BJH analysis, together with the
relative standard deviations directly given by the instrumental software.

Sample SBET (m2 g−1) Vtot. pores (cm3 g−1) ♣

Graphite 11 ± 1 0.030
GO 45 ± 1 0.034

SnO2 Cassiterite 67 ± 1 0.210
32:1 SnO2/GO 60 ± 1 0.130

32:1 Sn0.71Ti0.29O2/GO 65 ± 1 0.048
32:1 Sn0.55Ti0.45O2/GO 117 ± 2 0.119
32:1 Sn0.44Ti0.56O2/GO 177 ± 2 0.170
32:1 Sn0.35Ti0.65O2/GO 44 ± 1 0.070
32:1 Sn0.21Ti0.79O2/GO 34 ± 1 0.120

32:1 TiO2/GO 159 ± 2 0.303
TiO2 anatase 132 ± 2 0.250

Commercial TiO2 rutile <10 0.033
♣ The relative standard deviation values are around 3–4%.

This trend is in agreement with the increasing crystallinity observed by XRPD and due to an
increasing particle size attained at high Ti content, i.e., at the phase transition from a cassiterite-like to
a rutile-like crystal structure [47,48]. Interestingly, the same trend was observed for the total pores
volume (see Table 1, 3rd column and Figure S1c). Figure S1c clearly evidences that the majority of pores
present in the solid solutions are smaller than 5 nm, whereas 32:1 SnO2/GO and 32:1 TiO2/GO show
a different distribution, having pores slightly larger (the 90% are below 10 nm). In particular, Figure S1b
displays that by increasing the titanium amount, pores tend to get smaller, showing the distribution
peak at around 3–4 nm. However, the 32:1 Sn0.21Ti0.79O2/GO compound represents an exception,
since it has a very small total pore volume, and the corresponding Gaussian curve has a very broad
band centered at around 12 nm. In any case, either 32:1 SnO2/GO or 32:1 TiO2/GO possess pores with
a slightly higher average dimensions, of ca. 5–6 nm. Furthermore, BET isotherms (Figure S1a) unveil
the presence of bottle-necked pores [49], with a typical H2-type hysteresis loop for pure TiO2, SnO2 and
32:1 TiO2/GO. However, 32:1 SnxTi1−xO2/GO materials, along with 32:1 SnO2/GO, are characterized by
a hysteresis loop shape between that of pure SnO2 or TiO2 and the one of GO [35]. Therefore, some of
these powders possess bottle neck-shaped pores (typical of SnO2), others slit-shaped ones (typical of
GO).
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Figure 2 and Figure S2 refer to both morphological (i.e., surface texture) and external habits of
some of the as-prepared powders, by both TEM and SEM measurements, respectively. Specifically, from
SEM micrographs (Figure S2), it is possible to observe the presence of micrometric spherical aggregates,
even of about 200 µm, especially for low Ti-content. Conversely, by increasing the titanium amount,
these agglomerates tend to become even smaller (<100 µm), exhibiting a characteristic sponge-like
morphology (Figure S2f), that is much more similar to the 32:1 TiO2/GO material (Figure S2g).
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Figure 2. TEM images of (a) 32:1 SnO2/GO, (b) 32:1 Sn0.55Ti0.45O2/GO, (c) 32:1 Sn0.44Ti0.56O2/GO and
(d) 32:1 TiO2/GO, as representative samples (insets: relative magnifications together with the relative
Selected Area Electron Diffraction, SAED, patterns).

In addition, the EDX analyses (Figure S2) confirm the starting amount of Sn and Ti in the solid
solutions. Parallel to this, TEM images reveal the presence of nanometric crystalline particles in either
cassiterite 32:1 SnO2/GO (Figure 2a) or anatase TiO2/GO (Figure 2d) phases. In contrast, the solid
solutions 32:1 SnxTi1−xO2/GO exhibit a lower general crystallinity, as a further corroboration of the
XRPD results. In particular, for these mixed samples, it seems that SnO2 behaved as seeds for the
further growth of the rutile titania nanoparticles. Moreover, as already discussed for the XRPD outputs,
the crystallinity degree seems to slightly rise with increasing titanium content, i.e., from the 32:1
Sn0.35Ti0.65O2/GO sample to the 32:1 TiO2/GO one. This feature is further confirmed by the investigation
carried out at high resolution (see the inset to Figure 2b), relative to 32:1 Sn0.55Ti0.45O2/GO: only starting
from this ratio between Ti and Sn on, it is possible to single out frequent crystalline fringe patterns
(ascribable, if inspected in detail, to the (1 1 0) crystal planes of rutile-type structure with d(hkl) =
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0.332 nm: see the electron diffraction in the inset to Figure 2b [ICDD card n. 43-1002]). For smaller
ratios between Ti and Sn, a more amorphous nature of the materials is evidenced, as clearly observable
in Figure 2c, for which only very seldom fringe patterns typical of same rutile-type structure can be
singled out and confirmed by the electron diffraction patterns (see the inset of Figure 2c).

As far as the optical properties are concerned, DRS analyses were performed and, subsequently,
elaborated by Kubelka–Munk equation (Figure 3a). Notably, as the amount of titanium ions into tin
dioxide lattice increases, the band gap value tends to decrease (Figure 3b). Indeed, Eg shifts from
3.40 eV of 32:1 SnO2/GO to 3.05 eV of 32:1 Sn0.21Ti0.79O2/GO, reaching a value much that is much more
similar to the pure TiO2 one (i.e., 2.90–3.00 eV). These results are further confirmed by the literature,
i.e., the same trend has been already reported by Zakrzewska et al. [39] for SnO2–TiO2 materials
(Figure 3b), pointing out the systematic change of the solid solutions band gap with the increasing of
titanium content.
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GO and 32:1 TiO2/GO. (b) Comparison between band gap (Eg) values obtained herein (circles) and the
ones redrawn from literature (black squares) [39] as a function of the Sn/(Sn + Ti) ratio. XP spectra of
(c) Sn 3d, (d) Ti 2p and (e) O 1s regions relative to three 32:1 SnxTi1−xO2/GO (with x = 0.71, 0.55 and
0.21) as representative samples. 32:1 SnO2/GO and TiO2/GO have been reported for comparison.

Furthermore, surface properties by XPS measurements were finely investigated to give insights
into powder composition by varying the Ti content. Hence, three different Sn/(Sn + Ti) ratios, i.e.,
the lowest 0.21, an intermediate 0.55 and the highest 0.71 ones, were thoroughly studied.
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Particularly, the Sn 3d5/2 region (Figure 3c) shows the presence of a peak at around 486.9 eV,
typical of Sn(IV) species [44], in all the composites samples. However, while 32:1 SnO2/GO signal
can be fitted with only this peak, the solid solutions interestingly possess broader spectra, which
underline the presence of other bands. Furthermore, with the addition of titanium ions, XP spectra
tend to smoothly shift towards lower binding energies and two other peaks (at ca. 484.8 and 486.3 eV)
appear, which can be ascribed to Sn(III) and Sn(II) species, respectively [44]; in contrast, the peak
relative to Sn(IV) slightly shifts to higher values (around 487.9 eV). Therefore, these spectral changes
prove that the Sn atoms are gradually substituted by Ti cations, resulting in the formation of reduced
tin ions, probably due to oxygen vacancies [44]. This observation is further supported by the area
of these peaks (see Table S1): by increasing the Ti content, lower Sn valence states increase. Indeed,
as observable from the ratios reported in Table S1, the Sn(II) and, above all, the Sn(III) peaks show
an increased area to the detriment of the Sn(IV) peak area. Besides, focusing on the Ti 2p1/2 region
(Figure 3d), a confirmation of the previous outcomes was obtained. Actually, for all the three solid
solutions, the peaks relative to defective Ti species [50], Ti(III) (at ca. 457.1 eV) and Ti(IV + δ)+ (at ca.
458.6 eV, [51]) are observable. In particular, with the increasing of titanium atoms, the area of Ti(IV +

δ)+ rises by about 30% due to the presence of Sn(III) and Sn(II) species (Table S1) and, hence, to the
much higher lattice defectivity. Precisely, this defectivity was verified by focusing on the O 1s region:
only the 32:1 SnxTi1−xO2/GO materials show the peak at ca. 530.2 eV that is reported to be ascribable to
a high binding energy component (HBEC) developed with the increasing loss of oxygen or creation of
oxygen vacancies [52,53]. Besides, the other peaks are respectively correlated to: (i) oxygen bound to
the metal ions (Ti [51,54] or Sn [48]) in the lattice (at ca. 528.6 eV), (ii) a low binding energy component
(LBEC) due to adsorption of OH− on the surface (at ca. 531.1 eV [51,52,55]); and (iii) water adsorption
(at B.E. equal or higher than 532.0 eV) [51,56].

3.2. VOCs (Toluene and Acetone) Sensing

As widely reported in the literature [13,15,16,57], both oxide-based compounds possess optimal
features as sensing materials for very small and high-polar molecules, such as gaseous ethanol. In this
research, instead, the solid solution oxides have been tested towards a bigger and non-polar analyte,
toluene. Furthermore, the adopted scalable air-spraying method, already reported in our previous
works [27,35], led to very homogeneous micrometric films, having an average thickness of about
1.5–3.0 µm for all the tested materials. These values are fully in agreement with the best performing
micrometers films already described in the literature for gas sensing applications [58,59].

Specifically, gas sensing measurements were conducted first at high temperatures (350 ◦C,
without UV light), and secondly at decreased T by exploiting the synergistic effect between n-type
semiconductors and p-type GO [27,35]. For comparison, tests were also performed using pure SnO2

and TiO2, synthesized through the same route: in both cases, no reproducible and good responses
were obtained.

Figure 4a and Figure S3 show the responses obtained with 32:1 SnO2/GO, 32:1 TiO2/GO and
the 32:1 SnxTi1−xO2/GO materials towards different toluene concentrations (from 4 to ppb-level),
at 350 ◦C. Remarkably, by increasing the titanium amount, the sensors response worsens (see Figure S3e
relative to 32:1 Sn0.21Ti0.79O2/GO), even resulting in absence of any change in conductivity for the 32:1
Sn0.44Ti0.56O2/GO sample (4th histogram in Figure 4e). The reason for this behavior has been already
unraveled by Tricoli et al. [37], who investigated the electrical and chemical properties of SnO2–TiO2

solid solutions. Specifically, they observed that the resistivity of these materials increases up to 7 orders
of magnitude by increasing the Ti-content from 0 to 80%. Thus, this strong increase in resistivity may
indicate the dominant role of the surface states in determining the solid solution conductivity. Moreover,
in our particular case, notwithstanding that the 32:1 Sn0.44Ti0.56O2/GO compound possesses the highest
surface area (177 m2 g−1; Table 1, 2nd column), it is also one of the least crystalline materials, showing
very large peaks and an amorphous phase, as observed from XRPD analysis and corroborated by TEM
images. Zakrzewska et al. [39] already described a similar performance trend, evidencing a minimum



Nanomaterials 2020, 10, 761 10 of 16

of H2 sensing for Sn/(Sn + Ti) of 0.5. Therefore, samples with a slightly higher Sn content seem to be
preferable for VOC sensing. Herein, the best performing samples, in terms of either sensitivity (down
to 100 ppb of toluene, Figure S3) or signal intensity (see histograms for 1 ppm-response, in Figure 4e)
seem to be 32:1 SnO2/GO, 32:1 TiO2/GO and 32:1 Sn0.55Ti0.45O2/GO. Indeed, both solid solutions having
x = 0.21 and 0.55 showed greater response intensities; however, only with 32:1 Sn0.55Ti0.45O2/GO
was the Limit of Detection (LOD) reached 100 ppb (Figure S3). Besides, by comparing the curves
displayed in Figure 4c, the solution of 32:1 Sn0.55Ti0.45O2/GO seems to reach a plateau region at high
toluene concentrations, contrarily to both the 32:1 SnO2/GO and the 32:1 TiO2/GO behavior. This
may be connected to the different pore size distributions, since only the solid solutions have a higher
percentage of pores smaller than 5 nm (Figure S1c). Hence, this feature could have played a significant
role in the response recovery, i.e., the higher the percentage of very small pores, the more difficult
the desorption of the sensing products and, thus, the signal recovery (as demonstrated by the greater
recovery times in Table S2). Nevertheless, the three most promising chemoresistors have shown very
sharp signals, indicating short response/recovery times (of about 20–35 s and 30–60 s, respectively; see
Table S2a).

Starting from all the previous findings, the optimal samples were tested towards acetone analyte,
to eventually elucidate their potential selectivity towards a specific biomarker. Thus, Figure 4f reports
the comparison of the 1 ppm signal intensity for all the three compounds, always at high operating
temperatures of 350 ◦C. Moreover, the relative sensor responses are reported in Figure 4b. Two main
observations can be made: regarding the sensitivity and the signal intensities, 32:1 SnO2/GO and
32:1 TiO2/GO (Figure 4a–d) seem to better sense acetone with respect to toluene gaseous molecules.
Remarkably, in Figure 4b, it is clearly visible that, while 32:1 SnO2/GO (blue line) and 32:1 TiO2/GO
(fuchsia line) have a very similar behavior of the intensity signal with the variation of the VOCs
concentrations, the 32:1 Sn0.55Ti0.45O2/GO solid solution resulted in a dramatic decrease in the response
(cyan line). Indeed, both 32:1 SnO2/GO and 32:1 TiO2/GO display an almost six-fold signal intensity
relative to the ones achieved in the presence of toluene analyte (at the same concentration and
experimental conditions; see Figure 4c,d). Secondly, the 32:1 Sn0.55Ti0.45O2/GO solid solution seems to
possess much more selectivity towards toluene than acetone, as noticeable in Figure 4f, notwithstanding
the low signal intensities. Interestingly, the sensitivity also appears to be affected as, in the case of
acetone, 200 ppb was the lowest detectable concentration (instead of 100 ppb for toluene; Figure 4a,b).
Indeed, as already unveiled by Tricoli et al. [37], a low titanium content limits the cross-sensitivity to
relative humidity by reducing the number of rooted and terminal OH surface species with respect to
both pure metal oxides. A further corroboration of this assertion was attained by investigating the
high-resolution XPS O 1s region of 32:1 SnO2/GO, 32:1 TiO2/GO and solid solutions (see Figure 3e).
By computing the ratio between the area relative to the adsorbed hydroxyl groups and those ascribable
to oxygen lattice and vacancies, it is clearly visible that the solid solutions are less hydrophilic than
32:1 SnO2/GO and 32:1 TiO2/GO materials. Hence, herein, a lower hydrophilicity of the solid solutions
surface may have led to a scarcer affinity to polar analytes, such as acetone, thus favoring the sensing
of bigger and non-polar toluene molecules. Moreover, as largely discussed for XRPD results, 32:1
SnxTi1−xO2/GO compounds are mainly constituted by the rutile polymorph, which is already shown to
have a lower amount of surface hydroxyl groups than the anatase phase, as conversely 32:1 TiO2/GO
shows [60–62]. As such, together with the so far reported higher catalytic activity of the rutile TiO2

towards toluene species [63], the greater selectivity to low/non-polar molecules of the solid solutions
may be justified. Finally, response and recovery times obtained with acetone are well comparable
to those reached towards toluene, and all below 70 s (see Table S2b). Remarkably, the 32:1 TiO2/GO
material shows very short response and recovery times of 20 and 30 s respectively, which are fully
consistent with some of the best performing MOS-based chemoresistors [1,10,22,33,64].
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Figure 4. 32:1 SnO2/GO (blue line), 32:1 Sn0.55Ti0.45O2/GO (cyan line) and 32:1 TiO2/GO (fuchsia line)
sensor signals towards (a) toluene and (b) acetone molecules. Sensor response intensities towards
(c) toluene and (d) acetone species. (e) Histograms displaying a comparison of the response intensity
obtained with the solid solutions towards 1 ppm of toluene analyte. (f) Comparison of the intensities at
1 ppm of toluene (orange) and acetone (grey) obtained with the most promising 32:1 SnO2/GO, 32:1
TiO2/GO and 32:1 Sn0.55Ti0.45O2/GO samples. Tests were carried out in simulated air (20% O2–80% N2)
at 350 ◦C, without UV light.

Additionally, our aim was to reduce the operating temperature. Thus, Figure 5 shows a comparison
between toluene and acetone sensing by the adopted 32:1 Sn0.55Ti0.45O2/GO solid solution, at 250 ◦C
(with the aid of the UV light). Notably, with this sample, it was not possible to further reduce the
temperature, even exploiting the UV irradiation. For both gases, 200 ppb were detected (Figure 5a,b)
and the highest selectivity towards bigger and non-polar analytes, as toluene, has been preserved.
In contrast, with the 32:1 SnO2/GO and 32:1 TiO2/GO (Figure 5c–f) composites, a signal was obtained
even at RT, UV light aided. Specifically, both samples conserve the highest sensitivity and goodness
of sensor signal towards acetone molecules, rather than toluene gas. However, interestingly, the 32:1
TiO2/GO sample exhibits a “reversed” behavior in the case of small and polar molecules, such as
acetone (Figure 5f), maybe caused by the interaction between the moisture adsorbed on the sensing
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material highly-hydrophilic surface [60] and the VOC molecules, and this is lost when the operating
temperature is above the water condensation point, as reported by Tricoli et al. [65].Nanomaterials 2020, 10, x  12 of 17 
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Figure 5. (a) Toluene and (b) acetone sensing by 32:1 Sn0.55Ti0.45O2/GO solid solution, at 250 ◦C with
UV light. Sensor responses obtained towards (c,e) toluene and (d,f) acetone for 32:1 SnO2/GO and 32:1
TiO2/GO, at RT with UV irradiation. All the measurements were carried out in simulated air (20%
O2–80% N2). OT = Operating Temperature.

Overall, the tailoring of titanium ions into tin dioxide matrix alongside with the integration of
graphene oxide into the metal oxides could be exploited for the engineering of materials with higher
sensing performances, especially in terms of selectivity to different VOC species.

4. Conclusions

In this study, 32:1 SnxTi1−xO2/GO materials were synthesized via a simple hydrothermal route,
varying the relative Sn/Ti ratios. All these materials have been thoroughly investigated from structural,
morphological, surface and optical points of view, showcasing tailored features depending on the
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titanium amount. Furthermore, the toluene and acetone gas sensing performances of the as-prepared
sensors were systematically investigated and compared with 32:1 SnO2/GO and 32:1 TiO2/GO
nanocomposites. Specifically, the latter exhibited a greater selectivity towards acetone analyte,
also at room temperature, down to hundreds of ppb. Contrarily, solid solutions possessing a higher
content of tin with respect to titanium, as 32:1 Sn0.55Ti0.45O2/GO, evidenced higher selectivity towards
bigger and non-polar molecules (such as toluene) at 350 ◦C, rather than acetone. A lower hydrophilicity
surface texture, together with the simultaneous presence of smaller pores (3–4 nm), could explain the
sensing features towards non-polar molecules. However, by exploiting either the presence of graphene
oxide embedded in the MOS-based solid solutions or the UV light, a reduction of the operating
temperature was successfully attained. Indeed, a significant and reliable signal was recorded down
to 250 ◦C, interestingly keeping a much greater selectivity towards toluene analyte. In contrast, at
RT, 32:1 TiO2/GO showed an enhanced opposite change of conductivity to acetone, probably due
to its highly hydrophilic surface composition, which causes a greater adsorption of moisture at RT,
thus competing with the target VOC for the adsorption sites. Therefore, an opposite response to
that expected for n-type semiconductors with reducing gases may occur. Hence, we believe that the
feasibility of tuning the chemical selectivity, by engineering the relative amount of SnO2 and TiO2,
grown on graphene oxide, can provide guidelines for the engineering of the next room-temperature
chemoresistors for the selective detection of VOCs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/4/761/s1,
Table S1: Binding Energies (B. E.) relative to different Sn and Ti oxidation states, and ratios between counts of each
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acetone molecules, obtained at 350 ◦C, Figure S1: (a) Comparison of BET isotherms, (b,c) pores size distribution
by BET-BJH analysis for all the solid solutions, Figure S2: SEM images alongside with the relative EDX spectra,
Figure S3: Toluene sensing by (a) 32:1 SnO2/GO, (b–e) mixed oxides (with the exception of 32:1 Sn0.44Ti0.56O2/GO,
since it did not show any signal), and (f) 32:1 TiO2/GO compounds at 350 ◦C.
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