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Exposure to diesel exhaust particles (DEPs) has been associated with increased incidence of cardiopulmonary diseases. This study is
aimed at examining the proinflammatory effects of DEP on primary human peripheral blood mononuclear cells (PBMC) and the
underlying mechanisms using a human mononuclear cell line, THP-1. DEPs were incubated with the PBMC and THP-1 cells for
24 h, respectively. The supernatants were collected and subjected to measurement of proinflammatory mediators including
interleukin 8 (IL-8) or tumor necrosis factor α (TNFα) by ELISA. Levels of reactive oxygen species (ROS) were determined
using flow cytometry. Phosphorylation of the epidermal growth factor receptor (EGFR) was examined with immunoblotting.
Exposure to DEP induced a concentration-dependent increase in the expression of IL-8 and TNFα in the PBMC and THP-1
cells. Further mechanistic studies with THP-1 cells indicated that DEP stimulation increased intracellular levels of ROS, an
indicator of oxidative stress, and phosphorylation of the EGFR, indicative of EGFR activation. Pretreatment of THP-1 cells with
the antioxidant N-acetyl-L-cysteine (NAC) markedly blunted DEP-induced EGFR phosphorylation, indicating that oxidative
stress was involved in DEP-induced EGFR activation. Furthermore, the pretreatment of THP-1 cells with either NAC or a
selective EGFR inhibitor significantly blocked DEP-induced IL-8 expression, implying that oxidative stress and subsequent
EGFR activation mediated DEP-induced inflammatory response. In summary, DEP stimulation increases the expression of
proinflammatory mediators in human mononuclear cells, which is regulated by oxidative stress-EGFR signaling pathway.

1. Introduction

Exposure to air pollution, especially airborne particulate
matter (PM), has been associated with increased morbidity
and mortality for cardiopulmonary diseases [1–6]. Based on
aerodynamic diameter, PM can be classified into coarse
(2.5-10μm, PM2.5-10), fine (<2.5μm, PM2.5), and ultrafine
(<0.1μm, PM0.1) particles. Of them, PM2.5 and PM0.1 can
be inhaled more deeply into the lungs with a portion
depositing in the alveoli and entering the pulmonary
circulation and likely the systemic circulation. Source appor-
tionment study on the main categories of PM has indicated
that, on average, traffic is the biggest source of air pollution
in urban air around the world, responsible for one quarter

of PM in the air [7]. The associations of air pollution with
cardiopulmonary diseases are the strongest for PM2.5, of
which the combustion-derived ultrafine particles from diesel
exhaust are an important component [2].

Diesel engines are cheaper to run than gasoline engines
or other sources of power. However, diesel combustion can
emit a complex mixture of air pollutants, including both
gaseous and solid material. The solid material mainly refers
to diesel exhaust particles (DEPs), which account for a highly
significant percentage of the smallest sizes of PM emitted in
urban areas. For example, a study with electron microscopy
showed that over 80% of DEP had a size ≤ 0:1 μm [8]. Given
the significant contribution of PM emissions from diesel
vehicles to the total concentration of PM in ambient air,
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much research has been carried out on effects of DEP that
have been used as the surrogate in exploring the mechanisms
by which airborne fine or ultrafine particles promote cardio-
pulmonary diseases [9]. Thus far, the exact causal connection
between DEP and adverse health effects is still not fully
understood, but certain molecular and cellular mechanisms
are generally assumed to play a key role. The most well-
examined cellular responses upon interaction with DEP are
the induction of oxidative stress and inflammation, both of
which play a key role in the onset or exacerbation of respira-
tory diseases and the development of cardiovascular diseases
[10]. Acute coronary syndrome (ACS) is a syndrome due to
decreased blood flow in the coronary arteries such that part
of the heart muscle is unable to function properly or dies
[11]. Previous study has shown that mortality from all causes
was higher among individuals with greater long-term expo-
sure to PM2.5 in survivors of hospital admission for ACS
[12]. Elevated PM2.5 exposure contributes to triggering acute
coronary events, especially ST-segment elevation myocardial
infarction, in those with existing seriously diseased coronary
arteries but not in those with nondiseased coronary arteries
[13]. These results suggest that ACS patients are susceptible
to PM2.5 effects. There is extensive evidence to support a
pathogenic role for both local and systemic inflammation in
ACS, and the intensity of the inflammatory response
influences clinical outcome of ACS [14]. Peripheral
leukocytes play an important role in the inflammatory
response, interact with the endothelium in controlling
vascular homeostasis, and are involved in the initiation of
atherogenesis [15, 16]. In this context, this study is aimed at
examining the proinflammatory effects of DEP on human
peripheral blood mononuclear cells (PBMC) and the under-
lying mechanisms using THP-1 cells.

2. Materials and Methods

2.1. Reagents. 5-(and-6)-Carboxy-2′,7′-dichlorodihydro-
fluorescein diacetate (carboxy-H2 DCFDA) was purchased
from Invitrogen Corporation (USA). The antioxidant N-ace-
tyl-L-cysteine (NAC) was obtained from Sigma Company
(USA). The selective EGFR inhibitor, PD153035, was
procured from Aladdin Industrial Corporation (Shanghai,
China). RPMI1640 medium and RIPA lysis buffer were
obtained from Beijing Solarbio Life Sciences Company
(China). Lactate dehydrogenase (LDH) assay kit was
obtained from Jiangsu Beyotime Biotechnology, Inc. (China).
Interleukin 8 (IL-8) and tumor necrosis factor α (TNFα)
ELISA assay kits were purchased fromWuhan Boster Bioen-
gineering, Inc. (China). The rabbit antibodies against
phospho-EGFR (Y1068) and pan-EGFR antibodies were
obtained from Cell Signaling Technology (Beverly, MA,
USA). Horseradish peroxidase (HRP)-conjugated goat anti-
rabbit antibody was purchased from Santa Cruz Biotechnol-
ogy (Santa Cruz, CA, USA).

2.2. Study Subjects. The study subjects were recruited from
December 2014 to June 2015 in the 4th Affiliated Hospital
of Xinxiang Medical University. All 25 patients (15 males
and 10 females) were diagnosed of ACS with coronary

angiography, indicating that more than one branch of
coronary arteries blocked with an area of ≥70%. The subjects
were aged 25 to 76 years with a mean age of 57:6 ± 11:5. This
study was conducted in accordance with the Declaration of
Helsinki, and the protocol was approved by the Ethics
Committee of Xinxiang Medical University. Written
informed consent was obtained from all subjects.

2.3. Cell Culture. Blood was drawn with venepuncture from a
large antecubital vein. PBMCwere purified using lymphocyte
separation medium following the manufacturer’s instruction.
THP-1 cell line, a human leukemia mononuclear cell line,
that has been extensively used to study monocyte/macroph-
age functions, mechanisms, signaling pathways, and nutrient
and drug transport [17], was purchased from American Type
Culture Collection (Manassas, VA, USA). Purified PBMC or
THP-1 cells were cultured in RPMI 1640 medium containing
10% FBS with penicillin (100U/ml) and streptomycin
(100μg/ml) at 37°C in 5% CO2; 1 × 106 cells in 0.5ml
medium were incubated in round-bottom polystyrene
culture tubes with loosened caps for DEP stimulation studies.

2.4. DEP Preparation. DEPs used in this study were a
generous gift from the Division of Environmental Public
Health, United States Environmental Protection Agency.
The manufacture and characteristics of the DEPs were
depicted previously [18].

DEPs stored in the glass sample jar were suspended in
molecular grade water to make a stock solution of 1mg/ml
and sonicated just before incubation with PBMC or THP-1
cells. The particle size of DEP was less than 0.45μm.

2.5. Enzyme Linked Immunosorbent Assay (ELISA). 1 × 106
PBMC and THP-1 cells in 0.5ml of RPMI 1640medium were
incubated with DEP at 37°C for 24 h, respectively. The
culture tubes were centrifuged at 500 g for 10 minutes. Levels
of IL-8 and TNFα proteins in the supernatants of culture
medium were measured by ELISA, respectively, following
the manufacturer’s instruction. The phosphate-buffered
saline (PBS) solution was used as a negative control.

In addition, THP-1 cells were pretreated with 10mM
NAC or 10μM PD153035, a selective EGFR inhibitor, for
2 h, respectively, prior to stimulation with 100μg/ml DEP
for another 24 h. Levels of IL-8 and TNFα were measured
with ELISA.

2.6. Measurement of Intracellular ROS. The intracellular
formation of ROS in THP-1cells was detected using the fluo-
rescent ROS probe carboxy-H2DCFDA. The intensity of
green fluorescence produced by THP-1 cells is proportional
to the amount of ROS produced. Briefly, THP-1 cells were
preincubated with 20μM carboxy-H2DCFDA at 37°C for
1 h before exposure to 0, 10, 50, or 100μg/ml DEP for 4 h.
The cells were washed once with PBS, suspended in 0.5ml
PBS, and put on ice before determining the green fluores-
cence intensity. Flow cytometry was performed with an
Accuri C6 cytometer (Becton-Dickinson, USA). 6,000 events
were counted for all sample runs. Relative cell size and
density/granularity were quantified by analyzing light scatter
properties, namely forward scatter for cell size and side
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scatter for density/granularity, and recording the mean fluo-
rescence intensities (MFI) for each.

In addition, THP-1 cells were preincubated with 20μM
carboxy-H2DCFDA for 1 h before further treatment with
10mM NAC for 2 h. Then, 100μg/ml DEPs were added
and incubated for another 4 h. Intracellular ROS levels were
measured as described previously [19].

2.7. Immunoblotting. THP-1 cells exposed to 0, 10, 50, or
100μg/ml DEP for 4 h were washed twice with ice-cold PBS
and then lysed in RIPA buffer (1x PBS, 1% nonidet P-40,
0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate
(SDS), and 1mM phenylmethylsulfonyl fluoride). The super-
natants of cell lysates were subjected to SDS-PAGE. Proteins
were transferred onto nitrocellulose membrane. Membrane
was blocked with 5% nonfat milk, washed briefly, and
incubated with primary antibody (1 : 1000 dilution) against
phospho-specific or pan-EGFR at 4°C overnight, respec-
tively, followed by incubation with corresponding HRP-
conjugated secondary antibody (1 : 2000 dilution) for 1 h at
room temperature. Immunoblot images were detected using
ECL reagents and the Chemiluminescent Imaging System
(Tanon Science & Technology Co., Shanghai, China).

2.8. Statistical Analysis.Data are presented asmean ± SD and
analyzed with SPSS17.0 software. Data comparisons were
carried out using one-way analysis of variance followed by
Dunnett’s posttest and two-tailed Student’s t-test, with the
overall α level set at 0.05.

3. Results

3.1. DEP Exposure Increases Expression of Proinflammatory
Mediators. We first examined the proinflammatory effect of
DEP on the PBMC from ACS patients. Exposure of the
PBMC to 10-100μg/ml for 24 h did not result in significant
alterations in cytotoxicity, as assessed by assay of LDH
activity released into the culture medium (data not shown).

Under the same exposure condition, DEP treatment
increased the expression of proinflammatory mediators
including IL-8 and TNFα in the PBMC from ACS patients.
As shown in Figure 1(a), DEP exposure increased IL-8
expression in a concentration-dependent fashion (P < 0:05).
With the increase in the concentration of DEP, levels of
TNFα in culture media reached the highest at 50μg/ml of
DEP (P < 0:05) (Figure 1(b)). These results indicated that
DEP stimulation increased the expression of proinflamma-
tory mediators in human PBMC from ACS patients.

DEP-induced expression of proinflammatory mediators
was also examined in THP-1 cell line. First of all, we deter-
mined the proinflammatory effect of DEP on THP-1 cells
under the same experimental conditions as the PBMC from
ACS patients. As shown in Figure 2, exposure to DEP (10,
50, and 100μg/ml) induced a concentration-dependent
increase in IL-8 (a) and TNFα (b) expression. Overall,
THP-1 cells exposed to DEP presented similar proinflamma-
tory response to the PBMC from ACS patients. To minimize
the background interference of the PBMC from different
ACS patients, we just used THP-1 cells, instead of the PBMC

from ACS patients, to study the potential signaling pathways
that may regulate DEP-induced cytokine release.

3.2. Oxidative Stress Mediates DEP-Induced Expression of
Proinflammatory Mediators in THP-1 Cells. To determine
whether oxidative stress is involved in DEP-induced inflam-
matory response in human blood mononuclear cells, we first
measured intracellular levels of ROS in THP-1 cells, an
indicator of oxidative stress. ROS levels were detected using
flow cytometry and represented as MFI. As shown in
Figure 3(a), exposure to DEP (10-100μg/ml) increased ROS
levels in THP-1 cells, indicating that DEP stimulation caused
oxidative stress. As expected, DEP-induced ROS production
were blocked by the antioxidant NAC (Figure 3(b)). These
results indicated that DEP induced oxidative stress in human
blood mononuclear cells.

Furthermore, THP-1 cells were pretreated with the anti-
oxidant NAC for 2 h prior to stimulation with 100μg/ml
DEP for another 24h. As shown in Figures 3(c) and 3(d),
pretreatment of THP-1 cells with NAC significantly blocked
DEP-induced IL-8 and TNFα expressions, respectively,
indicating that oxidative stress was indispensable to DEP-
induced release of proinflammatory mediators from human
mononuclear cells.

3.3. EGFR Regulates DEP-Induced IL-8 Expression in THP-1
Cells. To examine whether the EGFR is required for DEP-
induced proinflammatory response in THP-1 cells,
phosphorylation of EGFR at a major autophosphorylation
tyrosine 1068 was first determined. The phosphorylation of
EGFR is an indicator of its activation. As shown in
Figure 4(a), exposure to DEP (10-100μg/ml) resulted in a
concentration-dependent increase in EGFR phosphorylation
at tyrosine 1068, indicating that the EGFR was activated by
DEP treatment. The pretreatment of THP-1 cells with the
selective EGFR inhibitor PD153035 markedly blocked DEP-
induced expression IL-8 (Figure 4(b)), but not TNFα
(Figure 4(c)).

3.4. Oxidative Stress Regulates EGFR Activation in THP-1
Cells Exposed to DEP. As depicted previously, DEP treatment
induced oxidative stress and EGFR activation. To further
explore the link between these two events, THP-1 cells were
pretreated with 10mM NAC for 2 h, prior to 100μg/ml
DEP treatment for 4 h. As shown in Figure 5, the pretreat-
ment of THP-1 cells with NAC significantly blunted DEP-
induced EGFR activation, indicating that oxidative stress
was required for DEP-induced EGFR activation.

4. Discussion

Exposure to air pollution, especially PM, is associated with
heart disease, even at the relatively low concentrations [5].
These associations are the strongest for PM2.5 [3], of which
the combustion-derived nanoparticulates of diesel exhaust
are an important component [2]. ACS include unstable
angina and myocardial infarction. In both conditions, the
coronary artery blood flow is impaired due to arteriosclerosis
or thrombosis. Local and systemic inflammation has been
proposed to play a pathogenic role in the pathogenesis of
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ACS [14]. In this present study, we employed the in vitro
model to examine the proinflammatory effect of DEP on
the PBMC from ACS and the underlying mechanisms using
THP-1 cells. It was found that exposure to DEP induced
overexpression of proinflammatory mediators in human
mononuclear cells and this process was regulated by oxida-
tive stress and EGFR.

Oxidative stress is a disturbance in the oxidant-
antioxidant balance in favor of the former, leading to
potential damage [20]. ROS, such as superoxide, hydrogen
peroxide, and hydroxyl radicals, are a major contributor to
oxidative stress and arise not only from the redox potential
of the pollutants themselves but also from the circulating
cytokines and inflammatory cells that are activated by
inhaled PM or its soluble components [21]. Previous studies
have showed that exposure to PM2.5 or DEP induces ROS
production in human bronchial epithelial cells, resulting in
overexpression of proinflammatory mediators [19, 22, 23].
In this study, we detected overt ROS production in DEP-
treated blood mononuclear cells, and this event was required
for DEP-induced TNFα and IL-8 expressions. The possible
mechanisms for DEP-induced ROS production are under
speculation. DEPs are typically composed of carbon particles
and organic and inorganic compounds, such as polycyclic
aromatic hydrocarbons (PAHs), nitro and oxygenated

derivatives of PAHs, heterocyclic compounds, aldehydes,
aliphatic hydrocarbons, and heavy metals. It has been
demonstrated that the two main organic compounds
adsorbed on DEP, PAHs, and quinones contribute to ROS
production through enzymatic or nonenzymatic reactions
[24, 25]. For example, PAHs can induce oxidative stress indi-
rectly through biotransformation by cytochrome P450 and
dihydrodiol dehydrogenase [26].

In addition to showing the involvement of oxidative
stress in DEP-induced TNFα and IL-8 expression, this study
also revealed that the EGFR regulated DEP-induced IL-8
expression in THP-1 cells. The EGFR is a single transmem-
brane protein that possesses intrinsic tyrosine kinase activity.
It can be directly activated or transactivated through
phosphorylation of autophosphorylation sites including
tyrosine 1068 (Y1068) on its C-terminus in response to a
variety of environmental stimuli [27]. The EGFR signaling
cascade represents a key intermediate pathway involved in
the regulation of proinflammatory genes and appears to be
activated and upregulated in the lungs of human volunteers
exposed to diesel exhaust [28]. Previous studies have demon-
strated that PM- or PM component-mediated EGFR
signaling plays a critical role in inducing the proinflamma-
tory response in human airway epithelial cells [29, 30]. In this
study, we observed that DEP stimulation caused a dose-
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Figure 1: DEP exposure induces overexpression of proinflammatory mediators in human PBMC. The PBMC from ACS patients were
incubated with 10-100 μg/ml DEP for 24 h, respectively. The supernatants of cell culture media were collected through centrifuge. Levels
of IL-8 (a) or TNFα (b) were measured using ELISA. ∗P < 0:05, compared with 0μg/ml of DEP, n = 25.
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Figure 2: DEP exposure induces overexpression of proinflammatory mediators in THP-1 cells. THP-1 cells were incubated with 10-
100μg/ml DEP for 24 h, respectively. The supernatants of cell culture media were collected through centrifuge. Levels of IL-8 (a) or TNFα
(b) were measured using ELISA. ∗P < 0:05, compared with 0 μg/ml DEP, n = 3.
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dependent increase in EGFR phosphorylation in THP-1 cells,
further upregulating DEP-induced IL-8 expression. As for
the mechanisms of DEP-induced EGFR activation, it has
been shown that the nonreceptor tyrosine kinase Src and
the matrix metalloproteinase-mediated release of heparin-
binding EGF regulated DEP- and metal-induced EGFR
activation [31, 32]. Another study also with human bronchial
epithelial cells has found that expression of IL-8 in response
to DEP treatment involves autocrine production of EGFR
ligands [33]. Additionally, airborne particles and chemicals
adhered can interfere with membrane properties by changing
membrane fluidity and composition of microdomains,
further affecting activity of transmembrane proteins includ-
ing receptors [34]. PAHs in DEP have been reported to
increase the fluidity of cellular model membranes directly,
and benzo[a]pyrene may interact with carbonyl groups of
phospholipids [35]. Moreover, DEP-induced EGFR phos-
phorylation may involve protein tyrosine phosphatase
(PTP) since in the previous study with primary human
airway epithelial cells, we observed that DEP-induced EGFR
activation is related to a loss of PTP activities which normally
function to dephosphorylate EGFR in opposition to baseline
EGFR kinase activity [36].

A previous study with human airway epithelial cells
showed that pretreatment with an antioxidant prevented
DEP-induced activation of EGFR [37], implying that
oxidative stress induced by DEP may play a critical role in
activating EGFR signaling. The association of oxidative stress
with EGFR activation in DEP-treated mononuclear cells was
examined in this study. It was revealed that oxidative stress
was involved in the regulation of EGFR activation induced
by DEP. Documented evidence indicates that ROS
transiently inactivates PTPs to enhance or prolong EGFR
activation [38]. Such redox-mediated PTP inactivation is
due to the oxidation of a susceptible conserved catalytic
cysteine residue that is essential for phosphotyrosine hydro-
lysis [39]. How EGFR is activated following DEP-induced
oxidative stress in this study remains to be elucidated.

In this study, the mechanisms underlying DEP-induced
proinflammatory effect were conducted using THP-1 cells.
Although both THP-1 cells and primary human PBMC are
categorized as human mononuclear cells, they still showed
differential profile of proinflammatory mediators after DEP
treatment. For example, exposure to DEP increased both
IL-8 and TNFα releases from the PBMC. In contrast, only
IL-8 but not TNFα release was detected in DEP-treated
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Figure 3: Oxidative stress is required for DEP-induced expression of IL-8 and TNFα in THP-1 cells. (a) THP-1 cells were treated with 10-
100μg/ml DEP for 4 h, and intracellular ROS levels were measured using the fluorescent probe carboxy-H2 DCFDA and flow cytometer.
(b) THP-1 cells were pretreated with 10mM NAC for 2 h, prior to DEP (100 μg/ml) treatment for another 4 h. ROS was detected as
described previously. Furthermore, THP-1 cells were pretreated with 10mM NAC for 2 h, prior to DEP treatment for another 24 h. Levels
of IL-8 (c) and TNFα (d) were measured using ELISA, respectively. ∗P < 0:05, compared with vehicle control, n = 3. #P < 0:05, compared
with vehicle DEP, n = 3.

5Mediators of Inflammation



THP-1 cells. In other studies with human and murine
alveolar macrophages, DEP treatment suppresses TNFα
response [40–42]. Intriguingly, the DEPs generated from
different sources showed minimal effect on IL-8 and C-C
chemokine ligand 2 expression in THP-1cells [43]. Whether
these apparent discrepancies in the proinflammatory poten-
tial of biodiesel are due to cell specific effects or differences
in the chemical composition of the DEP used in the different
studies remains to be clarified.

5. Conclusions

Diesel engine emissions are among the most prevalent anthro-
pogenic pollutants worldwide. Exposure to combustion-
derived PM air pollution has been related to increased
incidence of cardiovascular morbidity and mortality,
specifically in susceptible populations. Previous studies have
demonstrated that ACS and other thrombotic effects are
associated with acute exposure to DEP [4, 44]. Furthermore,
the results from this in vitro study show that exposure to
DEP induces inflammatory effects in human mononuclear
cells and this process is regulated by oxidative stress and
EGF receptor. Therefore, this study not only provides
evidence for the elucidation of mechanisms underlying
DEP-induced ACS exacerbation but also provide clues for
the design of preventive and therapeutic measures against
DEP-induced cardiovascular toxicity.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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